
Polarity in Proof Theory and Programming

Noam Zeilberger

2 September 2013∗

1 Introduction

I’m going to be talking about the logical phenomenon of polarity, while trying
to give a taste of what it has to do with programming. “Polarity” is a very
overloaded word, so I want to begin by stating that we take it to mean something
fairly specific in the proof theory of linear logic. To a first approximation, we
say that the connectives

⊗,⊕,∃

have positive polarity since they are invertible (or “reversible”) on the left, while
the connectives

O,N,∀

have negative polarity since they are invertible on the right. That is, all of the
rules

A,B,Γ ⊢∆

A⊗B,Γ ⊢∆

Γ ⊢∆,A,B

Γ ⊢∆,AOB

A,Γ ⊢∆ B,Γ ⊢∆

A⊕B,Γ ⊢∆

Γ ⊢∆,A Γ ⊢∆,B

Γ ⊢∆,ANB

A,Γ ⊢∆

∃x.A,Γ ⊢∆

Γ ⊢∆,A

Γ ⊢∆,∀x.A

are valid both when interpreted in the usual direction from premises to con-
clusion, and in the opposite direction. We’ll get back to these proof-theoretic
aspects later on, since they are important. However, something that I’m going
to emphasize is that polarity is more than just a formal aspect of linear logic,
but rather a general perspective on logical systems. One of the fundamental
questions in logic is

where do the rules of logic come from?

∗These notes are a revised version of a talk I gave at the Summer School on Linear Logic
and Geometry of Interaction held at Torino, Italy from 27–31 August 2013.

1



Now, I’m not going to pretend to answer this question for you here. However, I
do believe that the body of work on linear logic has demonstrated that if there
were a good story for why logic is the way it is, then the concept of polarity
would be an important component of this story. In fact, one of the points I want
to emphasize is that polarity is not an entirely new phenomenon in linear logic,
but rather a clarification of old ideas in logic and semantics of programming
languages. In particular, I’m going to discuss the relationship between polarity
and continuation semantics in the sense of Strachey and Wadsworth, as well
as its relationship to the so-called “meaning-explanations” for logic and type
theory popular in the 1970s.

With this by way of abstract motivation, I want to begin by attacking a slightly
more modest question, namely

2 The meaning of existence

. . . By this I mean of course the meaning of the existential quantifier!

So, let’s go back a hundred years in time, back to the debate between Hilbert’s
formalists and Brouwer’s intuitionists. One of the central issues of this debate
was the meaning of existence proofs, i.e., of proofs of existential statements

∃x.A

To Brouwer, a proof of an existential statement had to be constructive, that is,
it corresponded to a mental process for building some mathematical object t for
which the property

A(t)

could be intuitively verified. In contrast, Hilbert saw no reason for such a
restriction: to prove that

∃x.A

it suffices to show that the non-existence of such an object t would lead to a
contradiction.

Perhaps one of the reasons why this debate was never really settled is that it
hinges on conventions of language. However, an important milestone in clar-
ifying the debate was the so-called double-negation translation of Kolmogorov
(1925), who showed how to translate propositions in the classical logic of Hilbert
into the intuitionistic logic of Brouwer, while preserving provability. Consider

2



the following translation, defined by induction on formulas:

pK = ¬¬p

(A ∧B)
K
= ¬¬(AK

∧BK
)

(A ∨B)
K
= ¬¬(AK

∨BK
)

(A→ B)
K
= ¬¬(AK

→ BK
)

(∀x.A)
K
= ¬¬∀x.AK

(∃x.A)
K
= ¬¬∃x.AK

As you can see, the idea is to simply insert a double-negation before every
connective, and before logical atoms. A few years later, both Gentzen (1933)
and Gödel (1933) independently discovered more frugal translations. Gentzen’s
translation is defined like so:

pG = ¬¬p

(A ∧B)
G
= AG

∧BG

(A ∨B)
G
= ¬(¬AG

∧ ¬BG
)

(A→ B)
G
= AG

→ BG

(∀x.A)
G
= ∀x.AG

(∃x.A)
G
= ¬∀x.¬AG

Gödel’s is almost identical, except for taking the clause

(A→ B)
G̈
= ¬(AG̈

∧ ¬BG̈
)

The key properties to establish for all such translations (−)
† are the following

pair of facts:

1. ⊢c A implies ⊢i A†, and

2. ⊢c (A ≡ A†
)

Together, these facts imply that ⊢c A iff ⊢i A†.

Now, one way of reading these results is that they serve as an interpreter for
the classical mathematician when speaking to the intuitionistic mathematician.
Thus, the intuitionist is told that when the classical logician says

∃x.A

what they really “mean to say” is

¬∀x.¬A

3



and so on. But of course the problem with this reading of the double-negation
translations is that there is more than one! How to decide between Kolmogorov’s
translation, Gentzen’s, or Gödel’s (or Kuroda’s, or Krivine’s, . . . )?

CL

K

AA

G

��

G̈

��
⋮ IL

And for that matter, very often a classical mathematician and an intuitionistic
mathematician would agree on the truth of a proposition, and even on its proof.
Why is a translation needed at all in such cases?

I would like you to consider that the right way of looking at the double-negation
translations is rather like so:

IL

��
CL

K

99
G

44

G̈

22

⋯

11

The implicit inclusion from intuitionistic to classical propositions can be seen
as a coercion which forgets some distinctions. For example, the intuitionistic
propositions

A→ A ¬A ∨A ¬¬A→ A

can all be seen as different refinements of the classical tautology

¬A ∨A

since they become logically equivalent when interpreted in CL. Likewise, the
classical logician’s statement that

∃x.A

should just be interpreted as a rough statement by the intuitionist. It can be
refined into many different intuitionistic statements such as

∃x.A ¬¬∃x.A ¬∀x.¬A ∃x.¬¬A

and so on, which may or may not be valid in different contexts.

Later on I’m going to argue that polarization is the same kind of phenomenon.
That is, it involves making additional distinctions, which refine the meaning of
logical systems.

3 Continuation semantics

First, though, I want to review some classical ideas from the theory of program-
ming languages.

4



The basic problem of denotational semantics is to assign a meaning

JeK

to syntactic expressions e of some language L. As a warmup exercise, let us
consider a very simple language (L1) of arithmetic expressions:

e ∶∶= n ∣ e1 + e2 ∣ e1 × e2

An expression can be interpreted as a natural number, defined inductively as
follows:

JeK1 ∶ N
JnK1 = n

Je1 + e2K1 = Je1K1 + Je2K1
Je1 × e2K1 = Je1K1 × Je2K1

That is, numerals are interpreted as the natural numbers which they denote,
and the addition and multiplication operations on expressions are interpreted as
addition and multiplication of numbers. Of course, this all looks very circular
and vacuous, like Tarski’s definition,

“Snow is white” is true if and only if snow is white

or better, Girard’s

“A brocolli B” is true if and only if “A” is true brocolli “B” is true.

To get a bit less trivial, let’s now consider extending the language with variable
binding (L2):

e ∶∶= ⋯ ∣ let x = e1 in e2 ∣ x

For example, we can now write the expression

let x = 2 in let y = 3 in x + y

which presumably we want to have the meaning as

5

The real question of denotational semantics is, how do we define the meaning
operator in a compositional way? That is, we want to build up the meaning of
e out of the meanings of its subexpressions. Well, the idea is that rather than
interpreting e directly as a natural number, we interpret it as a function from

5



environments to natural numbers.

JeK2 ∶ (Var
fin

→ N)→ N
JnK2γ = n

Je1 + e2K2γ = Je1K2γ + Je2K2γ
Je1 × e2K2γ = Je1K2γ × Je2K2γ

JxK2γ = γ(x)
Jlet x = e1 in e2K2γ = Je2K2γ[x↦ Je1K2γ]

Let [] stand for the empty environment. You can verify that

q
let x = 2 in let y = 3 in x + y

y
2
[] = 5

since
Jx + yK2[x↦ 2, y ↦ 3] = 5

Also observe that we recover the original meaning operator by applying to the
empty environment, in the sense that

JeK2[] = JeK1

for all e ∈ L1.

Next consider extending the language with division (L3):

e ∶∶= ⋯ ∣ e1 ÷ e2

The question now, of course, is how should we interpret division-by-zero? Well,
one natural idea is to enlarge the type of the interpretation, so that rather than
denoting functions from environments to natural numbers, expressions denote
functions from environments to “natural numbers or division-by-zero errors”,

JeK ∶ (Var
fin

→ N)→ (N + 1)

Essentially this requires us to extend the arithmetic operations from N to the
larger type N + 1, for example extending the definition of addition like so:

inl(n1) + inl(n2) = inl(n1 + n2)
inl(n1) + inr(∗) = inr(∗)
inr(∗) + inl(n2) = inr(∗)
inr(∗) + inr(∗) = inr(∗)

This works, but is a bit annoying: why should we have to redefine the arithmetic
operations on “pseudo numbers” they were never meant to support?

A different possibility is to define a so-called continuation semantics. Let �

stand for an arbitrary type, which we call the answer type, assumed to contain
at least one predefined value d ∶ � (for “dummy” or “default”). The idea of

6



continuation semantics—also called continuation-passing style—is that we can
interpret expressions into the answer type, given an additional function of type

N→ �

as an argument, called the continuation. That is, the semantic operator has
type

JeK3 ∶ (Var
fin

→ N)→ (N→ �)→ �

We define JeK3 as follows:

JnK3γ k = k n
Je1 + e2K3γ k = Je1K3γ λn1.Je2K3γ λn2.k(n1 + n2)
Je1 × e2K3γ k = Je1K3γ λn1.Je2K3γ λn2.k(n1 × n2)

JxK3γ k = k(γ(x))
Jlet x = e1 in e2K3γ k = Je1K3γ λn1.Je2K3γ[x↦ n1]k

Je1 ÷ e2K3γ k = Je1K3γ λn1.Je2K3γ λn2.if n2 > 0 then k(n1 ÷ n2) else d

If you haven’t seen this kind of thing before, it might take some getting used
to. Here’s an example:

q
let x = 0 in 3 ÷ x

y
[]k =

q
0
y
[]λn1.

q
3 ÷ x

y
[x↦ n1]k

=

q
3 ÷ x

y
[x↦ 0]k

= . . .

= JxK[x↦ 0]λn2.if n2 > 0 then k(3 ÷ n2) else d

= d

Observe, though, that once again we can recover the previous semantics (up to
isomorphism) by a clever instantiation: taking � = N+1 and d = inr(∗), we have

JeK3 γ (λx. inl x) = inl(JeK2 γ)

for all expressions e ∈ L2 and all environments γ.

Now for a philosophical question: what is the meaning of “let x = 3 ÷ 0 in 42”?
A bit of calculation will show you that our semantics decides that this expression
always signals a division-by-zero error. On the other hand, one could imagine
a language where “let x = 3 ÷ 0 in 42” has the same meaning as “42”. In pro-
gramming languages theory, this is the difference between binding of variables
by-value and by-name.

It is actually quite easy to modify our denotational semantics to implement by-
name variable binding. The type of the alternative meaning operator becomes:

JeK′3 ∶ (Var
fin

→ (N→ �)→ �)→ (N→ �)→ �

7



Then the only clauses that have to change are the ones dealing with variables:

JxK′3γ k = γ xk

Jlet x = e1 in e2K
′
3γ k = Je2K

′
3γ[x↦ Je1K

′
3γ]k

You can verify that with this definition, the meaning of “let x = 3 ÷ 0 in 42” is
the same as the meaning of “42”.

Let me point out something now which may already be obvious. I’m using the
symbol “�” in order to highlight an analogy with the classical double-negation
translations, of course. When we introduced our continuation semantics, we
went from interpreting expressions as [functions from environments to] natu-
ral numbers, to interpreting them as [functions from environments to] double-
negated natural numbers. Again, � is called an “answer type” in the theory of
continuations. What is absolutely crucial, though, is that this answer type is
not meant to stand for a contradiction in the classical sense of an empty type.
Indeed, in this particular semantics we postulated that � was inhabited with at
least one element. It is better to think of � as a sort of a universe which you
can enter but never escape.

To conclude this section, I want to mention one more idea from the theory of
programming languages, due to the late John Reynolds. Although continuation
semantics is a very powerful and general technique, it can be a bit unsatis-
fying from a foundational viewpoint, since it seems to rely on a higher-order
metalanguage. What exactly is this space of functions

N→ �

and what manipulations are allowed on it? Certainly we could answer this
question precisely in ZFC set theory for example, but the answer would be
different if we took the metalanguage to be, say, OCaml. One would hope that
these kinds of choices would be irrelevant to the meaning of expressions in such
a simple language as L3. And in any case, after all it should be possible (let us
think like computer scientists) to compile expressions of L3 into instructions of
some low-level model of computation, such as Turing machines.

Reynolds’ defunctionalization is an abstract technique which precisely addresses
this objection. I won’t have time to explain defunctionalization in detail, but
the basic idea is that the specific continuations

k ∶ A→ �

introduced in a higher-order definition can be enumerated into some small type
B, while at the same time one defines a function

⟨− ∣ −⟩ ∶ A ×B → �

that explains how to apply these specific continuations to values. (Note we are
taking A = N in the semantics of L3.) Then, one simply replaces all references

8



to the type A → � with the type B, and all instances of function application
k(v) by calls to the “apply function” ⟨v ∣ k⟩.

The technique is essentially mechanical. Let me assert now that by defunction-
alizing the interpretation J−K3, we arrive at the following “abstract machine”:

Defunctionalized continuations:

k ::= K ∣ P1(γ, k, e) ∣ P2(γ,n, k)
∣ T1(γ, k, e) ∣ T2(γ,n, k)
∣D1(γ, k, e) ∣D2(γ,n, k)
∣ L(γ, x, k, e)

Evaluation function:

⟪n ∣ γ ∣ k⟫↝ ⟨n ∣ k⟩

⟪x ∣ γ ∣ k⟫↝ ⟨γ(x) ∣ k⟩

⟪e1 + e2 ∣ γ ∣ k⟫↝ ⟪e1 ∣ γ ∣ P1(γ, k, e2)⟫

⟪e1 × e2 ∣ γ ∣ k⟫↝ ⟪e1 ∣ γ ∣ T1(γ, k, e2)⟫

⟪e1 ÷ e2 ∣ γ ∣ k⟫↝ ⟪e1 ∣ γ ∣D1(γ, k, e2)⟫

⟪let x = e1 in e2 ∣ γ ∣ k⟫↝ ⟪e1 ∣ γ ∣ L(γ, x, k, e2)⟫

Apply function:

⟨n1 ∣ P1(γ, k, e2)⟩↝ ⟪e2 ∣ γ ∣ P2(γ,n1, k)⟫

⟨n1 ∣ T1(γ, k, e2)⟩↝ ⟪e2 ∣ γ ∣ T2(γ,n1, k)⟫

⟨n1 ∣D1(γ, k, e2)⟩↝ ⟪e2 ∣ γ ∣D2(γ,n1, k)⟫

⟨n1 ∣ L(γ, x, k, e2)⟩↝ ⟪e2 ∣ γ[x↦ n1] ∣ k⟫

⟨n2 ∣ P2(γ,n1, k)⟩↝ ⟨n1 + n2 ∣ k⟩

⟨n2 ∣ T2(γ,n1, k)⟩↝ ⟨n1 × n2 ∣ k⟩

⟨n2 ∣D2(γ,n1, k)⟩↝ if n2 > 0 then ⟨n1 ÷ n2 ∣ k⟩ else D

Theorem: ⟪e ∣ [] ∣K⟫ eventually reduces to D or to ⟨n ∣K⟩ for some n.

4 Inversion principles and the justification of
the logical laws

Much has been made of an offhand remark of Gentzen in his article on natural
deduction (1935):

The introduction rules give, so to say, a definition of the constant in
question, and the elimination rules are in the end only consequences
thereof. [Die Einführungen stellen sozusagen die “Definitionen” der
betreffenden Zeichen dar, und die Beseitigungen sind letzen Endes
nur Konsequenzen hiervon...]

9



Dag Prawitz was one of the first to try to justify Gentzen’s remark, by applying a
so-called inversion principle. Prawitz defined a canonical proof of a proposition
as one ending in an introduction rule. Then the inversion principle states that
an elimination rule is justified, just in case a proof of the conclusion can be
derived directly from canonical proofs of the premises (i.e., without resort to
the elimination rule itself). Rather than trying to explain exactly what this
means, let me illustrate with an example.

Consider the standard introduction and elimination rules for conjunction:

⊢ A ⊢ B
⊢ A ∧B

⊢ A ∧B
⊢ A

⊢ A ∧B
⊢ B

According to Prawitz, the introduction rule

⊢ A ⊢ B
⊢ A ∧B

justifies (for example) the first elimination rule

⊢ A ∧B
⊢ A

since given a canonical proof of ⊢ A ∧B one can extract a proof of ⊢ A:

⋮α
⊢ A

⋮β
⊢ B

⊢ A ∧B
⊢ A ↦

⋮α
⊢ A

Similarly, the introduction rule for implication

[⊢ A]

⊢ B
⊢ A→ B

justifies the elimination rule of modus ponens

⊢ A→ B ⊢ A
⊢ B

as illustrated by the following argument:

[⊢ A]

⋮β
⊢ B

⊢ A→ B
⋮α
⊢ A

⊢ B ↦

⋮α
⊢ A
⋮β
⊢ B

As a last example, the pair of introduction rules for disjunction

⊢ A
⊢ A ∨B

⊢ B
⊢ A ∨B

10



justify elimination by case-analysis,

⊢ A ∨B
[⊢ A]

⊢ C
[⊢ B]

⊢ C
⊢ C

since
⋮α
⊢ A

⊢ A ∨B

[⊢ A]

⋮β
⊢ C

[⊢ B]

⋮γ
⊢ C

⊢ C ↦

⋮α
⊢ A
⋮β
⊢ C

and
⋮α′
⊢ B

⊢ A ∨B

[⊢ A]

⋮β
⊢ C

[⊢ B]

⋮γ
⊢ C

⊢ C ↦

⋮α′
⊢ B
⋮γ
⊢ C

As you can see, these “justification” steps basically correspond to β-reductions in
lambda calculus. I’m not going to argue that this really provides a philosophical
“justification” of the elimination rules, but instead move on to discussing a
later analysis by Michael Dummett, which was inspired by Prawitz’s but goes
considerably deeper.

Rather than confining attention to the elimination rules, Dummett was inter-
ested in the justification of arbitrary logical inferences. The essence of his idea
was that Prawitz’s inversion principle could be applied more broadly if one starts
with a more restricted notion of canonical proof. As an example, consider the
inference

⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C)

and suppose that the premise has a proof ending in an introduction rule:

⋮α
⊢ A

⋮β
⊢ B ∨C

⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C)

Well now suppose further that the proof of the right premise continues with
another introduction rule:

⋮α
⊢ A

⋮β′
⊢ B

⊢ B ∨C
⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C)

11



Then the premises can be reorganized into a direct proof of the conclusion:

⋮α
⊢ A

⋮β′
⊢ B

⊢ B ∨C
⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C) ↦

⋮α
⊢ A

⋮β′
⊢ B

⊢ A ∧B
⊢ (A ∧B) ∨ (A ∧C)

In the case where the right premise continues with the other introduction rule
for disjunction, we can make a similar reduction:

⋮α
⊢ A

⋮γ
⊢ C

⊢ B ∨C
⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C) ↦

⋮α
⊢ A

⋮γ
⊢ C

⊢ A ∧C
⊢ (A ∧B) ∨ (A ∧C)

We have thus justified the inference

⊢ A ∧ (B ∨C)

⊢ (A ∧B) ∨ (A ∧C)

by an inversion principle.

As Dummett observed, though, care must be taken in formulating the right
definition of “canonical proof”. For example, one might argue that the inference

⊢ A→ (B ∨C)

⊢ (A→ B) ∨ (A→ C)

is justified, since

[⊢ A]

⋮β
⊢ B

⊢ B ∨C
⊢ A→ (B ∨C) ↦

[⊢ A]

⋮β
⊢ B

⊢ A→ B
⊢ (A→ B) ∨ (A→ C)

and
[⊢ A]

⋮γ
⊢ C

⊢ B ∨C
⊢ A→ (B ∨C) ↦

[⊢ A]

⋮γ
⊢ C

⊢ A→ C
⊢ (A→ B) ∨ (A→ C)

But obviously this inference is invalid even in classical logic (take A = B ∨C).

Dummett’s solution was to relax the notion of canonical proof under hypotheti-
cal reasoning. Concretely in the case of first-order intuitionistic logic, if we scan
a canonical proof from bottom-to-top, we will read a series of introductions of

12



disjunctions, conjunctions, and existential quantifiers, followed by a →I or ∀I
rule, after which the proof has arbitrary format.

On the other hand, what is so special about introduction rules? Dummett
also considered the possibility of fixing the meaning of the connectives by their
elimination rules. This induces an alternative inversion principle, which again
can be used to justify arbitrary inferences (including the introduction rules): an
inference is justified, just in case any canonical consequence of the conclusion
can be directly extracted as a consequence of the premises. Dummett called
this eliminations-oriented approach a “pragmatist” meaning-theory, dual to the
introductions-oriented “verificationist” meaning-theory.

Again let us illustrate with an example. Suppose we take the elimination rules
for conjunction

⊢ A ∧B
⊢ A

⊢ A ∧B
⊢ B

as defining the canonical consequences of ⊢ A ∧ B. Then the conjunction-
introduction rule

⊢ A ⊢ B
⊢ A ∧B

is justified in the following sense: any canonical consequence of the conclusion
must begin by projecting either ⊢ A or ⊢ B, and in either case we can derive
the consequence directly from the premises:

⊢ A ⊢ B
⊢ A ∧B
⊢ A
⋮α ↦

⊢ A
⋮α

⊢ A ⊢ B
⊢ A ∧B
⊢ B
⋮β ↦

⊢ B
⋮β

As an example of using the “pragmatist” inversion principle to justify a more
general inference, the rule

⊢ (A→ B) ∧ (A→ C)

⊢ A→ B ∧C

may be justified by the following pair of reductions:

⊢ (A→ B) ∧ (A→ C)

⊢ A→ B ∧C
⋮α
⊢ A

⊢ B ∧C
⊢ B
⋮β ↦

⊢ (A→ B) ∧ (A→ C)

⊢ A→ B
⋮α
⊢ A

⊢ B
⋮β

⊢ (A→ B) ∧ (A→ C)

⊢ A→ B ∧C
⋮α
⊢ A

⊢ B ∧C
⊢ C
⋮γ ↦

⊢ (A→ B) ∧ (A→ C)

⊢ A→ C
⋮α
⊢ A

⊢ C
⋮γ

13



Finally, Dummett considered how to relate the two “verificationist” and “prag-
matist” perspectives on logical inference, and settled on a requirement of “har-
mony” between them: essentially that the connectives admit both interpreta-
tions.

On the other hand, in our post-modern world, we know that rather than al-
ways insisting on harmony, sometimes it is better to simply accept diversity.
Typically, the perspective of linear logic tells us that the “verificationist” defi-
nition of conjunction (via its introduction rule) and the “pragmatist” definition
of conjunction (via its elimination rules) are both different refinements of the
intuitionistic concept of conjunction: one corresponds to ⊗, the other to N. So
now let us finally turn to the polarity phenomenon in linear logic.

5 Polarity and focalization in linear logic

I want to begin by discussing the connection between inversion principles in the
sense of Prawitz and Dummett, and the proof-theoretic concept of invertibility.
As I mentioned before, in proof theory we say that an inference rule is invertible
if its conclusion implies its premises. For example, the N-right rule in linear
logic

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ ANB,∆ NR

is invertible, since from any proof of Γ ⊢ ANB,∆ may be extracted proofs of
Γ ⊢ A,∆ and Γ ⊢ B,∆. One way to see this formally is by invoking cut:

Γ ⊢ ANB,∆
A ⊢ A

ANB ⊢ A NL1

Γ ⊢ A,∆
cut

Γ ⊢ ANB,∆
B ⊢ B

ANB ⊢ B NL2

Γ ⊢ B,∆
cut

A standard convention is to indicate invertible rules with a double horizontal
line, for example the following are invertible rules:

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ ANB,∆ NR
Γ,A,B ⊢∆

Γ,A⊗B ⊢∆
⊗L

Γ ⊢ A⊸ B,∆

Γ,A ⊢ B,∆
⊸R

Now, although historically we speak in terms of provability, in modern terms
really invertibility is about an isomorphism of judgments. For example, the
invertibility of ⊸R says that we have equalities

β
Γ,A ⊢ B,∆

Γ ⊢ A⊸ B,∆
⊸R

A ⊢ A B ⊢ B
A⊸ B,A ⊢ B

⊸L

Γ,A ⊢ B,∆
cut

=

β
Γ,A ⊢ B,∆

14



and

η
Γ ⊢ A⊸ B,∆ =

η
Γ ⊢ A⊸ B,∆

A ⊢ A B ⊢ B
A⊸ B,A ⊢ B

⊸L

Γ,A ⊢ B,∆
cut

Γ ⊢ A⊸ B,∆
⊸R

for all proofs β and η of Γ,A ⊢ B,∆ and Γ ⊢ A⊸ B,∆ respectively.

Again, a basic observation about linear logic is that the connectives

⊗,⊕,∃

are invertible on the left (i.e., their left rules are invertible), while the connectives

O,N,∀

are invertible on the right. In turn, ⊗,⊕,∃ are not invertible on the right, while
O,N,∀ are not invertible on the left. For example, the ⊗-right rule

Γ1 ⊢ A,∆1 Γ2 ⊢ B,∆2

Γ1,Γ2 ⊢ A⊗B,∆1,∆2
⊗R

is not invertible, as we can see by considering the sequent A⊗B ⊢ A⊗B: it is
derivable, yet in general there is no proof ending with the ⊗R rule.

This natural division of the connectives was first discovered in the context of
linear logic proof search by Jean-Marc Andreoli, who called these two groups
of connectives synchronous and asynchronous. His motivation was roughly the
following.

Suppose that you start with an arbitrary formula A, and want to try to find a
proof of ⊢ A. A very naive strategy is to simply proceed bottom-up, viewing the
rules of the sequent calculus as goal transformers. By applying right rules and
left rules nondeterministically, eventually either there are no more rules to try
(in which case the search fails), or there are no more goals to prove (in which
case the search succeeds with a proof).

The problem with this naive approach, though, is that it is far too nondeter-
ministic to be practical. Thus Andreoli devised a more refined strategy which
exploits the natural division of the connectives in two phases he termed inver-
sion and focusing:

1. During the inversion phase, whenever an asynchronous connective appears
on the right, or a synchronous connective on the left, it is decomposed
eagerly, by applying the corresponding invertible rule.

2. Eventually, the inversion phase ends when we arrive at goal sequents con-
taining no more invertible connectives. The next step is to enter the
focusing phase by picking one formula in the sequent, and decomposing
that formula and its subformulas by applying (non-invertible) rules until
we get back to an invertible subformula.

15



Before making this more precise, let me illustrate with an example:

p ⊢ [p]

p ⊢ [p⊕ q]

r ⊢ [r]

s ⊢ [s]

s ⊢ [s⊕ p]
s ⊢ s⊕ p

[s] ⊢ s⊕ p

r[r⊸ s] ⊢ s⊕ p
r, r⊸ s ⊢ s⊕ p

r ⊗ (r⊸ s) ⊢ s⊕ p

[r ⊗ (r⊸ s)] ⊢ s⊕ p

[(p⊕ q)⊸ (r ⊗ (r⊸ s))]p ⊢ s⊕ p

(p⊕ q)⊸ (r ⊗ (r⊸ s)), p ⊢ s⊕ p

p ⊢ ((p⊕ q)⊸ (r ⊗ (r⊸ s)))⊸ (s⊕ p)

⊢ p⊸ ((q ⊕ r)⊸ (r ⊗ (r⊸ s)))⊸ (s⊕ p)

The important and at first seemingly miraculous fact is that this strategy is
complete: if a sequent is derivable, then it has a proof alternating inversion and
focusing phases.

In order to formalize exactly what this means, I’m going to use a slight variation
on Andreoli’s original one-sided formulation of focusing proofs. Besides our
treatment of atomic formulas which is a slight technical simplification, the more
important conceptual point is that rather than speaking of synchronous and
asynchronous connectives as Andreoli originally did, we’re going to follow Girard
and make a syntactic distinction between positive and negative formulas:

P,Q ∶∶= P ⊗Q ∣ P ⊕Q ∣ ↓N ∣ p

N,M ∶∶= NOM ∣ NNM ∣ ↑P ∣ p⊥

The so-called shift connectives ↓ and ↑ act as coercions between positive and
negative formulas, which otherwise look exactly like ordinary formulas of linear
logic. Note that the shifts are dual in the standard sense:

(↑P )
⊥
= ↓(P ⊥)

(↓N)
⊥
= ↑(N⊥)

Now, let Γ stand for a list of negative formulas N , and ∆ stand for a list of
positive formulas P . We consider two kinds of sequents:

⊢ Γ; ∆ inverting
⊢∆[P ] focused

The system is defined as follows:1

1The minor technical simplification of Andreoli’s system is the atomic inversion rule, which
inverts a negative atom p⊥ by postulating a focused derivation of p parameteric in a positive
context δ. Note that a similar treatment is given by [Reed and Pfenning (2010)]. Thanks are
due to Alexis Saurin for noticing a bug in my original treatment. (The motivation for atomic
inversion should become clear below, after we discuss the general inversion principle.)

16



Multiplicatives:

⊢ N,M,Γ; ∆

⊢ NOM,Γ; ∆

⊢∆1[P ] ⊢∆2[Q]

⊢∆1,∆2[P ⊗Q]

Additives:

⊢ N,Γ; ∆ ⊢M,Γ; ∆

⊢ NNM,Γ; ∆

⊢∆[P ]

⊢∆[P ⊕Q]

⊢∆[Q]

⊢∆[P ⊕Q]

Shifts:
⊢ Γ;P,∆

⊢ ↑P,Γ; ∆

⊢ N ; ∆

⊢∆[↓N]

Focalization and atomic inversion:

⊢∆[P ]

⊢∆, P

[⊢ δ[p]]
⊢ Γ; δ,∆

⊢ p⊥,Γ; ∆

Let ∣−∣ be the operation which converts a polarized formula to a standard formula
of LL, by erasing shifts. For example, we have

∣p⊗ ↓(q⊥O ↑ q)∣ = ∣ ↑(↓ ↑p⊗ ↓(↑ ↓ q⊥O ↑ q))∣ = p⊗ (q⊥Oq)

and so on. The correctness of Andreoli’s strategy is implied by the following
result, also called the focalization theorem:

⊢ ∣Γ∣, ∣∆∣ iff ⊢ Γ; ∆

Taking a step back from the proof-search interpretation, I want to consider this
result in more abstract terms.

The first thing I want to explain is the connection between inversion phases and
inversion principles. One way to prove the focalization theorem is to first prove
the admissibility of cut and identity for the focalized sequent calculus,

⊢ Γ1, P
⊥; ∆1 ⊢ Γ2;P,∆2

⊢ Γ1,Γ2; ∆1,∆2 ⊢ P ⊥;P

Now, in ordinary sequent calculus, one can derive identities for arbitrary for-
mulas from atomic axioms, by a simple inductive argument. For example, the
derivation

⊢ P ⊥, P
⊢ P ⊥, P ⊕Q

⊢ Q⊥,Q
⊢ Q⊥, P ⊕Q

⊢ P ⊥NQ⊥, P ⊕Q

shows how to build an identity for P ⊕ Q from the identities for P and Q.
The difficulty in repeating this argument for a focalized sequent calculus is that

17



the inversion and focusing phases can’t be interleaved—for example, the above
derivation violates Andreoli’s protocol by applying a right rule on P ⊕Q while
there is still an invertible formula (P ⊥ or Q⊥) remaining in the sequent.

In order to prove both the identity and cut theorems, it is helpful to prove the
following intermediate result, which could be called the inversion principle:

⊢ P ⊥n , . . . , P
⊥
1 ; ∆ iff ⊢∆1[P1], . . . ,⊢∆n[Pn] implies ⊢∆1, . . . ,∆n,∆

I recommend that you try to prove the backwards direction of the inversion
principle as an exercise, and then derive identity axioms as a corollary.

If we specialize to the case where n = 1, the inversion principle reads as

⊢ P ⊥; ∆ iff ⊢∆′
[P ] implies ⊢∆′,∆

and if we rewrite this correspondence in two-sided notation, we have two equiv-
alent formulations:

P ⊢∆ iff Γ ⊢ [P ] implies Γ ⊢∆

Γ ⊢ N iff [N] ⊢∆ implies Γ ⊢∆

But these are just Dummett’s inversion principle. Adopting his terminology, we
could say that positive formulas have a “verificationist meaning-theory”, as

∆ is a justified inference from P just in case ∆ can already be derived
from the premises of a canonical proof of P .

Likewise, negative formulas have a “pragmatist meaning-theory”, as

N is a justified inference from Γ just in case any canonical conse-
quence of N can already be derived from Γ.

The second thing I want to point out is that formally, the focalization theorem
has a very similar structure to the correctness theorems for the classical double-
negation translations. Recall that I suggested you should think of the double-
negation translations like this:

IL

��
CL

K

99
G

44

G̈

22

⋯

11

Well, I also want you to think of the focalization theorem like so:

PLL

∣−∣
��

LL

::55 33

⋯
11

18



where the arrows going from bottom to top represent arbitrary polarizations of
the formulas by insertion of shifts. The point is that just as intuitionistic logic
may be interpreted as a refinement of classical logic, polarized linear logic may
be interpreted as a refinement of classical linear logic.

In fact this is really more than an analogy, in the sense that polarities can be
seen as a way of deconstructing the classical double-negation translations.

6 Pattern-matching and continuation-passing

Putting philosophy aside, I want to try to hint at what all this has to do with
programming. I’m going to give names to the different forms of proof in the
focalized sequent calculus, adopted from the theory of programming languages.
A proof of a focused sequent

⊢∆[P ]

is called a value, while a proof of an inverting sequent

⊢ Γ; ∆

is called a program. I’ll use the letters v and e respectively

v
⊢∆[P ]

e
⊢ Γ; ∆

to range over these different classes of proofs. I’ll also overload the letter v to
label the assumptions in Γ, which are called value variables, whereas I’ll use the
letter k to label the assumptions in ∆, which are called continuation variables.
For example, writing

e
⊢ N1

v1
,N2
v2

;P1
k1

, P2
k2

, P3
k3

indicates that the program e may refer to the value variables v1 and v2 and the
continuation variables k1, k2, and k3.

The focalization and atomic inversion rules can be seen as the basic principles
for building programs: either by plugging a value with a continuation variable,
or by abstracting in a value variable:

v

⊢∆[P ]

⟨v∣k⟩
⊢∆, P

k

[

v

⊢ δ[p]]
e

⊢ Γ; δ,∆
v.e

⊢ p⊥
v
,Γ; ∆

Likewise, the rules of the focusing phase can be interpreted as different rules for
building up values. For example, we can annotate the ⊗ and ⊕ rules like so:

v1
⊢∆1[P ]

v2
⊢∆2[Q]

(v1,v2)
⊢∆1,∆2[P ⊗Q]

v

⊢∆[P ]

inl v

⊢∆[P ⊕Q]

v

⊢∆[Q]

inr v

⊢∆[P ⊕Q]

19



The focusing phase ends at a polarity shift, which says that a continuation can
be represented as a value:

e

⊢ P ⊥
v

; ∆

↓(v.e)
⊢∆[↓P ⊥]

Finally, the rules of the inversion phase give different rules for building programs
by decomposing values:

e

⊢ N
v1

,M
v2
,Γ; ∆

⟨v∣(v1,v2).e⟩
⊢ NOM

v
,Γ; ∆

e1
⊢ N

v1
,Γ; ∆

e2
⊢M

v2

,Γ; ∆

⟨v∣{inl v1.e1,inr v2.e2}⟩
⊢ NNM

v
,Γ; ∆

e

⊢ Γ;P
k
,∆

⟨v∣↓k.e⟩
⊢ ↑P

v
,Γ; ∆

Now, taking back a step, it’s not difficult to see that any value is going to be
constructed as a tree of various operations, with a given fringe of continuations.
For example, the two derivations

e1
⊢ P ⊥

v1
; ∆1

↓(v1.e1)
⊢∆1[↓P

⊥
]

e2
⊢ R⊥

v2
; ∆2

↓(v2.e2)
⊢∆2[↓R

⊥
]

inr ↓(v2.e2)
⊢∆2[↓Q

⊥
⊕ ↓R⊥]

(↓(v1.e1),inr ↓(v2.e2))
⊢∆1,∆2[↓P

⊥
⊗ (↓Q⊥ ⊕ ↓R⊥)]

and
e1

⊢ P ⊥
v1

; ∆1

↓(v1.e1)
⊢∆1[↓P

⊥
]

e2
⊢ R⊥

v2
; ∆2

↓(v2.e2)
⊢∆2[↓R

⊥
]

(↓(v1.e1),↓(v2.e2))
⊢∆1,∆2[↓P

⊥
⊗ ↓R⊥]

inr(↓(v1.e1),↓(v2.e2))
⊢∆1,∆2[(↓P

⊥
⊗ ↓Q⊥)⊕ (↓P ⊥ ⊗ ↓R⊥)]

both have the same fringe, differing only in the surrounding trees of operations.
Let’s write these two derivations more concisely:

v = (↓ (v1.e1), inr ↓ (v2.e2))

v′ = inr(↓ (v1.e1), ↓ (v2.k2))

We call the surrounding trees with holes for continuations patterns,

p = (↓−, inr ↓−)

p′ = inr(↓−, ↓−)

20



while we call the fringe of continuations a substitution:

θ = ↓ (v1.e1), ↓ (v2.e2)

(Formally, note that patterns are just special kinds of values, with a fringe of
identity continuations.) What we have just said is that any value can be factored
as a pattern composed with a substitution, i.e.,

v = pθ

v′ = p′θ

But by the inversion principle, this in turn means that in order to define a
continuation, it suffices to define its action on patterns. In other words, we have
a justification for pattern-matching notation.

As one last mental experiment, let’s go back to our little exercise in arithmetic.
Suppose we are given some suitable definition of the natural numbers as an
atomic type nat. In particular, assume that we have the ability to add and mul-
tiply values of type nat, to divide values on the condition that the second value
is non-zero, and to test if a value is non-zero. Can you use these assumptions
to fill in the following programs?

add
⊢ ↑ ↓nat⊥O ↑ ↓nat⊥

v
;nat

k

mul
⊢ ↑ ↓nat⊥O ↑ ↓nat⊥

v
;nat

k

div
⊢ ↑ ↓nat⊥O ↑ ↓nat⊥

v
;nat

k

Hint: to write div, you might have to cheat by calling a “daimon”.

Selected bibliography

[Andreoli (1991)] Jean-Marc Andreoli. Logic programming with focusing proofs
in linear logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[Dummett (1991)] Michael Dummett. The Logical Basis of Metaphysics. Har-
vard University Press, 1991. (Note this is an expanded version of the William
James Lectures, 1976.)

[Girard (1991)] Jean-Yves Girard. A new constructive logic: Classical logic.
Mathematical Structures in Computer Science, 1:255–296, 1991.

[Girard (2001)] Jean-Yves Girard. Locus solum: From the rules of logic to the
logic of rules. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[Kolmogorov (1925)] Andrei Nikolaevich Kolmogorov. On the principle of the
excluded middle. Matematicheskii Sbornik, 32:646–667, 1925. English trans-
lation in From Frege to Godel: A Source Book in Mathematical Logic, 1879–
1931, Jean van Heijenoort (ed.).

[Prawitz (1974)] Dag Prawitz. On the idea of a general proof theory. Synthese,
27:63–77, 1974.

21



[Reed and Pfenning (2010)] Jason Reed and Frank Pfenning. Focus-preserving
embeddings of substructural logics in intuitionistic logic. Unpublished
manuscript, 2010.

[Reynolds (1972)] John C. Reynolds. Definitional interpreters for higher order
programming languages. In ACM 72: Proceedings of the ACM annual con-
ference, 717–740, 1972.

[Reynolds (1993)] John C. Reynolds. The Discoveries of Continuations. Lisp
and Symbolic Computation, 6:3/4, 233–247, 1993.

22


