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The LambdaComb Project

www.lix.polytechnique.fr/LambdaComb/

a new 4-year ANR project, co-initiated by Olivier Bodini & myself

kick-off meeting: 11 April @ LIX!

five labs involved: %X @

broad goal: develop interdisciplinary connections between
lambda calculus (and related topics) and combinatorics




The LambdaComb Project

www.lix.polytechnique.fr/LambdaComb/

one important motivation: the discovery iy otiambdatems

family of rooted maps OEIS
linear 3-valent (genus g > 0) A062980
planar 3-valent A002005

of a host of links between subsystems of e e

bridgeless 3-valent (g > 0)

A267827

A-calculus and enumeration of graphs on  romaioree

unitless ordered bridgeless planar 3-valent A000309
(all maps of genus g > 0) A000698
planar A000168
normal unitless linear/~ bridgeless (g > 0) A000699
normal unitless ordered bridgeless planar A000260

surfaces, or "maps'.

aim for this talk: explain these links, and give some indications

of our motivations for exploring them further.




1. What is a map?
(And how many are there?)



Topological definition

map = 2-cell embedding of a graph into a surface™, considered
up to deformation of the underlying surface.

X N

Or equivalently, a tiling of a surface by polygons. O </

*All surfaces are assumed to be connected and oriented throughout this talk



Algebraic definition

map = transitive permutation representation of the group
G =(v,e,f | e =vef = 1) considered up to G-equivariant relabelling.

v=(123)(456)(789)(10 11 12)
e=(18)(211)(34)(512)(67)(? 10)
f=(17511)(2108369 12 4)
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Combinatorial definition

map = connected graph + cyclic ordering of the half-edges around
each vertex (e.g, as given by a drawing with "virtual crossings").

v=(123)(456)(789)(10 11 12)
e=(18)(211)(34)(512)(67)(9 10)
f=(ve)™




Graph versus Map
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Some special kinds of maps

planar 3-valent

bridgeless



Four Color Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring




Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.

One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. | gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as | Have Known It



Map enumeration

Tutte wrote a germinal series of papers (1962-1969)

bust by Gabriella Bollobas

W. T. Tutte
W. T. Tutte
W. T. Tutte
W. T. Tutte
W. T. Tutte
W. T. Tutte

1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21-38

1962), A census of Hamiltonian polygons. Can. J. Math. 14:402-417

1962), A census of slicings. Can. J. Math. 14:708-722

1963), A census of planar maps. Can. J. Math. 15:249-271

1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64-74
1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454-460

P e e U e e

One of his insights was to consider rooted maps

Key property: rooted maps have
no non-trivial automorphisms



Map enumeration

ldea of 1968 paper: decompose rooted planar maps recursively, by
iterated deletion of the root edge.

case 1 (non-bridge): & > %

To count

maps, only need to keep track of

—
case 2 (bridge): V& V\ \

case 3 (no edge): J

edges + degree of outer face



Map enumeration

Ultimately, Tutte obtained some remarkably simple formulas for
counting different families of rooted planar maps by size n, e.g.:

# maps = 2(2n)!3" / n!(n+2)! A000168
# bridgeless maps = 2(4n+1)! / (n+1)!(3n+2)! A000260
# bridgeless 3-valent maps = 2"(3n)! / (n+1)!(2n+1)! A000309

For more on map-counting see:

Mireille Bousquet-Mélou, Enumerative Combinatorics of Maps (recorded lecture series)
Gilles Schaeffer, "Planar maps", in Handbook of Enumerative Combinatorics (ed. Bona)

Bertrand Eynard, Counting Surfaces, Birkhauser, 2016


https://www.youtube.com/watch?v=8Mi0STwhkqQ

2. A crash course 1n A-calculus
(and its linear subsystems)



Lambda calculus: a very brief history*

Invented by Alonzo Church in late 20s, published in 1932

Original goal: foundation for logic without free variables

Minor defect: inconsistent!

Resolution: separate into an untyped calculus for computation,
and a typed calculus for logic.

(Both have since found many uses.)

*Source: Cardone & Hindley's "History of Lambda-calculus and Combinatory Logic"



Untyped lambda calculus: syntax and computation

Minimalistic syntax of terms:

t'u = X ‘ t(U) ‘ )\Xt may freely
variable application abstraction rename variables

Computation through the rule of B-reduction:
can apply to any matching subterm,
()\Xt) ( U) _)B t[ U/X] but confluence => unique normal form

Sometimes paired with the rule of n-expansion: (AX.AY.Az.x(yz))(Aa.a)(t)
P (Ay.Az.(Aa.a)(yz))(t)
t — Axt(x) -8B (Ay.Az.yz)(t)



Simply-typed lambda calculus and
the Curry-Howard-Lambek correspondence

In Church's simple typing discipline, every subterm is annotated by a type
subject to the following constraints:

A—B A
[t(u) ] [AX.T], 5
A B

A term t, can be interpreted as a constructive proof*’ of A

*.In purely implicative intuitionistic logic
T: possibly under assumptions, corresponding to free variables

STLC is closely related to the theory of cartesian closed categories...



Fixpoints and non-linearity

Turing published first fixed-point combinator (1937)

(key to Turing-completeness of untyped A-calculus)

Y = (AX.AY.Y(XXY))(AX.AY.Y(XXY))

f(Yf) =P Yf
Observe doubled uses of variables x and y.

By restricting to terms where every variable is used exactly once,
one gets a well-behaved linear subsystem of lambda calculus.

(no longer Turing-complete...actually P-complete)



An algebraic view

cf. Hyland's "Classical lambda calculus in modern dress”

Different subsystems of untyped A-calculus may be naturally organized into
operads, by defining the n-ary operations as terms xai,...,Xn = 1

I "t is a term in context of free variables ["
term-in-context formation: [t A u [, xEt
- XbX M, A t(u) I Axit

[ X, At QFu
[, Q, A tfu/x]

operadic composition:

. x,y, At [ At [, x,y,At
[y, x, At [, x, At [, x, A tx/y]

structural rules:

all structural rules = cartesian operad of general terms
only exchange = symmetric operad of linear terms
no structural rules = (plain) operad of ordered linear terms



Free closed multicategories

Typed terms may be similarly organized into multicategories (= "colored" operads)

The typing rules for application and abstraction...

[ - t:A-B A F uA [, XA t:B
[, A tu):B [ Ax.t:A—B

...together with the B + n equations ensure that we have a closed multicategory.

Indeed, simply-typed (general/linear/ordered) terms give a presentation of the
free closed (cartesian/symmetric/arbitrary) multicategory!

For example, any simply-typed term can be interpreted (in Set) as a higher-order
function between sets. A linear term can moreover be interpreted (in Vect) as a
multilinear mapping between higher-order vector spaces.



3. What do parts 1 & 2
have to do with each other?




An Inhocent idea

In May 2014, | thought it could be fun* to count untyped
closed B-normal ordered linear terms by size (#As)...

*for reasons related to certain categorical models of typing, cf. Mellies & Zeilberger POPL 2015






AX.X(Ay.y)
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THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. ]. A. Sloane

1,2,9,54,378,2916,24057 Search  Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,9,54,378,2916,24057
Displaying 1-1 of 1 result found. page 1

Sort: relevance | references | number | modified | created  Format: long | short | data

A000168 2%3An*(2%n)/(n*(n+2)1). 20
(Formerly M1940 NO768)
1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468,

15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230,
1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220,

22254416920705240440, 239234981897581334730, 2583737804493878415084 (list; graph; refs; listen; history;

text; internal format)
OFFSET 0,2

COMMENTS Number of rooted planar maps with n edges. - Don Knuth, Nov 24 2013
Number of rooted 4-regular planar maps with n vertices.
Also, number of doodles with n crossings, irrespective of the number of

loops.




THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. ]. A. Sloane

Hints

1,2,9,54,378,2916,24057 Search
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,2,9,54,378,2916,24057
Displaying 1-1 of 1 result found. page 1

Sort: relevance | references | number | modified | created  Format: long | short | data

+20

A000168 2*3An*(2*n)!/(n!*(n+2)!). 18
(Formerly M1940 N( |

1, 2, 9, 54, 378, 2916 . .
13792300756, 15792300756 1 he number a, of rooted maps with n edges 1s

1762352559231660, 185047
22254416920705240440, 23 2(212)' 3n

text; internal format)

OFFSET 0,2 n! (n + 2)|

COMMENTS Number of r

Number of r_____ _ ___ ____ ______ maps witl ertices
Also, number of doodles with n crossings, 1rrespect1ve ‘of the number of

loops.




One piece of a larger puzzle

family of rooted maps family of lambda terms seguence

planar maps normal ordered terms | 1,2,9,54,378,2916,... A000168

Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-393.

bijection by replaying Tutte's 1968 analysis on lambda terms, but not completely satisfying...



One piece of a larger puzzle

family of rooted maps family of lambda terms  sequence OEIS

trivalent maps (genus g=0) linear terms 1,5,60,1105,27120,... A062980

planar maps normal ordered term_s | 1,2,9,54,378,2916,... A000168

compute a term from a map by depth-first search, but can also be explained more conceptually...

O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCl and BCK lambda terms, TCS 502: 227-238.
Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-393.



One piece of a larger puzzle

family of rooted maps family of lambda terms  sequence OEIS

trivalent maps (genus g=0) linear terms 1,5,60,1105,27120,... A062980
planar trivalent maps ordered terms 1,4,32,336,4096,... A002005
bridgeless trivalent maps unitless linear terms 1,2,20,352,8624,... A267827
bridgeless planar trivalent maps unitless ordered terms 1,1,4,24,176,1456,... A000309

maps (genus g=0) normal linear terms (mod ~) 1,2,10,74,706,8162,... A000698
planar maps normal ordered terms 1,2,9,54,378,2916,... A000168
bridgeless maps normal unitless linear terms (mod ~) 1,1,4,27,248,2830,... A000699
bridgeless planar maps normal unitless ordered terms 1,1,3,13,68,399,... A000260

O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCl and BCK lambda terms, TCS 502: 227-238.
Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-393.

: (see refs at https://www.lix.polytechnique.fr/LambdaComb/docs/lambdacomb-scientific.pdf)

Some comments:

e "unitless" = no closed subterms (such terms can be organized into non-unitary operads)

e upper half of table can be explained by a single natural bijection (coming up...)

 "mod ~" = modulo exchange of adjacent lambdas Ax.Ay.t ~ Ay.AX.t

e lower half not yet well-understood...but see Wenjie Fang's recent draft! (arXiv:2202.03542)



4. Between linear A-terms and
rooted 3-valent maps




ldea (folklore*): representing A-terms as graphs

Can represent a term as tree
w/two kinds of nodes (@/\),

with "pointers"” from A-nodes

to bound variables. This idea is
especially natural for linear terms.

AX.AYy.X(Az.yz)

*The idea itself is natural and should probably be called folklore. The earliest explicit description | know of (currently)
is in Knuth's "Examples of Formal Semantics"” (1970), but it was developed more deeply and independently from different
perspectives in the PhD theses of C. P. Wadsworth (1971) and R. Statman (1974).



A-graphs as string diagrams

| proposed a preliminary analysis (JFP, 2016) of this graphical syntax within the categorical
framework of string diagrams (Joyal & Street 1991), by interpreting untyped linear A-terms as

endomorphisms of a reflexive object (D. Scott 1980)
@

U =" U-—oU
A

in a symmetric monoidal (compact) closed bicategory.

Q:U—=UxU* AN UQU* - U




From linear A-terms to rooted 3-valent maps

(\ ... g+(>
)_eb . \()

.
.
.
.
.
.
.
.
*
.

AX.AY.AZ.X(yZz) AX.AY.AZ.(XZ2)y X,y = (xy)(Az.z) X,y x((Az.2)y)
(B) (C)



From linear A-terms to rooted 3-valent maps
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(B) (C)



From rooted 3-valent maps to linear A-terms

Step #1: generalize to 3-valent maps w/0 of "free" edges, one marked as root.

Step #2: observe any such map must have one of the following forms:

disconnecting connecting no
root vertex root vertex root vertex



From rooted 3-valent maps to linear A-terms

Step #3: observe this is exactly the inductive definition of linear A-terms!

application abstraction variable



Demo: Jason Reed’s "Interactive Lambda Maps Toy"
https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

] Connectivity Debugging

Clear | Drawing Tools ] Cyclic Ordering
O Node Q Graph ] +Debugging Ids
Export SVG | ® Edge ¥4 Lambda Graph

O Er ] +Root Choices
Examples: | Cube v ase 2 +Variable Names
] +Variable Edges

Aabcdefghij.a (Ak.b (Al.c (d (e (f (g h (i j (k 1))))))))


https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

The Four Color Theorem as a typing problem

It Is easy to check that the bijection sends planar 3-valent maps to ordered
linear terms, and bridges to closed subterms. Now, note that any group G
defines a closed multicategory where A1, --- , An = B iff A1---An = B and
where A—B = B-A~1. In particular, consider the Klein Four Group V= Z2x/7>

as a closed multicategory.

Claim: every unitless ordered linear term has a V-typing such that no
subterm is assigned the unit type (0,0) € V. More generally, every ordered
linear term has a V-typing such that a subterm u is assigned the unit type

Iff U Is closed.

y:a-r—o,ﬁ’l—y;a;—oﬁ z:alk z:«

—————————————————————————————————————— r:B—oykx:8—ovy y:a‘—o,ﬁ,z:a}—y(z);ﬁ
ATB A r:fB—ovy,y:a—opB,z:atx(yz):
[t(u)lg  [Ax.t], g x:fB—ovy:a-—oBFAzx(yz):a-—oy

A ® x: 3 —ovkF AyAz.x(yz): (a— ) — (a — )

_______________________________________

- Az Ay z.az(yz) 2 (B — ) — ((a — B) — (a — 7))
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The LambdaComb Project

www.lix.polytechnique.fr/LambdaComb/

The project aims to:
e develop rigorous logical perspectives on maps and related combinatorial objects
e develop precise quantitative perspectives on lambda calculus and related systems

We proposed six high-level "workpackages"...



WP1a: A bilingual dictionary between
graph theory and lambda calculus

higher-connectivity of A-terms?

Figure 6: Example of a 3-edge-connected planar (= ordered linear)

term ¢t = Aa.Ab.Ac.a(Ad. e Af.(b(ed))(ef)). We have highlighted
two different 3-cuts in t of type (U — U) — U (in yellow) and of type

U — (U— U) (in blue).

complexity of planar/bridgeless normalization™?

Figure 7: (-reduction and n-expansion of linear lambda terms as
certain natural surgeries on trivalent graphs (corresponding to the

“unzipping” and “bubbling” moves of [84]).

*already have some results with A. Das, D. Mazza, and L. T. D. Nguyén...

A

(Tito, new postdoc @ LIX!)



WP1b: Bijections with blossoming trees,
walks in the quarter-plane, and more

(i) (i1)

\ \ Figure 9: A Kreweras walk in the quarter-plane, and the construction of the corresponding bridgeless planar 3-valent map equipped with
a distinguished depth tree. (Diagrams on the right taken from Figure 19 of [9]. Note that the map is constructed by reading the walk in

reverse, with the labels indicating the types of steps a =<, b =\, and ¢ = ")
[9] O. Bernardi. Bijective counting of Kreweras walks and loopless triangulations. J. Comb. Th. A, 114(5):931-956, 2007. oa:

(iii) (iv)

Figure 8: (i) An unrooted balanced blossoming tree T". (ii) The canonical matching of black and white leaves of 7T'. (iii) The associated
rooted 4-valent planar map equipped with a canonical 2-orientation. (iv) The result of forgetting the orientation. (Diagrams taken from

Figure 1.17 of [77].)

[77] G. Schaeffer. Planar maps. In M. Béna, editor, Handbook of Enumerative Combinatorics. CRC, 2015. oa:



WP1c: Category-theoretic and operadic
views of combinatorics

This WP is more of a "unifying outlook" rather than a specific set of problems.
Still, we can identify one particularly natural group of problems.

These bijections suggest the existence of a strong connection between various types
of geometric and combinatorial objects (maps, trees, walks, ...) and various theories
of closed and monoidal categories. Can these connections be strengthened

to full and faithful functors?

This kind of research is somewhat parallel to and inspired from the foundational
work by Joyal and Street relating string diagrams to braided monoidal categories.
Does this analogy extend to a continuous path from their work to our research?



WP2a: Asymptotic analysis of parameters
In lambda calculus and maps

can we apply these connections + techniques of analytic combinatorics to estimate
distributions of parameters in large random maps and A-terms? (cf. A. Singh's PhD work)

can we develop a quantitative perspective on the
combinatorics of reduction?

n=500

frequency

dg(t)

Figure 10: Histogram of distance to 3-normal form (or equiva-
lently length of longest 3-reduction sequence), for randomly sampled
closed linear terms of size 3 - 500 + 2.



WP2b: Random sampling and
experimental lambda calculus

/ "\
12000 ‘{’/ \\.
10000 ",/ \"-\
L>j "/ \|
- 8000 u" \ n=500
Q / \
- / \
o 6000 /" \‘
v | \
— | |\
4000 / \
ooooooooooooooooooooo / \*.\
[ \
Figure 11: Experimental distribution of the size of the non-linear | / \
term Y Ac. Az Ay.c(czy)(cxy) (WhereY = Af.(Az.f(zx))(Azx. f(zx)) f N
is a standard fixed-point combinator) over a million iterations of d(t)

randomized evaluation; the graph is renormalized by a factor of

nlog(n) 10g2(n), the conjectured asymptotic size. Figure 10: Histogram of distance to S-normal form (or equiva-

lently length of longest 3-reduction sequence), for randomly sampled
closed linear terms of size 3 - 500 + 2.



WP2c: Typed enumeration

What should be the role of types in these connections?
Can the analogy between typing and coloring be pursued?

Is there a relationship with Tutte's original work (and Bousquet-Mélou's)
on enumeration of colored maps?

D
y:a—oprFy:a—p z:alkz:«
r:f—ovybkx:8—oxy y:a—ofB,z:aty(z):pB
x:pB—oyy:a—op,z:atx(yz):y M
(- (- T
x:f—oy,y:a—opFFAzx(yz):a—ory
x: B —oykEAyAza(yz): (a— ) — (o — )
FAx Ay Az.z(yz) (B — ) — ((a—< B) — (@ — 7))
. o _ o _ . _ _ . Figure 12: Type systems as functors. Here the morphisma : R — S
Figure 5: Principal typing derivation for the B term (cf. Figure 4), and the corresponding edge-coloring obtained by taking «, 3, v to be in D may be considered abstractly as a “typing derivation” for the

three distinct non-zero values of the Klein Four Group (here colored o = red, 3 = blue, v = green) and interpreting A — B := —A + B. morphism f : A — B, and the morphism 3 : S — T as a subtyping
derivation over the identity morphism on B, cf. [62].



The LambdaComb Project

www.lix.polytechnique.fr/LambdaComb/

summary of proposed work:

WP1a: A bilingual dictionary between graph theory and lambda calculus
WP1b: Bijections with blossoming trees, walks in the quarter-plane, and more
WP1c: Category-theoretic and operadic views of combinatorics

WP2a: Asymptotic analysis of parameters in lambda calculus and maps
WP2b: Random sampling and experimental lambda calculus

WP2c: Typed enumeration

kick-off meeting: 11 April @ LIX!



