
A tutorial on (generalized) fibrations
for logic, automata and language theory

Noam Zeilberger1

Ecole Polytechnique (Laboratoire d’Informatique de l’X)

Dagstuhl, 2 April 2025
Workshop on “Categories for Automata and Language Theory”

1Based on joint work with Paul-André Melliès. Main references: “Functors are type refinement
systems” (POPL 2015) + “The categorical contours of the Chomsky-Schützenberger representation
theorem” (LMCS, to appear, arXiv:2405.14703).

1 / 52

Some topological intuitions

2 / 52

Motivation
Imagine we are analyzing different spaces, more or less complicated.

Rather than
trying to study these spaces directly, it can be helpful to first project them down to
some “simpler” space. We can learn something about our original spaces by the nature
of these projections, and even try to reconstruct them from their fibers...

3 / 52

Motivation
Imagine we are analyzing different spaces, more or less complicated. Rather than
trying to study these spaces directly, it can be helpful to first project them down to
some “simpler” space.

We can learn something about our original spaces by the nature
of these projections, and even try to reconstruct them from their fibers...

3 / 52

Motivation
Imagine we are analyzing different spaces, more or less complicated. Rather than
trying to study these spaces directly, it can be helpful to first project them down to
some “simpler” space.

We can learn something about our original spaces by the nature
of these projections, and even try to reconstruct them from their fibers...

trivial bundle fibration branched cover

3 / 52

Motivation
Imagine we are analyzing different spaces, more or less complicated. Rather than
trying to study these spaces directly, it can be helpful to first project them down to
some “simpler” space. We can learn something about our original spaces by the nature
of these projections, and even try to reconstruct them from their fibers...

trivial bundle fibration branched cover

3 / 52

Motivation
Imagine we are analyzing different spaces, more or less complicated. Rather than
trying to study these spaces directly, it can be helpful to first project them down to
some “simpler” space. We can learn something about our original spaces by the nature
of these projections, and even try to reconstruct them from their fibers...

trivial bundle fibration branched cover

3 / 52

Basic terminology

A space E mapping down to a space B is sometimes called a “bundle” p : E Ñ B.

E is called the total space, B the base space, p the projection.

For any point a P B, its inverse image p´1paq is called the fiber over a. In general it is
not just a set of isolated points, but a subspace of E .

4 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lifting)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space to the total space)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space to the total space)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lifting)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space to a given point in the total space)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space to a given point in the total space)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lifting)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space between two given points of the total space)

5 / 52

Path lifting problems

Given a bundle p : E Ñ B, we may consider different kinds of “lifting” problems...

E x y

x 1 y 1

B a b

(lift a path from the base space between two given points of the total space)

5 / 52

Fibrational perspectives on deductive systems

Old idea (Lawvere 1969): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.

This idea may be extended to a variety of computational and deductive systems,
including program logics, finite-state automata and context-free grammars.

Proof, recognition, and parsing may be thus reduced to lifting problems.

6 / 52

Plan

1. Functors as type refinement systems (aka, bundles of categories)
2. Finite-state automata as bundles I: determinism and codeterminism
3. Finite-state automata as bundles II: ULF and finitary functors
4. Finite-state automata as bundles III: NFAs over categories

7 / 52

Functors as type refinement systems
(aka, bundles of categories)

8 / 52

Some terminology and notation

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or type refinement system. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

9 / 52

Some terminology and notation

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or type refinement system. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

9 / 52

Some terminology and notation

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or type refinement system. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

9 / 52

Some terminology and notation

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or type refinement system. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

9 / 52

A picture to have in mind

10 / 52

Sequent calculus

We use sequent notation S ùñf T for judgments, and write inference rules to stand
for transformations from derivations of the premises to a derivation of the conclusion.

Proposition: the following rules are valid for any type refinement system p : D Ñ C.

S ùñ
f

R R ùñ
g

T

S ùñ
fg

T
comp

R < A
R ùñ

idA
R

id

Proof:
(comp): Let α and β be derivations of the premises, meaning that there are arrows

α : S Ñ R and β : R Ñ T in D such that ppαq “ f and ppβq “ g . Then the
arrow αβ : S Ñ T is a derivation of the conclusion, since ppαβq “ ppαqppβq “ fg .

(id): ppidR : R Ñ Rq “ idppRq “ idA.

11 / 52

Sequent calculus

We use sequent notation S ùñf T for judgments, and write inference rules to stand
for transformations from derivations of the premises to a derivation of the conclusion.

Proposition: the following rules are valid for any type refinement system p : D Ñ C.

S ùñ
f

R R ùñ
g

T

S ùñ
fg

T
comp

R < A
R ùñ

idA
R

id

Proof:
(comp): Let α and β be derivations of the premises, meaning that there are arrows

α : S Ñ R and β : R Ñ T in D such that ppαq “ f and ppβq “ g . Then the
arrow αβ : S Ñ T is a derivation of the conclusion, since ppαβq “ ppαqppβq “ fg .

(id): ppidR : R Ñ Rq “ idppRq “ idA.

11 / 52

Sequent calculus

We use sequent notation S ùñf T for judgments, and write inference rules to stand
for transformations from derivations of the premises to a derivation of the conclusion.

Proposition: the following rules are valid for any type refinement system p : D Ñ C.

S ùñ
f

R R ùñ
g

T

S ùñ
fg

T
comp

R < A
R ùñ

idA
R

id

Proof:
(comp): Let α and β be derivations of the premises, meaning that there are arrows

α : S Ñ R and β : R Ñ T in D such that ppαq “ f and ppβq “ g . Then the
arrow αβ : S Ñ T is a derivation of the conclusion, since ppαβq “ ppαqppβq “ fg .

(id): ppidR : R Ñ Rq “ idppRq “ idA.

11 / 52

Subtyping

We define subtyping as a special case of typing:

R ďA R 1 :“ R ùñ
idA

R 1

Note that subtyping is only meaningful between refinements of the same type.

Proposition: the following rule is valid for any type refinement system p : D Ñ C.

S ď S 1 S 1 ùñ
f

T 1 T 1 ď T

S ùñ
f

T
cons

Proof:
D S S1 T 1 T

C A A B B

p

α β γ

f

12 / 52

Subtyping

We define subtyping as a special case of typing:

R ďA R 1 :“ R ùñ
idA

R 1

Note that subtyping is only meaningful between refinements of the same type.

Proposition: the following rule is valid for any type refinement system p : D Ñ C.

S ď S 1 S 1 ùñ
f

T 1 T 1 ď T

S ùñ
f

T
cons

Proof:
D S S1 T 1 T

C A A B B

p

α β γ

f

12 / 52

Subtyping

Restricting to subtyping derivations defines a family of fiber categories

DA “ p´1pidAq “ t α : R Ñ R 1 | ppαq “ idA u Ă D.

If these contain only identity arrows (i.e., ppαq “ idA implies α “ idR for some R) then
subtyping is trivial and p is said to have discrete fibers.

13 / 52

Ambiguity

A judgment S ùñf T may in general have more than one derivation, in other words, a
type refinement system may be ambiguous.

By definition, p : D Ñ C is unambiguous iff p is faithful, i.e., for any pair of arrows
α, α1 : S Ñ T with the same source and target, if ppαq “ ppα1q then α “ α1.

14 / 52

Morphism of type refinement systems

Two bundles over C may be related by a commutative triangle:

D E

C

p

H

p1

More generally, two bundles may be related by a commutative square:

D E

C B

p

H

p1

G

Such a morphism maps p-derivations of S ùñf T to p1-derivations of H S ùñG f H T .

15 / 52

General perspectives on type refinement systems

This perspective may be applied to any functor p : D Ñ C.

We are typically interested in functors with some additional properties/structure.

Considering different logico-computational systems as bundles, what are their
fibrational characteristics?

16 / 52

Finite-state automata as bundles I:
determinism and codeterminism

17 / 52

Automata as graph homomorphisms

The underlying transition graph of any NFA (without ϵ-transitions) over the alphabet
Σ is entirely described by a graph homomorphism ϕ : G Ñ BΣ into the bouquet graph
with one node ˚ and a loop a : ˚ Ñ ˚ for every a P Σ.

18 / 52

Automata as graph homomorphisms

q0

q1 q2

q3

q4

a

b

a

b

a
b

a

a

q0

q1 q2

q3
q4 q5

a

b

a

b

a

b

a

b

a

b
a

b

19 / 52

Automata as graph homomorphisms

19 / 52

Automata as graph homomorphisms

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

˚

a b

19 / 52

Free categories

To any graph G is associated a free category FG whose objects are nodes and whose
arrows are paths. For example, the free category over

G “

B

A D E F

C

ba

c

e
f

g
d

has hompA, Dq “ t ab, cd u and hompE , E q “ pfgq˚.

Universal property of free categories: any functor FG Ñ C into a category C is
uniquely determined by a graph homomorphism G Ñ C into the underlying graph of C.

20 / 52

Recognition as a path lifting problem

Any word w P Σ˚ corresponds to a path in BΣ, i.e., to an arrow ˚ Ñ ˚ in FBΣ.

Any graph homomorphism ϕ : G Ñ H induces a corresponding functor between free
categories Fϕ : FG Ñ FH, sending paths in G to paths in H of the same length.

Let A be an NFA with transition graph ϕ : G Ñ BΣ and associated functor p “ Fϕ.
Then A accepts w P Σ˚ just in case there is an arrow α : q0 Ñ qf in FG such that
ppαq “ w , from an initial state q0 to an accepting state qf .

21 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

˚

a b

q0 q1 q2

q0 q4

q1 q2 q2

˚ ˚ ˚ ˚ ˚

1 2
40

1
2 3

4

a a a b

22 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

˚

a b

q0 q1 q2

q0 q4

q1 q2 q2

˚ ˚ ˚ ˚ ˚

1 2
40

1
2 3

4

a a a b

22 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

23 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

23 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

23 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

23 / 52

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

23 / 52

Determinism

Proposition: let ϕ : G Ñ BΣ be a homomorphism of finite graphs. TFAE:
1. ϕ is the transition graph of a complete DFA.
2. for every node q P G and every loop a : ˚ Ñ ˚ P BΣ, there is a unique node q1 and

unique edge e : q Ñ q1 such that ϕpeq “ a.
3. Fϕ : FG Ñ FBΣ is a discrete opfibration.

24 / 52

Definition

A functor p : D Ñ C is a discrete opfibration if for any object S < A of D and any
arrow f : A Ñ B of C there exists a unique object T < B and arrow α : S ùñf T .

D S T

C A B

p

α

f

25 / 52

Presheaves

A covariant presheaf on a category C is a functor G : C Ñ Set.

Explicitly, a covariant presheaf G consists of the following:
§ a set GA for every object A in C;
§ a function Gf : GA Ñ GB for every arrow f : A Ñ B in C;
§ such that Gfg “ Gf ;Gg and GidA “ idGA .

26 / 52

Category of elements

Given a presheaf G : C Ñ Set, the category of elements
ş

G is defined like so:
§ Objects are pairs pA, Rq of an object A in C and an element R P GA.
§ A morphism pA, Sq Ñ pB, T q is given by a morphism f : A Ñ B in C such that

the function Gf : GA Ñ GB maps S to T .

This category is equipped with an evident projection functor πG :
ş

G Ñ C.

Proposition: πG :
ş

G Ñ C is a discrete opfibration.

27 / 52

Example: monoid actions

Let M be a monoid, considered as a one-object category BM “ ˚

xPM

.

A presheaf G : BM Ñ Set consists of the following:
§ a set Q “ G˚;
§ for every element x P M, a function Gx : Q Ñ Q;
§ such that pqqGxy “ ppqqGx qGy and pqqG1 “ q.

This is equivalent to the data of a set Q equipped with a right action Q ˆ M Ñ Q.

To any such monoid action is associated a discrete opfibration πG :
ş

G Ñ BM .

28 / 52

Example: monoid actions

When M is a free monoid M “ Σ˚, then any any functor BM – FBΣ Ñ Set is uniquely
determined by a graph homomorphism BΣ Ñ Set. (Equivalently: any monoid action
Q ˆ Σ˚ Ñ Q is uniquely determined by its action on the generators Q ˆ Σ Ñ Q.)

For example, let Σ “ t a, b u, and consider the functor G : FBΣ Ñ Set defined by

G˚ “ t q0, . . . , q5 u

Ga “

ˆ

q0 q1 q2 q3 q4 q5
q1 q2 q2 q4 q2 q4

˙

Gb “

ˆ

q0 q1 q2 q3 q4 q5
q3 q3 q5 q3 q3 q3

˙

Then πG :
ş

G Ñ FBΣ is exactly (isomorphic to) the DFA from a few slides back.

29 / 52

Example: monoid actions

When M is a free monoid M “ Σ˚, then any any functor BM – FBΣ Ñ Set is uniquely
determined by a graph homomorphism BΣ Ñ Set. (Equivalently: any monoid action
Q ˆ Σ˚ Ñ Q is uniquely determined by its action on the generators Q ˆ Σ Ñ Q.)

For example, let Σ “ t a, b u, and consider the functor G : FBΣ Ñ Set defined by

G˚ “ t q0, . . . , q5 u

Ga “

ˆ

q0 q1 q2 q3 q4 q5
q1 q2 q2 q4 q2 q4

˙

Gb “

ˆ

q0 q1 q2 q3 q4 q5
q3 q3 q5 q3 q3 q3

˙

Then πG :
ş

G Ñ FBΣ is exactly (isomorphic to) the DFA from a few slides back.

29 / 52

Duality of the fibered and indexed perspectives

Conversely, to any discrete opfibration p : D Ñ C is associated a fiber functor
G : C Ñ Set defined by taking GA “ t R P D | R < A u and letting Gf : GA Ñ GB be
the function which maps any R < A to the unique S < B such that R ùñf S.

These two constructions

discrete opfibration covariant presheaffiber functor

category of elements

extend to an equivalence of categories between the category DOpFibpCq of discrete
fibrations over C with commutative triangles as morphisms, and the category rC, Sets

of covariant presheaves on C with natural transformations as morphisms.

30 / 52

Running an automaton backwards

A :“

q0

q1 q2

q3

q5 q4

1

5

2

3

6

7
8

9

10 11

4

0

q5 q5 q5 q2 q4

˚

a b

˚ ˚ ˚ ˚ ˚

10 10 8 3

a a b b

31 / 52

Running an automaton backwards

A :“

q0

q1 q2

q3

q5 q4

1

5

2

3

6

7
8

9

10 11

4

0

q5 q5 q5 q2 q4

˚

a b

˚ ˚ ˚ ˚ ˚

10 10 8 3

a a b b

31 / 52

Running an automaton backwards

A :“

q0

q1 q2

q3

q5 q4

1

5

2

3

6

7
8

9

10 11

4

0

q5 q5 q5 q2 q4

˚

a b

˚ ˚ ˚ ˚ ˚

10 10 8 3

a a b b

31 / 52

Running an automaton backwards

A :“

q0

q1 q2

q3

q5 q4

1

5

2

3

6

7
8

9

10 11

4

0

q5 q5 q5 q2 q4

˚

a b

˚ ˚ ˚ ˚ ˚

10 10 8 3

a a b b

31 / 52

Running an automaton backwards

A :“

q0

q1 q2

q3

q5 q4

1

5

2

3

6

7
8

9

10 11

4

0

q5 q5 q5 q2 q4

˚

a b

˚ ˚ ˚ ˚ ˚

10 10 8 3

a a b b

31 / 52

Codeterminism

Proposition: let ϕ : G Ñ BΣ be a homomorphism of finite graphs. TFAE:
1. ϕ is the transition graph of a complete codeterministic automaton.
2. for every node q P G and every loop a : ˚ Ñ ˚ P BΣ, there is a unique node q1 and

unique edge e : q1 Ñ q such that ϕpeq “ a.
3. Fϕ : FG Ñ FBΣ is a discrete fibration.

32 / 52

Definition

A functor p : D Ñ C is a discrete fibration if for any object T < B of D and any
arrow f : A Ñ B of C there exists a unique object S < A and arrow α : S ùñf T .

D S T

C A B

p

α

f

33 / 52

Discrete fibrations as contravariant presheaves

A contravariant presheaf on a category C is a functor G : C Ñ Setop.

Explicitly, a contravariant presheaf G consists of the following:
§ a set GA for every object A in C;
§ a function Gf : GB Ñ GA for every arrow f : A Ñ B in C;
§ such that Gfg “ Gf ˝Gg and GidA “ idGA .

Symmetric versions of the category of elements and fiber functor constructions realize
an equivalence of categories DFibpCq – rC, Setopsop.

34 / 52

Finite-state automata as bundles II:
ULF and finitary functors

35 / 52

Characterizing nondeterministic finite-state automata

Recall that any NFA A over an alphabet Σ has an underlying transition graph
ϕ : G Ñ BΣ that induces an associated functor p “ Fϕ : FG Ñ FBΣ.

As we saw, A is deterministic (resp. codeterministic) iff p is a discrete opfibration
(resp. discrete fibration). Either condition implies that p is faithful, i.e., unambiguous.

But what about in general? Can we characterize those functors p : D Ñ FBΣ that are
generated by the transition graph of an arbitrary (potentially ambiguous) NFA?

36 / 52

ULF functors (aka discrete Conduché fibrations)

A functor p : D Ñ C has unique lifting of factorizations if for every arrow α in D
and pair of arrows f , g in C such that ppαq “ fg , there exist unique β and γ in D such
that α “ βγ and ppβq “ f and ppγq “ g .

D S T

R

A B

C X

p

α

β γ

w

f g

37 / 52

ULF functors (aka discrete Conduché fibrations)

A functor p : D Ñ C has unique lifting of factorizations if for every arrow α in D
and pair of arrows f , g in C such that ppαq “ fg , there exist unique β and γ in D such
that α “ βγ and ppβq “ f and ppγq “ g .

D S T

R

A B

C X

p

α

β γ

w

f g

37 / 52

ULF ñ discrete fibers

Proposition: if p : D Ñ C is ULF then it has discrete fibers.

Proof: Suppose that α : R Ñ R 1 were a non-identity arrow such that ppαq “ idA.
Then pidR , αq and pα, idR 1q would be two distinct liftings of the factorization pidA, idAq

of idA, a contradiction.

(Hence ULF functors have no ϵ-transitions!)

38 / 52

Another equivalent view of ULF functors

Let Span be the bicategory whose objects are sets, whose 1-cells are spans

A Ð X Ñ B, and whose 2-cells are morphisms of spans
X Y

A B

.

To any functor whatsoever p : D Ñ C is associated a lax fiber functor G : C Ñ Span
that sends every arrow f : A Ñ B of C to the following span of sets:

p´1pAq “ t S | S < A u p´1pf q “ t α | α : S ùñf T u p´1pBq “ t T | T < B u

In general this fiber functor is only a lax functor, equipped with structure maps
comp : Gf Gg ñ Gfg and id : idGA ñ GidA that are not necessarily invertible.

Proposition: p is ULF iff comp and id are invertible, i.e., iff G is a pseudofunctor.

39 / 52

ULF into free = free

Proposition (Street 1996): Let p : D Ñ C be a functor into a category C “ FH freely
generated by some graph H. Then p is ULF iff D “ FG is free over some graph G and
p “ Fϕ is generated by a graph homomorphism ϕ : G Ñ H.

Proof: The direction (ð) is immediate. For (ñ), take G “ p´1pHq. Since the image
of any arrow α in D uniquely decomposes as a path ppαq “ e1 ¨ ¨ ¨ en in H, the ULF
property implies that α uniquely decomposes as a composition of edges in G, and p is
generated by its restriction to the generators ϕ : G Ñ H.

40 / 52

Finitary functors

We say that a functor p : D Ñ C is finitary if the sets p´1pAq and p´1pf q are finite for
every object A and arrow f : A Ñ B of C.

Equivalently, p is finitary iff the lax fiber functor G : C Ñ Span factors via FinSpan.

Proposition: Let ϕ : G Ñ H be a homomorphism into a finite graph H. Then
Fϕ : FG Ñ FH is finitary iff G is finite.

41 / 52

The characterization

Corollary: Let p : D Ñ FBΣ be a functor into the free category on a bouquet. TFAE:
1. D “ FG and p “ Fϕ where ϕ : G Ñ BΣ is the transition graph of a NFA.
2. p is finitary and ULF.

42 / 52

Finite-state automata as bundles III:
NFAs over categories

43 / 52

Definition

A NFA over a category C is a tuple A “ pQ, p, q0, qf q consisting of
§ a category Q
§ a finitary ULF functor p : Q Ñ C
§ a pair of objects q0, qf P Q.

The automaton recognizes a regular language of arrows LA defined as the image of
the homset Qpq0, qf q along p, that is,

LA
def
“ t ppαq | α : q0 Ñ qf u Ď CpA, Bq

where q0 < A, qf < B.

44 / 52

Example: automata over free categories

Let B��
Σ be the graph obtained from BΣ by adjoining a pair of initial and final nodes:

K ˚ J
�

aPΣ

�

An automaton over FB��
Σ processes a word with explicit begin/end markers.

More generally, an automaton over the free category FH on an arbitrary graph H
recognizes a language of paths, which may be considered as “typed words”.

45 / 52

Example: singleton automaton

For any w P Σ˚ s.t. |w | “ n, there is an pn ` 1q-state automaton recognizing t w u:

0 1 2 3 4 5 6 7S C H L O S S

This is a special case of the following general construction...

46 / 52

Example: singleton automaton

Let C be a category and let w : A Ñ B be an arrow of C. We define an automaton
Aw “ pQ, p, q0, qf q recognizing the singleton language t w u Ď CpA, Bq as follows:

§ Q “ Factw is the category of factorizations of w .

X

A B

Y

v

x
w

u

u1 v 1

§ p “ pw : Factw Ñ C is the projection returning the middle of a factorization.
§ the initial and final states are q0 “ pidA, wq and qf “ pw , idBq.

Key fact: pw : Factw Ñ C is ULF. (But not necessarily finitary.)

If the category C has finitary factorizations then Aw defines a NFA.

46 / 52

Example: pullback automaton

Proposition: Finitary ULF functors are preserved by pullback along arbitrary functors.

E ˆC Q Q

E C

F ˚p finULF
{

p finULF

F

(Easy way to see this: if G : C Ñ FinSpan is the fiber functor of p, then G ˝ F is the
fiber functor of F ˚p.)

Corollary: Regular languages of arrows are closed under inverse image along functors,
and under intersection.

47 / 52

Classifying automata by their fibrational properties

We say that a categorical automaton is unambiguous/deterministic/codeterministic if
p is faithful/opfibration/fibration, or equivalently, just in case its fiber functor factors
as follows...

48 / 52

Classifying automata by their fibrational properties

C FinSpan

FinRel

FinSet FinSetop

general NFA

unambiguous

deterministic

codeterministic

48 / 52

Classifying automata by their fibrational properties

C FinSpan

FinRel

FinSet FinSetop

general NFA

unambiguous

deterministic

codeterministic

48 / 52

Classifying automata by their fibrational properties

C FinSpan

FinRel

FinSet FinSetop

general NFA

unambiguous

deterministic

codeterministic

48 / 52

Classifying automata by their fibrational properties

C FinSpan

FinRel

FinSet FinSetop

general NFA

unambiguous

deterministic

codeterministic

48 / 52

Transducers between categories

A nondeterministic finite-state transducer M : C Ý̋Ñ D is a pair M “ pA, Oq

consisting of an NFA A “ pQ, p, q0, qf q over C and a functor O : Q Ñ D. By taking
the joint image of the homset Qpq0, qf q, a transducer induces a relation

t pppαq, Opαqq | α : q0 Ñ qf u Ď CpA, Bq ˆ DpX , Y q

where pA, Bq “ pppq0q, ppqf qq and pX , Y q “ pOpq0q, Opqf qq.

49 / 52

Transducers between categories

Transducers M : C Ý̋Ñ D and M1 : D Ý̋Ñ E can be composed as follows:

Q ˆD Q1

Q Q1

C D E

finULF {

finULF finULF

Unambiguous/deterministic/codeterministic transducers are closed under composition.

50 / 52

Concluding perspectives

51 / 52

Finite-state automata may be considered as bundles of categories (without violence!),
in a way that allows to treat them uniformly like other type refinement systems.

Finitary ULF functors play an important role, taking nondeterminism with potential
ambiguity as a starting point. (Accounting for ϵ-transitions is work-in-progress.)

Moving from categories to operads (aka multicategories) allows to treat regular
languages of trees and context-free languages of arrows, including an account of the
Chomsky-Schützenberger representation theorem.

52 / 52

Finite-state automata may be considered as bundles of categories (without violence!),
in a way that allows to treat them uniformly like other type refinement systems.

Finitary ULF functors play an important role, taking nondeterminism with potential
ambiguity as a starting point. (Accounting for ϵ-transitions is work-in-progress.)

Moving from categories to operads (aka multicategories) allows to treat regular
languages of trees and context-free languages of arrows, including an account of the
Chomsky-Schützenberger representation theorem.

52 / 52

Finite-state automata may be considered as bundles of categories (without violence!),
in a way that allows to treat them uniformly like other type refinement systems.

Finitary ULF functors play an important role, taking nondeterminism with potential
ambiguity as a starting point. (Accounting for ϵ-transitions is work-in-progress.)

Moving from categories to operads (aka multicategories) allows to treat regular
languages of trees and context-free languages of arrows, including an account of the
Chomsky-Schützenberger representation theorem.

52 / 52

Finite-state automata may be considered as bundles of categories (without violence!),
in a way that allows to treat them uniformly like other type refinement systems.

Finitary ULF functors play an important role, taking nondeterminism with potential
ambiguity as a starting point. (Accounting for ϵ-transitions is work-in-progress.)

Moving from categories to operads (aka multicategories) allows to treat regular
languages of trees and context-free languages of arrows, including an account of the
Chomsky-Schützenberger representation theorem.

52 / 52

Extra slides

1 / 14

Traditionally (e.g. [2]) one looks at a finite-state machine as processing sequences
of inputs drawn from a finite set A, the input alphabet: one then considers the free
monoid A˚ [...]. To the automaton can be associated a congruence γ of a finite
index on A˚. A˚{γ being a finite monoid, one is then led to investigate relationships
between the structure of this algebraic system and the combinatorial processing of
input sequences.

Recent research has established the possibility and the necessity of generalizing this
model. For example, we are often interested in decompositions of automata. In
such situations a component may receive its input from the output of some other
component. This “preprocessing” imposes restrictions on the possible input sequences
that need to be considered. A simple way to take into account these restrictions is
to view a machine as processing input sequences that are paths in a finite directed
multigraph.

D. Thérien and M. Sznajder-Glodowski (1988), “Finite categories and regular languages”.

2 / 14

Categorical bifibrations for logic and languages

3 / 14

A functorial view of Hoare logic

Let S be the one-object category whose arrows c : ˚ Ñ ˚ are sequential compositions
of program commands defined over some global set of variables.

Suppose we have fixed some interpretation rcs Ď S ˆ S of program commands as
(potentially partial or nondeterministic) relations from input states to output states.
(This interpretation should correspond to a functor r´s : S Ñ Rel with S “ r˚s.)

Let H be the category whose objects are predicates on the global state, and whose
arrows P Ñ Q are given by commands c satisfying the Hoare triple tPuctQu, i.e.,
such that for all pairs of states s, s 1, if Ppsq and ps, s 1q P rcs then Qps 1q.

Let p : H Ñ S be the evident forgetful functor.

4 / 14

Two kinds of lifting problems

Given a command c and a predicate P (resp., a predicate Q), does there exists a
predicate Q (resp. P) such that a tPuctQu?

H P Q? P? Q

S ˚ ˚ ˚ ˚
c c

In general there can be many solutions! (e.g., Q? “ true, P? “ false)

5 / 14

Weakest preconditions and strongest postconditions

Given a command c and a predicate Q, a weakest precondition is a predicate wppc, Qq

such that for any predicate P, the triple tPuctQu is valid iff P ñ wppc, Qq.

Dually, given a command c and a predicate P, a strongest postcondition is a predicate
sppc, Pq such that for any predicate Q, the triple tPuctQu is valid iff sppc, Pq ñ Q.

TFAE:
1. Weakest preconditions and strongest postconditions exist for all P, c, Q.
2. p : H Ñ S is a bifibration

6 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g

=
S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g

=
S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

What is a bifibration?

Formally:
D

C

p

S pushf S

A B

fS

f

pullg T T

B C

sgT

g

...and these liftings should be universal...

S pushf S T

A B C

fS f zg α

f g
=

S T

A B C

α

f g
=

S pullg T T

A B C

α f {sg
sgT

f g

7 / 14

Definition of a bifibration in inference rules

S < A f : A Ñ B
pushf S < B

f : A Ñ B T < B
pullf T < A

S ùñ
fg

T

pushf S ùñ
g

T

S 1 ùñ
f 1

S

S 1 ùñ
f 1f

pushf S

T ùñ
g 1

T 1

pullg T ùñ
gg 1

T 1

S ùñ
fg

T

S ùñ
f

pullg T

(+ some equations)

8 / 14

Some consequences of the definitions

For all S, f , g , T of the appropriate type, we have

pushfg S ” pushg pushf S pushid S ” S

pullfg T ” pullf pullg T pullid T ” T

where “”” denotes iso in D lying over an identity in C (“vertical isomorphism”).

9 / 14

Some consequences of the definitions

The following subtyping rules are derivable:

S ďA S 1

pushf S ďB pushf S 1

T ďB T 1

pullf T ďA pullf T 1

The following judgments are interderivable:

S ďA pullf T iff S ùñ
f

T iff pushf S ďB T

10 / 14

Bifibrations as indexed adjunctions

Summarizing the last two slides, pushing and pulling along any given arrow f : A Ñ B
in the base of a bifibration2 p : D Ñ C induces an adjunction of fiber categories

DA DB

pushf

pullf

K

and taking fibers lets us define a pseudofunctor C Ñ Adj into the category of small
categories and adjunctions. Conversely, any such pseudofunctor G : C Ñ Adj induces a
bifibration πG :

ş

G Ñ C via a generalization of the category of elements construction.

2Technically the bifibration should be equipped with a choice of lifts, i.e., be “cloven”.
11 / 14

Example #1: functional image and inverse image

Let SubSet be the category whose objects are pairs pA, R Ď Aq, and whose arrows
pA, Sq Ñ pB, T q are functions f : A Ñ B such that @a, a P S ñ f a P T .

The projection functor π : SubSet Ñ Set is a bifibration with

pushf pA, Sq
def
“ pB, f pSqq pullf pB, T q

def
“ pA, f ´1pT qq

12 / 14

Example #2: existential and universal quantification along a relation

Let SubRel be the category with same objects as SubSet but whose arrows
pA, Sq Ñ pB, T q are relations r Ď A ˆ B such that @ab, a P S ^ pa, bq P r ñ b P T .

The projection functor π : SubRel Ñ Rel is a bifibration with

pushr pA, Sq
def
“ pB, t b | Da, a P S ^ pa, bq P r uq

pullr pB, T q
def
“ pA, t a | @b, pa, bq P r ñ b P T uq

13 / 14

Monoidal closed bifibrations

SubSet Ñ Set and SubRel Ñ Rel are examples of monoidal closed bifibrations, in the
sense that the categories are monoidal closed and the projection functors strictly
preserve the monoidal closed structure, in addition to being bifibrations.

Proposition: if p : D Ñ C is a monoidal closed bifibration, and M is a monoid in C,
then the fiber category DM is monoidal closed, with tensor and internal hom defined by

R bM S def
“ pushm pR bD Sq R ⊸M S def

“ pullλm pR ⊸D Sq

where m : M bC M ÝÑ M is the monoid multiplication map and λm is its currying.

14 / 14

Monoidal closed bifibrations

SubSet Ñ Set and SubRel Ñ Rel are examples of monoidal closed bifibrations, in the
sense that the categories are monoidal closed and the projection functors strictly
preserve the monoidal closed structure, in addition to being bifibrations.

Proposition: if p : D Ñ C is a monoidal closed bifibration, and M is a monoid in C,
then the fiber category DM is monoidal closed, with tensor and internal hom defined by

R bM S def
“ pushm pR bD Sq R ⊸M S def

“ pullλm pR ⊸D Sq

where m : M bC M ÝÑ M is the monoid multiplication map and λm is its currying.

14 / 14

	Some topological intuitions
	Functors as type refinement systems (aka, bundles of categories)
	Finite-state automata as bundles I: determinism and codeterminism
	Finite-state automata as bundles II: ULF and finitary functors
	Finite-state automata as bundles III: NFAs over categories
	Concluding perspectives
	Appendix
	Extra slides
	Categorical bifibrations for logic and languages

