
Type refinement systems:
combining intrinsic & extrinsic views

of typing, categorically*

Noam Zeilberger
7 December 2022

Proofs, Computation and Meaning #3

*based on joint work with Paul-André Melliès

1

Preview of the talk

Goal: describe some perspectives on deductive systems through the
lens of category theory, beginning with older perspectives and then
arguing for a subtle but significant change in perspective.

No category theory background will be assumed.

But first a bit of propaganda...

2

Category theory: a well-kept secret?

Subject: categories: A well kept secret
Date: Mon, 7 Dec 2009 09:13:28 -0500
From: "Joyal, André" <joyal.andre@uqam.ca>
To: categories list <categories@mta.ca>

Category theory is a powerful mathematical language.
It is extremely good for organising, unifying and suggesting
new directions of research. It is probably the most important
mathematical development of the 20th century.

But we can't say that publicly.

3

Why category theory?

Joyal's (just slightly cheeky) words are backed by experience, in
many areas of mathematics and increasingly in other disciplines.

A major reason for why CT is so useful is (no doubt) that it studies
objects via their relationships with other objects, rather than in
isolation. For example, this makes CT particularly well-adapted to:

- proving that two objects are isomorphic
- transferring theorems from one area to another
- moving up and down levels of abstraction

4

Outline

I. Category theory and propositions-as-types

II. Unifying intrinsic and extrinsic views of typing

III. A few examples

5

I. Category Theory and
Propositions-as-Types

6

Type theory

From its origins in constructive logic and philosophy, TT has grown
to have an important place in the study of programming languages
and proof assistants.

Partially overlapping development with category theory since at
least the 1960s (some common actors).

One overarching theme of TT research is the propositions-as-types
analogy, which provides a bridge with proof theory.

7

Propositions-as-types

Fundamentally, an analogy between programming and proving,
which has been used as a guide in the design of new programming
languages and proof assistants.

Also, an empirical observation of a formal correspondence
between historically important systems introduced in PT and TT.

Howard (1969): there is an exact correspondence between derivations
in intuitionistic natural deduction and terms in simply-typed λ-calculus.

8

A common abstraction?

It has been said* that "cartesian closed categories serve as a common
abstraction of type theory and propositional logic."

Let's try to unpack this claim...

*The quote is by Bill Lawvere, from the 2006 introduction to his 1969 paper
"Adjointness in Foundations", in Reprints in Theory and Applications of Categories 16.
Lawvere mentions that he made this observation back in 1963, and it is referenced
by Eilenberg and Kelly in their 1965 paper on "Closed categories", albeit without
mention of type theory.

9

Categories (definition)

A category is a graph supplied with a rule for composing edges, as
well as an identity edge for each node:

A

B

C

f g

fg
A A

idA

subject to associativity and unitality (fg)h = f(gh) and idA f = f = f idB.
An isomorphism A ≈ B between a pair of objects in a category is a
pair of arrows f : A → B and g : B → A such that fg = idA and gf = idB.

node = "object"
edge = "arrow" or "morphism"

10

Categories (examples)

Given a graph G, the free category Free(G) of paths in G.

Given a monoid M, the category BM with one object *, an arrow
x : * → * for every x ∈ M, and multiplication as composition.

Given a preordered set P, the category P with an object x for
every x ∈ P and a unique arrow x → y iff x ≤ y.

A

B

C

f g
fg

*
x

y

xy

x

y

z

Dh i
hi

w

no non-trivial isomorphisms

isomorphisms = invertible elements

isomorphisms = equivalences

11

Categories (more examples)

Set : objects are sets, arrows are functions f : A → B
Rel : objects are sets, arrows are relations r ⊆ A × B
Graph : objects are graphs, arrows are homomorphisms φ : G → H
Vec : objects are vector spaces, arrows are linear maps ρ : V → U

Although these categories are "large" (= proper class of objects), they
are "locally small" (= set of arrows between any pair of objects), which
is oen sufficient in categorical theorems.

12

The category of categories

Categories themselves form the objects of a category Cat, whose
arrows are functors. A functor F : ℂ → 𝔻 is a graph homomorphism
that preserves composition and identities.

(As we will discuss shortly, Cat is really a "2-category" in the sense
that we can naturally define arrows between functors...)

13

Product in a category (definition)

Let A and B be objects. A product of A and B is an object A×B
equipped with arrows π₁ : A×B → A and π₂ : A×B → B, such that for
any other object C and pair of arrows f : C → A and g : C → B, there
exists a unique ⟨f,g⟩ : C → A×B such that ⟨f,g⟩π₁ = f and ⟨f,g⟩π₂ = g.

A Bπ1 π2
A×B

f g
C
⟨f,g⟩

14

Product in a category (continued)

Fact: If a product of A and B exists, it is unique up to unique iso
commuting with the projections. (This justifies talk of "the" product.)

Proof: Given (A×B,π₁,π₂) and (A×'B,π₁',π₂'), apply the definition twice to construct arrows
h : A×B → A×'B and i : A×'B → A×B commuting with the projections. This means that the
compositions hi : A×B → A×B and ih : A×'B → A×'B commute with the projections. But since
identity arrows also commute with the projections, we have hi = idA×B and ih = idAx'B by
the uniqueness condition on the product.

More generally, defining objects by "universal properties" is a powerful
technique for proving isomorphisms...

15

f
L(A) B

g
A R(B)⇔

Natural transformations and adjunctions

Let F and G be two functors ℂ → 𝔻. A natural transformation
θ : F ⇒ G is a family of arrows θA : F(A) → G(A) in 𝔻 such that
F(f)θB = θAG(f) for all arrows f : A → B in ℂ.

Given functors L : ℂ → 𝔻 and R : 𝔻 → ℂ, an adjunction L ⊣ R consists
of natural transformations η : idℂ ⇒ LR and ε : RL ⇒ id𝔻 satisfying the
"triangle identities". Equivalently, L ⊣ R iff there is a bijection of arrows

natural in objects A ∈ ℂ and B ∈ 𝔻.
16

Cartesian closed categories (slick definition)

A category is cartesian if it has all finite products. which generalize binary products
in the obvious way

Δℂℂ ℂ×ℂ
!ℂℂ 1

Eqiuvalently, ℂ is cartesian iff the canonical functors

have right adjoints!

A cartesian category is closed if for every object A, the functor
-×A : ℂ → ℂ has a right adjoint A⇒- : ℂ → ℂ.

relying on the fact that Cat
is cartesian!

thus, the notion of ccc can be
defined just using adjunctions,
as highlighted by Lawvere.

17

Cartesian closed categories (examples)

A lattice is cartesian closed just in case it is a Heyting algebra.

Set is cartesian closed, with A×B the cartesian product of sets
and A⇒B = BA the set of functions from A to B.

Graph and Cat are likewise cartesian closed.

Rel and Vec are not cartesian closed.

x ∧ y ≤ z x ≤ y ⇒ z⇔

A × B → C A → CB⇔

18

Propositions-as-types revisited

Both natural deduction and simply-typed λ-calculus can be used to
define free cccs, where the objects are formulas/types built up from
a set of atoms using conjunction/product types and implication/function
types, and arrows are equivalence classes of proofs/well-typed terms
modulo normalization.

The fact that the resulting cccs are free means that they somehow
capture the notion of being cartesian closed...but it also means that
the two presentations are isomorphic!

19

Is that all, really?

The notion of ccc seems to lack a bit of the flexibility of simple TT
and intuitionistic ND that would merit calling it a "common abstraction".

For one, Howard's paper first described a correspondence between
derivations in purely implicative ND and terms of pure STLC, before
extending to other connectives. Yet the defn. of ccc relies on products.

Also, we know that propositions-as-types can be extended to
substructural logics and linear lambda calculi, which do not form cccs.

20

Achieving a (somewhat) more perfect harmony

One way of addressing this mismatch is by passing from categories
to multicategories (or even polycategories), which generalize
categories by allowing arrows with multiple inputs (and outputs).

For example, in a multicategory one can define the tensor product
of two objects A and B as an object A⊗B equipped with a universal
binary morphism m : A,B → A⊗B. Similary one can define their
internal hom as an object A⊸B equipped with a universal binary
morphism ev : A⊸B,A → B.

(promoted by Lambek)

"universal" means that pre/post composition with m and ev
sets up 1-1 correspondences of multimorphisms
Γ,A,B,Δ → C ⇔ Γ,A⊗B,Δ → C and Γ,A → B ⇔ Γ → A⊸B

21

More cracks in the foundations

There is a deeper issue with viewing a type system as (merely)
giving rise to a category/multicategory of well-typed terms, namely
that it collapses the distinction (which is important in TT) between
terms, typing judgments, and typing derivations. A related issue is
that it overlooks the distinction between the intrinsic and the extrinsic
views of typing, seemingly rejecting the extrinsic view.

We will now explain a slight shi in perspective that accounts for
these distinctions categorically, with the side-benefit of being able
to model a much wider class of deductive and computational systems.

22

II. Unifying Intrinsic &
Extrinsic Views of Typing

23

Intrinsic versus extrinsic typing

From "The Meaning of Types" (2000) by John C. Reynolds:

There are two very different ways of giving denotational semantics to a
programming language (or other formal language) with a nontrivial type
system. In an intrinsic semantics, only phrases that satisfy typing judgements
have meanings. Indeed, meanings are assigned to the typing judgements,
rather than to the phrases themselves, so that a phrase that satisfies
several judgements will have several meanings.

In contrast, in an extrinsic semantics, the meaning of each phrase is the same
as it would be in a untyped language, regardless of its typing properties. In
this view, a typing judgement is an assertion that the meaning of a phrase
possesses some property.

24

An intrinsic bias

The usual way of modelling type systems by categories is biased
towards the intrinsic view of typing, perhaps because every arrow
of a category might be said to have intrinsic type f : A → B, where
A = src(f) and B = tgt(f).

Indeed, what could it mean for f to possess other types??

This seems to make it tricky to model more "extrinsic" features of
type systems like subtyping and polymorphism.

25

Type systems as functors

In "Functors are Type Refinement Systems" (2015), P-A Melliès and I
argued that type systems are better modelled as functors p : 𝔻 → 𝕋
from a category 𝔻 whose morphisms are typing derivations to a
category 𝕋 whose morphisms are the terms corresponding to the
underlying subjects of those derivations.

One advantage of this perspective is that typing judgments receive
a first-class mathematical status, and that typing may be naturally
formulated as a "liing problem" along the functor.

26

A B

f f is a term with
"intrinsic" type A → B

Typing as a liing problem

𝕋

27

R
S

A B

f

p
The triple (R,f,S) form a

typing judgment, asserting
that f may be assigned an

"extrinsic" type R → S

Typing as a liing problem

𝔻

𝕋

28

R
Sα

A B

f

p

α is a typing derivation
providing evidence
for the judgment

Typing as a liing problem

𝔻

𝕋

29

Defining type refinements up to isomorphism

A functor p : 𝔻 → 𝕋 really defines a "type refinement" system, in the
sense that the types (objects) of 𝔻 may be seen as refining the existing
types (objects) of 𝕋, and we write R ⊏ A to mean p(R) = A. (But an
important special case is when 𝕋 has only one type.)

As we saw, a very powerful idea in CT is to define objects by their
universal properties. We can do the same to define objects R ⊏ A,
with even more expressive power since we are working relative to
a functor rather than merely within a category.

30

R
S

A B

f

Pushforward in a type refinement system

Given R ⊏ A and f : A → B, a pushforward of R along f is a
type f R ⊏ B equipped with a universal derivation of (R, f, f R).

31

Pullback in a type refinement system

Given f : A → B and S ⊏ B, a pullback of S along f is a
type f* S ⊏ A equipped with a universal derivation of (f* S, f, S).

R
S

A B

f

NB: a functor p : 𝔻 → 𝕋 is a
bifibration if it has pushes and pulls
of all objects of 𝔻 along all
compatible morphisms of 𝕋.

32

Intersection and union types

Intersection types may be defined similarly to categorical products.

Let R ⊏ A and S ⊏ A be two refinements of the same type.
An intersection of R and S is an object R∩S ⊏ A equipped with
a universal pair of derivations of (R∩S,idA,R) and (R∩S,idA,S).

(Union types are defined dually.)

33

III. A Few Examples

34

Example #1: Hoare Logic

Joke: "How can you tell apart a mathematician and a computer
scientist? Tell them that x = x+1. The mathematician will derive
a contradiction, the computer scientist will increment a register."

This joke gets at the difference between "math logic" and "CS logic",
which the philosophy of type refinement systems aims to reconcile.

Hoare Logic provides an earlier, important example of an attempt
at unifying math logic & CS logic.

35

Example #1: Hoare Logic

The basic judgment {P}c{Q} combines two formulas and a command,
with the following interpretation: if the state initially satisfies P, then
aer executing c it will satisfy Q.

For example:

{x < 10}x = x+1{x ≤ 10} {x even}x = x+1{x odd}

36

Example #1: Hoare Logic

A couple of important inference rules:

(rule of sequential composition)

(rule of consequence)

37

Example #1: Hoare Logic

Hoare Logic may be naturally modelled as a functor p : 𝔻 → 𝕋!

𝕋 : one-object category whose arrows are commands.
𝔻 : objects are formulas, arrows P → Q are commands c s.t. {P}c{Q}.
p : the evident forgetful functor.

The rules of sequential composition and of consequence are
semantically valid, as indeed they are for any functor p : 𝔻 → 𝕋.

Push and pull = "strongest postcondition" and "weakest precondition".

38

Example #2: substructural logics

We can models formulas of substructural logics as refinements (in 𝔻)
of a "type of contexts" W equipped with some algebraic structure (in 𝕋).

For example, suppose contexts may be concatenated, modelled as
an associative operation m : W×W → W in 𝕋. Given A ⊏ W and B ⊏ W,
we can define their tensor product A⊗B ⊏ W by first forming the
"external product" A×B ⊏ W×W, then pushing forward along m, i.e.,
A⊗B = push(m,A×B). We can similarly define the internal hom by
taking the "external hom" and pulling back along the currying of m.

def

For details, see our POPL 2015 paper, and see also "A fibrational framework for substructural and
modal logics" by Licata, Shulman, and Riley (FSCD 2017), which develops this idea in more depth.

39

Example #3: context-free grammars

In recent work (MFPS 2022), we explained how CFGs may be
naturally represented as functors of multicategories, and used
this to give a new proof of the Chomsky-Schützenberger
Representation Theorem, which relates context-free languages
and regular languages. Underlying the proof is a surprising
"contour / splicing" adjunction C ⊣ W : Cat → Multicat between
categories and multicategories.

40

Example #3: context-free grammars

Free 𝕊

W[𝔹Σ]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

NP

1

3

2

4

id-␣-id ∘ (tom, loves␣-id∘mom)
= tom␣loves␣mom

S

VPNP

NP NP VP

NP

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦ ↦

S

VPNP

𝕊 Free 𝕊

41

Summary

Category theory is a very powerful tool for conceptual analysis.

But type systems and other deductive systems are better modelled
as functors rather than as categories.

Doing so broadens the scope of what counts as a "deductive system",
and opens up a wealth of interesting mathematical questions around
type inference, proof search, parsing, etc.

this is no longer a secret!

42

Bibliography

F. W. Lawvere, "Adjointness in Foundations" (1969), Reprints in TAC 16 (2006)

C. A. R. Hoare, "An Axiomatic Basis for Computer Programming", CACM 12:10 (1969)

J. Lambek & P. J. Scott, Introduction to higher order categorical logic (1986)

J. Lambek, "Multicategories revisited", Contemporary Math. 92 (1989)

J. C. Reynolds, "The Meaning of Types: From Intrinsic to Extrinsic Semantics" (2000)

Some classics:

43

Bibliography

Papers by PAM and NZ on type refinement systems:

"Type refinement and monoidal closed bifibrations", arXiv:1310.0263

"Functors are Type Refinement Systems", POPL 2015

"An Isbell Duality Theorem for Type Refinement Systems", MSCS 28:6

"A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine", LICS 2016

"Parsing as a liing problem and the C-S representation theorem", MFPS 2022

44

