
Type refinement systems and the
categorical perspective on type theory

Noam Zeilberger

University of Birmingham

Workshop on Practical & Foundational Aspects of Type Theory
University of Kent

19 June 2018 D

��
T

R S
T

α β

A B
f

1 / 42

What is type refinement?

Historically, type refinement is the name of a long-term project
initiated by Frank Pfenning in the late 1980s, with the aims to

(a) capture more precise properties of programs that we al-
ready know to be well-typed in a simpler discipline in order
to catch more errors, and (b) retain the good theoretical
and practical properties of the simpler disciplines such as
effective type checking. (Pfenning, blog comment, 2015)

The word “refinement type” has taken on a somewhat narrower
meaning in some circles, but I will be using “type refinement” in an
even broader sense than the original usage.1

1For additional background, see the notes to my OPLSS 2016 tutorial on
“Principles of Type Refinement” (available on my webpage).

2 / 42

http://noamz.org/oplss16/refinements-notes.pdf

What is a type refinement system?

“Definition”: a type refinement system is a type system built
over a typed programming language, as an extra layer of typing.

3 / 42

What is a type system?

From Types and Programming Languages by B. Pierce (2002):
As with many terms shared by large communities, it is
difficult to define “type system” in a way that covers its
informal usage by programming language designers and
implementors but is still specific enough to have any bite.

4 / 42

What is a type?

Type theory is a bit unusual as a mathematical theory in that it
does not define its supposed topic!

(Contrast: “group theory”, “knot theory”, “category theory”.)

Thesis
The reason why it is so hard to give a formal definition of “type” is
that in practice the word covers two very different usages.

5 / 42

Intrinsic vs. Extrinsic

Reynolds called these the “intrinsic” and the “extrinsic” views.2

Also called “types à la Church” vs. “types à la Curry”.

Logical intuition:

intrinsic type = domain of discourse
vs.

extrinsic type = predicate on domain of discourse

2John C. Reynolds (1998), Theories of Programming Languages.
6 / 42

Intrinsic vs. Extrinsic

: graph

7 / 42

Intrinsic vs. Extrinsic

: 4-colorable graph

8 / 42

The extrinsic view: Robin Milner (1978)

We now proceed, in outline, as follows. We define a new
class of expressions which we shall call types; then we say
what is meant by a value possessing a type. Some values
have many types, and some have no type at all. In fact
“wrong” has no type. But if a functional value has a type,
then as long as it is applied to the right kind (type) of
argument it will produce the right kind (type) of result-
which cannot be “wrong”!

(From “A Theory of Type Polymorphism in Programming”.)

9 / 42

The intrinsic view: Dana Scott (1980)

General category theory is a very pure theory: it is the milk-
and-water theory of functions under composition. This
composition operation is associative and possesses neutral
elements (compositions of zero terms). That is about all
you can say about it except to stress that it is also a rather
bland theory of types. Every function f has a (unique)
domain and codomain, and we write f : dom f → cod f .

(From “Relating theories of the λ-calculus”.)

10 / 42

Problem: the naive reading of type theory through the lens of
category theory is biased towards the intrinsic view of typing, yet
the extrinsic view is of fundamental importance in practice.

11 / 42

The naive reading of TT via CT

type system ; category of well-typed terms

x : A ` t : B ; JAK
JtK // JBK

12 / 42

Subtyping and polymorphism

The naive reading makes it difficult to interpret typing rules such
as subsumption or intersection introduction, which assign one
term multiple types:

Γ ` t : A A ≤ B
Γ ` t : B

Γ ` t : A Γ ` t : B
Γ ` t : A ∧ B

Indeed, it is ungrammatical for a morphism in a category to have
two different codomains. . .

*
JΓK

JtK // JAK
JΓK

JtK // JBK

13 / 42

Type inference and principal types

The naive reading also fails to give much insight into the concept
of the principal type (= most general type) of a term.

λx .λy .λz .x(yz) : (bool → bool)→ (bool → bool)→ (bool → bool)
λx .λy .λz .x(yz) : (int → bool)→ (bool → int)→ (bool → bool)
λx .λy .λz .x(yz) : (B → C)→ (A→ B)→ (A→ C) [for any A,B,C]

14 / 42

Missing players

More fundamentally, in limiting to “well-typed terms”, the naive
reading of TT through the lens of CT collapses the distinction
between terms, typing judgments, and typing derivations.

15 / 42

Coherence theorems: replacing naivete with subtlety

A sophisticated resolution of this problem is to instead define the
semantics of a language by induction on typing derivations, and
then prove a coherence theorem that the meaning of a judgment
is independent of its derivation:

If
α1

Γ ` t : A and
α2

Γ ` t : A then Jα1K = Jα2K : JΓK→ JAK

In general, the proof of coherence is non-trivial...

This approach has been nicely discussed by Reynolds.3

3See especially: “The Meaning of Types: from Intrinsic to Extrinsic
Semantics” (2000).

16 / 42

Our goal: unify the intrinsic and the extrinsic views of typing, and
place the latter on a solid categorical footing.

Approach: stay naive (rather than subtle), just not too naive!

17 / 42

Reading a functor as a type refinement system

18 / 42

Refinement systems

Idea: any functor p : D → T can be seen as a proof system.

For objects R ∈ D and A ∈ T , we write R < A and say that

R is a refinement of A

if p(R) = A.

Definition: A typing judgment is a triple (R, f , S)

(written R =⇒
f

S)

consisting of a morphism f : A→ B (in T) together with a pair of
refinements R < A and S < B. A derivation of a judgment
(R, f , S) is a morphism α : R → S (in D) such that p(α) = f .

19 / 42

Refinement systems

The basic typing rules are composition and identity:

R =⇒
f

S S =⇒
g

T

R =⇒
f ;g

T R =⇒
id

R

The way to read a rule is: given derivations of the premises, we
can construct a derivation of the conclusion.4

4We assume implicitly that judgments are well-formed. The composition
and identity rules thus correspond to functoriality of p : D → T .

20 / 42

A motivating example: Hoare logic

Take T as a one-object category of state transformers, D as a
category of state predicates and verified transitions.

D

��
T

QP
R

α β

W

c c ′

There is a derivation of (P, c,Q) just in case c takes any state
satisfying P to a state satisfying Q (written “{P}c{Q}”). In
particular, (P, id,Q) is derivable just in case P entails Q.

Intuition: type refinement system = “logic + side-effects”.

21 / 42

More general picture

D

��
T

R S
T

α β

A B
f

R
α

=⇒
f

S S
β
≤ T

Important: Distinction between refinement and subtyping.

22 / 42

A straightforward interpretation of subsumption

Exercise: Show that the rules of (covariant and contravariant)
subsumption are valid.

R =⇒
f

S S ≤ T

R =⇒
f

T

R ≤ S S =⇒
g

T

R =⇒
g

T

23 / 42

The logic of monoidal closed bifibrations

24 / 42

Type refinement and monoidal closed bifibrations

If we view a functor as a type refinement system, it is natural to
consider when it is both (symmetric or cartesian) monoidal closed
and a (bi)fibration.

Paul-André Melliès and I have explored this for a number of years:
I Type refinement and monoidal closed bifibrations. arXiv:1310.0263
I Functors are type refinement systems. POPL 2015.
I An Isbell duality theorem for type refinement systems. MSCS.
I A bifib’l reconst. of Lawvere’s presheaf hyperdoctrine. LICS 2016.

Broadly, the idea goes back to Lawvere’s “hyperdoctrines” (1969),
but with conceptual and technical differences. Our approach is
closely related to work by Hermida (1993), Hasegawa (1999),
Katsumata (2005), Atkey et al. (2011), and others.

25 / 42

https://arxiv.org/abs/1310.0263
http://noamz.org/papers/isbell-final.pdf
https://arxiv.org/abs/1601.06098

Monoidal closed refinement systems (I,⊗,()

A monoidal closed refinement system is a strict monoidal closed
functor p : D → T between monoidal closed categories.
(Often assumed symmetric A⊗ B ∼= B ⊗ A or cartesian A⊗ B ∼= A× B.)

26 / 42

Monoidal closed refinement systems (I,⊗,()

Explicitly, a monoidal closed refinement system is a functor
admitting the following refinement rules:

I < I
R < A S < B
R ⊗ S < A⊗ B

R < A S < B
R (S < A(B

and typing rules:

I =⇒
I

I

R1 =⇒
f

R2 S1 =⇒
g

S2

R1 ⊗ S1 =⇒
f⊗g

R2 ⊗ S2

R ⊗ S =⇒
f

T

S =⇒
curry(f)

R (T

and satisfying some equations.
(Some subtyping rules are also a consequence:)

I ≤ I
R1 ≤ R2 S1 ≤ S2
R1 ⊗ S1 ≤ R2 ⊗ S2

R2 ≤ R1 S1 ≤ S2
R1 (S1 ≤ R2 (S2

27 / 42

Bifibrations (pushf , pullf)

A bifibration is a functor p : D → T that admits both
left-cartesian liftings and right-cartesian liftings of all maps.

In the language of type refinement, this is equivalent to the
existence of operations:

R < A f : A→ B
pushf R < B

f : A→ B S < B
pullf S < A

such that there is a one-to-one correspondence of derivations:

R =⇒
f ;g

R ′

pushf R =⇒
g

R ′

S ′ =⇒
e;f

S

S ′ =⇒
e

pullf S

(In particular, canonical derivations of R =⇒
f

pushf R and pullf S =⇒
f

S.)

28 / 42

Bifibrations (pushf , pullf)

In the example of Hoare logic, a pushforward of a predicate along a
command corresponds to a strongest postcondition, and dually, a
pullback corresponds to a weakest precondition:

{P}c{Q}
sp(c,P) � Q

{P}c{Q}
P � wp(c,Q)

Note that such strongest postconditions and weakest preconditions
need not always exist, depending on the language of predicates and
commands. In other words, the associated refinement system
p : D → T is not necessarily a bifibration (although we can try to
interpret it in one).

29 / 42

Monoidal closed bifibrations (I,⊗,(, pushf , pullf)

Definition: mc bifibration = [monoidal closed + bifibration]

We therefore have a family of adjunctions:

D
R⊗−

%%

��

⊥ D
R(−

ee

��
T

A⊗−
%%

⊥ T
A(−

ee

DA

pushf
''

⊥ DB

pullf

gg

and some distributivity principles hold automatically:

push(f⊗g)(R ⊗ S) ≡ pushf R ⊗ pushg S (1)
pushf R(pullg S ≡ pull(f(g)(R(S) (2)

30 / 42

Monoidal closed bifibrations (I,⊗,(, pushf , pullf)

Another interesting feature of symmetric monoidal closed
bifibrations is that they give rise to two kinds of “trialities”:

R ⊗ S =⇒
f

T

S =⇒
curry(f)

R (T

R =⇒
rcurry(f)

S (T

R =⇒
f

S

pushf R ≤ S
f ≤ pullf S

where right-currying is defined by symmetry and (left-)currying.

31 / 42

Monoidal closed bifibrations (I,⊗,(, pushf , pullf)

SubSet→ Set is a basic example of a (cartesian) mc bifibration:

(R ⊆ A)× (S ⊆ B) = ({ (a, b) | a ∈ R ∧ b ∈ S } ⊆ A× B)
(R ⊆ A)→ (S ⊆ B) = ({ f | a ∈ R ⇒ f (a) ∈ S } ⊆ A→ B)

pushf (R ⊆ A) = ({ f (a) | a ∈ R } ⊆ B)
pullf (S ⊆ B) = ({ a | f (a) ∈ S } ⊆ A)

Rel• → Rel gives a more interesting (non-cartesian) example:

(R ⊆ A)⊗ (S ⊆ B) = ({ (a, b) | a ∈ R ∧ b ∈ S } ⊆ A× B)
(R ⊆ A)((S ⊆ B) = ({ (a, b) | a ∈ R ⇒ b ∈ S } ⊆ A× B)

pushf (R ⊆ A) = ({ b | ∃a. a[f]b ∧ a ∈ R } ⊆ B)
pullf (S ⊆ B) = ({ a | ∀b. a[f]b ⇒ b ∈ S } ⊆ A)

(Replacing relations by distributors and subsets by presheaves yields a yet
more interesting and representative mc bifibration Dist• → Dist.)

32 / 42

Logic inside a monoidal closed bifibration

One of the original motivations for my work with Paul-André was
the idea of using the logical connectives ⊗/(and pushf / pullf to
reason about formal systems, in the style of a “logical framework”.

This idea is also closely related to recent work by Licata, Shulman,
and Riley presented at FSCD 2017.

33 / 42

Example: the bifibrational Day construction

Proposition. Let p : D → T be a mc bifibration. Any monoid
(A,m : A⊗ A→ A, e : 1→ A) in T determines a mc structure on
the fiber DA, with unit, tensor and implication defined by:

IA
def= pushe I

R ⊗A S def= pushm(R ⊗ S)

R (A S def= pullcurry(m)(R (S)

(For example, in the relational model this unwinds to:)

a ∈ IA ⇐⇒ [e]a
a ∈ R ⊗A S ⇐⇒ ∃a1, a2. (a1, a2)[m]a ∧ a1 ∈ R ∧ a2 ∈ S

a ∈ R (A S ⇐⇒ ∀a1, a′. (a1, a)[m]a′ ⇒ a1 ∈ R ⇒ a′ ∈ S

34 / 42

Example: fibrational biorthogonality

Proposition. Let p : D → T be a symmetric mc fibration. Any
binary operation m : A⊗ B → C equipped with a refinement
T < C of its codomain induces a contravariant adjunction between
the fibers DA and DB, defined by “negation into T relative to m”:

R⊥ def= pullcurry(m) (R (T) (R < A)
⊥S def= pullrcurry(m) (S (T) (S < B)

(For example, in the relational model this unwinds to:

b ∈ R⊥ ⇐⇒ ∀a. (a, b)[m]c ⇒ a ∈ R ⇒ c ∈ T
a ∈ ⊥S ⇐⇒ ∀b. (a, b)[m]c ⇒ b ∈ S ⇒ c ∈ T

E.g., when m = id and T = anti-diagonal on A, then R⊥ = ⊥R = A \R.)

35 / 42

Example: a naive take on proof-theoretic semantics

Suppose we want to interpret a logical formula φ as the subset

φ+ = { Γ | Γ ` φ }

of contexts in which it is derivable, or alternatively as the presheaf

φ+ = Γ 7→ {α |
α

Γ ` φ }

sending a context to the set of proofs of φ in that context.

More abstractly, we can think of φ as a refinement

φ+ < W

of a type of contexts W , and then try to interpret it in a concrete
model such as SubSet→ Set or Rel• → Rel or Dist• → Dist.

36 / 42

Example: a naive take on proof-theoretic semantics

Consider the connectives ⊗ and N of linear logic. The right rules

Γ1 ` φ Γ2 ` ψ
Γ1, Γ2 ` φ⊗ ψ

⊗R
Γ ` φ Γ ` ψ

Γ ` φN ψ
NR

should now be interpreted as derivations

φ+ ⊗ ψ+ ⊗R
=⇒

m
(φ⊗ ψ)+ φ+ ⊗ ψ+ NR

=⇒
j

(φN ψ)+

where m : W ⊗W →W stands for the operation of concatenating
contexts and j : W ⊗W →W for the (partial) operation of joining
identical contexts (dual to duplication d : W →W ⊗W).

Idea: ⊗R and NR only differ in “side-effects” on the context.

37 / 42

Example: a naive take on proof-theoretic semantics

Then we have that

pushj(φ+ ⊗ ψ+) ≡ pulld (φ+ ⊗ ψ+) ≡ (φN ψ)+

since the NR rule is invertible, in the sense that any proof of
Γ ` φNψ may be factored as a pair of proofs of Γ ` φ and Γ ` ψ.

On the other hand, the subtyping entailment

pushm(φ+ ⊗ ψ+) ≤ (φ⊗ ψ)+

is strict, in the sense that a proof of Γ ` φ⊗ ψ does not necessarily
factor into a pair of proofs of Γ1 ` φ and Γ2 ` ψ, for some Γ1 and
Γ2 whose concatenation is Γ. (Consider φ⊗ ψ ` φ⊗ ψ.)

This is one manifestation of polarity in linear logic.

38 / 42

Perspectives

39 / 42

A few ideas:
1. The extrinsic view of types is important to the practice of

type theory, since it plays a role in fundamental concepts such
as subtyping, polymorphism, and type inference.

2. Contrary to common dogma, both intrinsic and extrinsic views
are compatible with a categorical perspective on type theory,
by treating type systems as functors rather than as categories.

3. When we interpret a type refinement system in a mc
bifibration, the interplay between the connectives ⊗/(and
pushf / pullf gives rise to particularly rich logical phenomena.

4. Type refinement provides a natural bridge between reasoning
about stateful computations and reasoning about contexts in
substructural logic.

40 / 42

A few questions and a claim:
1. Functors compose, so the refinement relation can be iterated.

Does this lead to interesting type refinement hierarchies?
2. Should the refinement relation really be modelled as a functor,

or as a more general distributor?
3. It is possible to generalize Lawvere’s definition of equality in

hyperdoctrines to model directed identity predicates in mc
bifibrations (LICS 2016). How does this tie with HoTT?

4. More generally, how should the study of type refinement
systems influence our view of dependent type theory?

5. Type theory is ripe to be developed as an axiomatic theory,
but to do so successfully it cannot overlook the miraculous
existence of terms independently of their types.

41 / 42

Postscript: Louis Kauffman (2001)

The reason, I believe, that portmanteau and pivot are so
important to find in looking at formal systems, and in par-
ticular symbolic logic, is that the very attempt to make
formal languages is fraught with the desire that each term
shall have a single well assigned meaning. It cannot be!
The single well-assigned meaning is against the nature of
language itself. All the formal system can actually do is
choose a line of development that calls some entities ele-
mentary (they are not) and builds other entities from them.
Eventually meanings and full relationships to ordinary lan-
guage emerge.

(From “The Mathematics of Charles Sanders Peirce”.)

42 / 42

	Reading a functor as a type refinement system
	The logic of monoidal closed bifibrations
	Perspectives

