Parsing as a lifting problem and the Chomsky-Schützenberger representation theorem

Noam Zeilberger*

Journée GT DAAL EPITA Kremlin-Bicêtre 21 April 2023

https://doi.org/10.46298/entics.10508

(long version in preparation)

A personal timeline, for context

2013-2016: we wrote a series of papers on *type systems as functors.* Our original motivation was to better understand not just type systems but other deductive systems as well (e.g., separation logic).

2017: we started thinking about context-free grammars and parsing 2018-2022: kept thinking...

24.04.2022: "how about we try to analyze the C-S rep thm?" two weeks later: wow, that was an interesting theorem!

The C-S representation theorem

Classical statement: every CF language is the homomorphic image of the intersection of a Dyck language with a regular language.

Some reasons why the theorem is interesting:

- 1. implicitly uses closure of CFLs under intersection with regular langs
- 2. proof relies on ability to represent derivation trees as words
- 3. says that Dyck languages are in some sense "universal" CFLs

A surprising adjunction

We found that at the heart of the C-S representation theorem is an adjunction between categories and multicategories:

$$\begin{array}{c} C[-] \\ \hline \\ MultiCat \\ \hline \\ W[-] \end{array} \qquad Cat$$

This elementary* adjunction transformed our perspective on CFGs. For reasons to be clear we call it the **contour / splicing** adjunction.

^{*}but seemingly previously unnoticed!

(What is a multicategory?)

Like a category, but morphisms can have multiple inputs $f: A_1,...,A_n \rightarrow B$

Typical examples:

- Vect, the multicategory of vector spaces and multilinear maps
- a *free multicategory* whose n-ary operations $f(x_1,...,x_n)$ are symbolic expressions in n variables

Multicategories are also known as (colored) **operads**, and I will adopt that terminology (which we use in the MFPS paper) from now on...

What is an operad, a bit more formally

set of colors + set of operations

+ identity operation

 $id_G: G \rightarrow G$

+ partial / parallel composition

 $f \circ _{0}C : B,G \rightarrow Y$

 $f \circ (c,g,id_G) : Y,P,G \rightarrow Y$

+ associativity

&
table terms are all the second and the second are all the second are a

The operad of spliced words

Consider the operad W[Σ] with a single color, with n-ary operations given by sequences of n+1 words w₀-w₁-...-w_n over Σ , with composition given by "splicing into the gaps":

and with identity operation ε - ε .

A functorial view of context-free grammars

Building on the philosophy of type refinement systems, our starting point was the idea that any classical CFG can be represented by a **functor of operads** $p: \mathbb{D} \to W[\Sigma]$ from a freely generated operad \mathbb{D} into the operad of spliced words $W[\Sigma]$...

Representing CFGs as functors of operads: example

```
1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP
```


Plan for the talk

- 1. show how this functorial viewpoint may be naturally generalized to define CFGs over any category.
- 2. motivate why this viewpoint and this generalization are useful.
- 3. explain how both word + tree automata may also be viewed functorially, placing them on common ground with CFGs.
- 4. sketch how to derive (a generalization of) the C-S theorem.

(for details and some discussion of related work, see the MFPS paper)

Context-free languages of arrows

The operad of spliced arrows

Let $\mathbb C$ be a category. The operad $W[\mathbb C]$ is defined as follows:

- its colors are pairs (A,B) of objects of C;
- its n-ary operations $(A_1,B_1),\cdots,(A_n,B_n) \rightarrow (A,B)$ consist of sequences $w_0-w_1-\cdots-w_n$ of n+1 arrows in $\mathbb C$ separated by n gaps notated -, where $w_i:B_i \rightarrow A_{i+1}$ for $0 \le i \le n$, taking $B_0 = A$ and $A_{n+1} = B$;
- composition of spliced arrows is performed by "splicing into the gaps" (see next slide)
- the identity operation on (A,B) is given by id_A-id_B .

(W[C] generalizes W[Σ], taking $\mathbb{C} = \mathbb{B}_{\Sigma}$ the free monoid seen as one-object category.)

$$\mathbb{B}^{\Sigma} = a^{\times} \otimes^{*} \otimes_{p}$$

The operad of spliced arrows

 $W_0-W_1-W_2-W_3: (A_1,B_1),(A_2,B_2),(A_3,B_3) \rightarrow (A,B)$

w: (A,B)

The operad of spliced arrows

The splicing functor

The operad of spliced arrows construction defines a functor

$$\begin{array}{c} W[-] \\ \hline \\ \text{Cat} \end{array} \longrightarrow \begin{array}{c} \text{Operad} \\ \end{array}$$

since any functor of categories $F: \mathbb{C} \to \mathbb{D}$ induces a functor of operads $W[F]: W[\mathbb{C}] \to W[\mathbb{D}]$.

Free operads

A **species** is a set of "nodes" with colored edges. Any species S generates a **free operad** (Free S) whose operations are trees, with nodes labeled by nodes of S while respecting the coloring constraints on edges.

Conversely, any operad $\mathbb O$ has an **underlying species** (Forget $\mathbb O$) with nodes given by operations of $\mathbb O$, simply forgetting about composition and identity.

$$\begin{array}{c} & Free \\ \hline \bot & Operad \\ \hline Forget \end{array}$$

Species(Free \mathbb{S} , \mathbb{O}) \cong Operad(\mathbb{S} , Forget \mathbb{O})

Definition

A **context-free grammar of arrows** is a tuple $G = (\mathbb{C}, \mathbb{S}, S, \varphi)$ consisting of a category \mathbb{C} , a finite species \mathbb{S} equipped with a distinguished color $S \in \mathbb{S}$ and a functor of operads $p : \text{Free } \mathbb{S} \to W[\mathbb{C}]$.

The **context-free language of arrows** L_G generated by the grammar G is the subset of arrows in $\mathbb C$ which, seen as constants of $W[\mathbb C]$, are in the image of constants of color S in Free S, that is, $L_G = \{ p(\alpha) \mid \alpha : S \}$.

Proposition: A language $L \subseteq \Sigma^*$ is context-free in the classical sense iff it is the language of arrows of a context-free grammar over \mathbb{B}_{Σ} .

(Another look at the example)

```
4 : VP → loves NP
                                                                       Free S
     Free S
      W[\mathbb{B}_{\Sigma}]
                                                                         id-_-id ∘ (tom, loves_-id∘mom)
                         id-_-id
                                                        loves_-id
                                       mom
                                                 tom
                                                                         = tom_loves_mom
```

Refining classical CFGs with "gap types"

A feature of the general definition is that non-terminals are sorted.

We write $R \sqsubset (A,B)$ to mean p(R) = (A,B) and say R refines the **gap type** (A,B).

If G has start symbol S \sqsubset (A,B) then $L_G \subseteq \mathbb{C}(A,B)$.

Refining classical CFGs with "gap types"

For example, consider the category $\mathbb{B}_{\Sigma}^{\top} = {}^{\alpha} \xrightarrow{\$} \to \top$ constructed from \mathbb{B}_{Σ} by freely adjoining an object and an arrow.

A CFG over $\mathbb{B}_{\Sigma}^{\top}$ may include production rules that can only be applied upon **end of input**, like Knuth's "0th production" rule $S' \to S$ \$ from the LR parsing paper. (Here $S \sqsubset (*,*)$ is "classical" while $S' \sqsubset (*,\top)$ is "end-of-input-aware".)

More significant examples coming up, including CFGs over runs of automata!

Reformulating standard properties of CFGs

Let $G = (\mathbb{C}, \mathbb{S}, S, p)$ be a CFG of arrows.

- G is linear iff S only has nodes of arity ≤ 1 . It is left-linear iff it is linear and every unary node x of S is mapped by p to an operation of the form id-w.
- G is **bilinear** (a generalization of Chomsky NF) iff $\mathbb S$ only has nodes of arity ≤ 2 .
- G is **unambiguous** iff for any constants α , β : S in Free S, if $p(\alpha) = p(\beta)$ then $\alpha = \beta$.
- A non-terminal R is **nullable** if there exists a constant α : R of Free $\mathbb S$ s.t. $p(\alpha) = id$.
- A non-terminal R is **useful** if there exists a constant α : R and a unary op β : R \rightarrow S. Note that if G has no useless non-terminals then G is unambiguous iff p is faithful.

Basic closure properties of CF languages

[Union] If L₁, L₂ \subseteq $\mathbb{C}(A,B)$ are CF, so is L₁ \cup L₂ \subseteq $\mathbb{C}(A,B)$.

[Spliced concatenation] If $L_1 \subseteq \mathbb{C}(A_1,B_1),...,L_n \subseteq \mathbb{C}(A_n,B_n)$ are CF, and $w_0-w_1-\cdots-w_n: (A_1,B_1),...,(A_n,B_n) \to (A,B)$ is an operation of W[C], then $w_0L_1w_1\cdots L_nw_n\subseteq \mathbb{C}(A,B)$ is also CF.

[Functorial image] If $L \subseteq \mathbb{C}(A, B)$ is CF, and $F : \mathbb{C} \to \mathbb{D}$ is a functor of categories, then $F(L) \subseteq \mathbb{D}(F(A), F(B))$ is also CF.

(Proofs left as an exercise!)

The translation principle

Let $G_1 = (\mathbb{C}, \mathbb{S}_1, \mathbb{S}_1, \mathbb{p}_1)$ and $G_2 = (\mathbb{C}, \mathbb{S}_2, \mathbb{S}_2, \mathbb{p}_2)$ be two CFGs over the same category \mathbb{C} .

If there is a fully faithful functor of operads T: Free $S_1 \rightarrow$ Free S_2 such that $p_1 = T$ p_2 and $T(S_1) = S_2$, then $L_{G_1} = L_{G_2}$, moreover with the grammars generating isomorphic sets of parse trees.

Example use of translation principle: for any CFG of arrows, there is a bilinear CFG of arrows generating the same language.

(cf. Leermakers 1989)

A quick digression on generalized CFGs and gCFLs

(from the long version of the paper, not yet online)

Definition

A generalized CFG (over an operad) is a tuple $G = (\mathbb{O}, \mathbb{S}, S, \varphi)$ consisting of an operad \mathbb{O} , a finite species \mathbb{S} equipped with a distinguished color $S \in \mathbb{S}$ and a functor of operads $p : \text{Free } \mathbb{S} \to \mathbb{O}$. The **language of constants** L_G generated by the grammar G is given by the subset of constants $L_G = \{ p(\alpha) \mid \alpha : S \}$.

CFGs of arrows are the special case where $\mathbb{O} = W[\mathbb{C}]$ is a spliced arrow operad.

A few examples

Multiple CFGs (Seki et al.) obtained taking $\mathbb{O} = L_{aff}W[\mathbb{C}]$, where $L_{aff}\mathbb{P}$ is the free semi-cartesian (="affine") strict monoidal operad over \mathbb{P} . Note the colors of $L_{aff}\mathbb{P}$ are given by lists $[A_1,...,A_k]$ of colors in \mathbb{P} , and operations $[\Gamma_1],...,[\Gamma_n] \to [A_1,...,A_k]$ by pairs $([f_1,...,f_k],\sigma)$ of a list of operations $f_1:\Omega_1\to A_1,...,f_k:\Omega_k\to A_k$ in \mathbb{P} and an injection $\sigma:\Omega_1,...,\Omega_k\hookrightarrow \Gamma_1,...,\Gamma_n$.

(e.g., there is a 3-mCFG generating the language and "#b" #'c")

Parallel multiple CFGs (Seki et al.) obtained taking $\mathbb{O} = L_{cart}W[\mathbb{C}]$.

Can also recover more "semantic" examples, e.g., series-parallel graphs are generated by a gCFG over $\mathbb{O} = \text{Set}$ (cf. Courcelle & Engelfriet 2012, §1.1.3).

Abstracting the notion of language

There is an old idea, that a context-free language may be considered as a minimal solution to a system of (polynomial) equations.

Ginsburg & Rice 1962, Mezei & Wright 1967, Conway 1971

We categorify this idea by first introducing a notion of **model** of a functor $p: Free \mathbb{S} \to \mathbb{O}$ in an arbitrary target functor $q: \mathbb{E} \to \mathbb{B}$, given by a square

satisfying an extra condition ("cones in \mathbb{S} sent to q-minimal cones in \mathbb{E} ").

Abstracting the notion of language

We can then define the **q-language** generated by a gCFG (\mathbb{O} , \mathbb{S} , \mathbb{S} , \mathbb{p}) as the interpretation $[S]' \sqsubseteq^q [A]$ of its start symbol $S \sqsubseteq^p A$ for some *initial model* ($[-]',[-]): p \to q$, when such a model exists and is hence unique up to canonical iso.

The traditional language is recovered as the q-language for q = sub: Subset \rightarrow Set. But every gCFG also has an initial model in tgt: Set \rightarrow Set, which we can see as a **proof-relevant language** encoding not just a subset of words but also their parses.

q-languages satisfy good closure properties if q has sufficient structure.

Finite-state automata over categories and operads

Reminder on finite state automata

An NDFA: [recognizing the language (a+b)*(abb+ba)]

alphabet
$$\Sigma = \{a,b\}$$

state set
$$Q = \{0,1,2,3,4\}$$

(no *E-transitions*)

Representing automata as functors

Two key properties of NDFAs

Let $p : \mathbb{D} \to \mathbb{T}$ be a functor of categories.

p is **finitary** if $p^{-1}(A)$ and $p^{-1}(w)$ are finite for every object A and arrow w of \mathbb{T} .

p is **ULF** if for any arrow α of \mathbb{D} , if $p(\alpha) = uv$ for some arrows u and v of \mathbb{T} , there exist unique arrows β and γ of \mathbb{D} such that $\alpha = \beta \gamma$ and $p(\beta) = u$ and $p(\gamma) = v$.

Proposition: a functor $p:\mathbb{Q}\to\mathbb{B}_\Sigma$ is the underlying bare automaton of a NDFA with alphabet Σ iff p is both finitary and ULF.

(Note: ULF = "unique lifting of factorizations" is a generalization of the property of being a discrete (op)fibration. A finitary discrete opfibration $p: \mathbb{Q} \to \mathbb{B}_{\Sigma}$ corresponds to the underlying bare automaton of a *deterministic* finite automaton.)

Definition

A **NDFA over a category** is a tuple $M = (\mathbb{C}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{C}, q_0, q_f)$ consisting of two categories \mathbb{C} and \mathbb{Q} , a finitary ULF functor $p : \mathbb{Q} \to \mathbb{C}$, and a pair q_0 , q_f of objects of \mathbb{Q} .

The **regular language of arrows** L_M recognized by the automaton M is the subset of arrows in $\mathbb C$ that can be lifted along p to an arrow $\alpha: q_0 \to q_f$ in $\mathbb Q$, that is, $L_M = \{ p(\alpha) \mid \alpha: q_0 \to q_f \}$.

Proposition: A language $L \subseteq \Sigma^*$ is regular in the classical sense iff L\$ is the regular language of arrows of a NDFA over $\mathbb{B}_{\Sigma}^{\top}$.

Automata over operads

The definitions of finitary / ULF extend smoothly to functors of operads.

We define an **NDFA over an operad** as a tuple $M = (\mathbb{O}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{O}, q)$ where $p : \mathbb{Q} \to \mathbb{O}$ is a finitary ULF functor of operads, and q a color of \mathbb{Q} .

When $\mathbb{O}=$ Free Σ is the free operad over a ranked alphabet Σ , this recovers standard ND **finite state tree automata**. But the above notion is more general!

Proposition: if a functor of categories $p: \mathbb{Q} \to \mathbb{C}$ is finitary / ULF, so is the functor of operads W[p]: W[\mathbb{Q}] \to W[\mathbb{C}].

∴ any NDFA over a category induces an NDFA over its spliced arrow operad, by the mapping $(p : \mathbb{Q} \to \mathbb{C}, q_0, q_f) \mapsto (W[p] : W[\mathbb{Q}] \to W[\mathbb{C}], (q_0,q_f))$

The Representation Theorem

Overview

Chomsky & Schützenberger (1963): Any CF language is the homomorphic image of the intersection of a Dyck language with a regular language.

Our version: Any CF language of arrows in \mathbb{C} is the functorial image of the intersection of a \mathbb{C} -chromatic tree contour language and a regular language.

The proof relies on two constructions that are of more general interest:

- 1. The pullback of a CFG of arrows along an NDFA, which we use to show that CFLs are closed under intersection with regular languages.
- 2. The *contour category* of an operad, providing a left adjoint to the splicing functor, which we use to define a "universal CFG" for any pointed finite species.

Pulling back a CFG along a NDFA

General properties of ULF functors imply that the pullback on the left (in Species) is mapped to a pullback on the right (in Operad):

This allows us to define the pullback of a CFG G along a NDFA M by $G' = (\mathbb{Q}, \mathbb{S}', (S,(q_0,q_f)), p')$. Note G' generates a **language of runs** of M!

Taking the image of G' along p_M yields a grammar generating $L_G \cap L_M$.

The contour category of an operad

Let $\mathbb O$ be an operad. The category $C[\mathbb O]$ is a quotient of the free category with:

- objects given by *oriented colors* R^{ϵ} consisting of a color R of \mathbb{O} and an orientation $\epsilon \in \{ u,d \} ("up" \text{ or "down"});$
- arrows generated by pairs (f,i) of an operation $f: R_1,...,R_n \to R$ of $\mathbb O$ and an index $0 \le i \le n$, defining an arrow $R_i^d \to R_{i+1}^u$ where $R_0^d = R^u$ and $R_{n+1}^u = R^d$;

subject to some reasonable equations with a geometric interpretation...

The contour category of an operad

The contour category of an operad

The contour / splicing adjunction

This construction provides a left adjoint to the splicing contruction:

$$\begin{array}{c}
C[-] \\
 \longrightarrow \\
 \longrightarrow \\
 \longrightarrow \\
 \longrightarrow \\
 W[-]
\end{array}$$
Cat

 $\mathsf{Operad}(\mathbb{O}, \mathsf{W}[\mathbb{C}]) \cong \mathsf{Cat}(\mathsf{C}[\mathbb{O}], \mathbb{C})$

The unit and counit have nice descriptions:

$$\eta: \mathbb{O} \to W[C[\mathbb{O}]]$$
 $\epsilon: C[W[\mathbb{C}]] \to \mathbb{C}$ $R \mapsto (R^u, R^d)$ $(A,B)^u \mapsto A$ $(A,B)^d \mapsto B$ $f \mapsto (f,0)-\cdots-(f,n)$ $(w_0-\cdots-w_n,i) \mapsto w_i$

The universal CFG of a pointed finite species

By the contour / splicing adjunction, any p : Free $\mathbb{S} \to W[\mathbb{C}]$ factors as

Free
$$\mathbb{S} \xrightarrow{\eta_{\mathbb{S}}} W[C[Free \mathbb{S}]] \xrightarrow{W[q]} W[\mathbb{C}]$$

for a unique functor of categories $q: C[Free S] \rightarrow \mathbb{C}$.

The CFG Univ_{S,S} = (C[Free S],S,S, η_S) is therefore "universal", in the sense that any other CFG G = (C,S,S,p) with the same species and start symbol is obtained uniquely as the functorial image G = q Univ_{S,S}.

The language generated by $Univ_{S,S}$ is a language of tree contour words.

A tree contour word over a species S

Idea of the representation theorem

Separate the generation of a CF language into three pieces:

- 1. generate "uncolored" contour words describing shapes of S-trees;
- 2. use an automaton to check that the contour words denote well-colored S-trees with root color S;
- 3. interpret each corner of the contour as an appropriate arrow.

The proof in a diagram

$$L_G = q L_{S,S} = q_{nodes} C[\phi_{colors}] L_{S,S} = q_{nodes} (L_{\phi CS,S} \cap L_{Mcolors})$$

^{*}The naturality square is not a pullback, but the canonical functor Free $\mathbb{S} \to \text{Free } \mathbb{R}$ to the pullback is fully faithful, hence we can apply the translation principle!

Conclusion

Summary!

Current / future directions

Parsing (& typing & proving)

The MFPS paper includes brief discussion of generalized **CYK parsing**. One of our original goals (back in 2017!) was to understand **LR** parsing. We are revisiting LR & **Earley** parsing in the fresh light of contour categories. Hope to eventually gain better understanding of **type inference** and **proof search**.

The contour / splicing adjunction

This seems to be a contribution of language theory to category theory! More to the story: $W[\mathbb{C}]$ naturally extends to a **cyclic polycategory** (jww Peter Faul). Apparent link with permutation reps of graphs on surfaces (**combinatorial maps**). The adjunction has been recently extended and applied to **process algebra**.

Matt Earnshaw, James Hefford, Mario Román The Produoidal Algebra of Process Decomposition, arXiv:2301.11867

Extra slides

From contour words to Dyck words

Colors / nodes factorization

Translation of corners

$$1_0 \mapsto id$$
 $1_1 \mapsto id$
 $1_2 \mapsto id$

$$2_0 \mapsto mom$$

$$3_0 \rightarrow tom$$

$$4_0 \mapsto loves_{\bot}$$

 $4_1 \mapsto id$

Uncolored tree contour words

Coloring automaton

Species (some terminology)

A (colored non-symmetric) species is a span of sets of the form

$$C^* \xleftarrow{i} V \xrightarrow{\circ} C$$

with the following interpretation: C is a set of "colors", V a set of "nodes", and i : V \rightarrow C* and o : V \rightarrow C return respectively the list of input colors and the unique output color of each node. We say a species is **finite** (aka "polynomial") iff both C and V are finite. A **map of species** is a pair of functions (ϕ_C , ϕ_V) making the diagram commute:

$$\begin{array}{cccc}
C^* & \leftarrow & \downarrow & \circ & \downarrow & \downarrow \\
\downarrow \phi_{C}^* & & \downarrow & \phi_{V} & & \downarrow \phi_{C} \\
D^* & \leftarrow & W & \stackrel{\circ}{\longrightarrow} & D
\end{array}$$

Free contour categories

The contour category of a free operad is itself a free category, with C[Free S] generated by the **corners*** (x,i) consisting of an n-ary node x and index $0 \le i \le n$.

We sometimes write C[S] as another name for this category.

Although C[-] does not preserve ULF in general, we have that for any species map $\psi:\mathbb{S}\to\mathbb{R}$, the functor of categories $C[\psi]:C[\mathbb{S}]\to C[\mathbb{R}]$ is ULF.

^{*}Note that the word "corner" comes from the theory of planar maps, but in parsing theory, corners are called "dotted rules"!