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A proof-theoretic analysis
of the rotation lattice of binary trees1

Noam Zeilberger
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1See: “A sequent calculus for a semi-associative law” (arXiv:1803.10080),
to appear in special volume of LMCS of selected papers from FSCD 2017.
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What is the “Tamari” order?

Partial order on binary trees induced by right rotation2.

−→

Equivalently, ordering on fully bracketed words defined by
1. (A rB) rC ≤ A r(B rC) [semi-associativity]
2. if A1 ≤ A2 and B1 ≤ B2 then A1 rB1 ≤ A2 rB2 [monotonicity]

(Named after Dov Tamari, who originally studied this ordering for
motivations in algebra in a 1951 thesis from Université de Paris.)

2(or alternatively left rotation)
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Example: (p r(q rr)) rs ≤ p r(q r(r rs))

−→ −→

Easy Fact: ordering only depends on shape of tree.
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Let Yn be the set of Cn =
(2n

n
)
/(n + 1) binary trees with n internal

nodes (or equivalently bracketings of n + 1 letters), ordered by
right rotation (semi-associativity + monotonicity).

Amazing Fact #1: each Yn is a lattice!
(Well it’s kind of amazing. Certainly non-obvious.)

Amazing Fact #2: the Hasse diagram of Yn may be realized as the
skeleton of an n − 1 dimensional polytope! (The “associahedron”.)
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A picture of Y3
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Amazing Fact #3: Yn contains exactly 2(4n+1)!
(n+1)!(3n+2)! intervals!

(Here an “interval” just means a pair A and B such that A ≤ B.
One can also think of it as the set [A,B] = {C | A ≤ C ≤ B}.)

7 / 40



For example, Y3 contains 13 = 2·13!
4!·11! intervals:
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Fréderic Chapoton proved this amazing formula in 2006, but even
more amazing was how he found it. . .

In fact, this formula was first calculated by (legendary graph
theorist and WW2 hero) W. T. Tutte in the early 1960s, but for a
seemingly unrelated family of objects (a family of planar maps).

So in reality, Chapoton “discovered” the formula by counting the
number of intervals in Yn for the first few values of n, and looking
up the resulting sequence in the OEIS!

Later, sparked by Chapoton’s observation, Bernardi and Bonichon
(2009) gave an explicit bijection between Tamari intervals and the
family of planar maps originally enumerated by Tutte.
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My paper: new proofs of Amazing Facts #1 and #3.

Idea: consider the Tamari order as a very primitive logic, and apply
old insights from proof theory (and category theory).
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Prologue to Introduction
(Or, how does a logician get interested in this stuff?)
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It turns out that the study of map enumeration pioneered by Tutte
also has connections to the combinatorics of lambda calculus!

A partial bibliography:
1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for

BCI and BCK lambda terms, TCS 502: 227-238
2. Z, A. Giorgetti (2015), A correspondence between rooted planar maps and

normal planar lambda terms, LMCS 11(3:22): 1-39
3. Z (2015), Counting isomorphism classes of beta-normal linear lambda terms,

arXiv:1509.07596
4. Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J.

Functional Programming 26(e21)
5. J. Courtiel, K. Yeats, Z (2016), Connected chord diagrams and bridgeless maps,

arXiv:1611.04611 (submitted to the Electronic Journal of Combinatorics)
6. Z (2018), A theory of linear typings as flows on 3-valent maps, LICS 2018
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A cube of sequences

A267827 A000309

A062980 A002005

A000699 A000260

A000698 A000168

(computed by Tutte!)

Linear terms: [x : ordered, y : unitless, z : β-normal]
Rooted maps: [x : planar, y : bridgeless, 1-z : 3-valent]
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A sequent calculus for the Tamari order
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What is “sequent calculus”?

An approach to the formal representation of logical inference,
originally introduced by Gerhard Gentzen in the 1930s for the study
of classical and intuitionistic logic.

Essentially, proofs are represented as (rooted planar) trees, where:
I nodes are labelled by “inference rules” chosen from a fixed set;
I edges are labelled by “sequents”, subject to constraints

imposed by the inference rules;
I the outgoing root edge marks the conclusion of the proof, and

any incoming leaves correspond to premises.
Moreover, the set of inference rules is chosen in a clever way so
that one can show nice “meta-theorems” (proofs about proofs).
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Example of a proof with four premises:

A −→ C B −→ C
A ∨ B −→ C ∨L A −→ D B −→ D

A ∨ B −→ D ∨L
A ∨ B −→ C ∧ D ∧R

∧R

∨L ∨L

A∨B→C∧D

B→C∧DA→C∧D

A→C B→C A→D B→D

Example of a proof with no premises (i.e., of a valid sequent):

A −→ A id B −→ B id
A,B −→ A ∧ B ∧R

A,B −→ (A ∧ B) ∨ (A ∧ C) ∨R1

A −→ A id C −→ C id
A,C −→ A ∧ C ∧R

A,C −→ (A ∧ B) ∨ (A ∧ C) ∨R2

A,B ∨ C −→ (A ∧ B) ∨ (A ∧ C) ∨L

A ∧ (B ∨ C) −→ (A ∧ B) ∨ (A ∧ C) ∧L

Note use of “left rules” and “right rules”, as well as the subtle
distinction between conjunction (∧) and concatenation (,)
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Definition of the sequent calculus for the Tamari order

Sequents of the form A0, . . . ,An −→ B, where A0, . . . ,An,B are
fully bracketed words (we’ll refer to them as “logical formulas”)

Four inference rules:

A −→ A id
Θ −→ A Γ,A,∆ −→ B

Γ,Θ,∆ −→ B cut

A,B,∆ −→ C
A rB,∆ −→ C

rL Γ −→ A ∆ −→ B
Γ,∆ −→ A rB rR

where Γ,Θ,∆ range over lists of formulas.
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Historical note: these sequent calculus rules are almost a direct
copy of rules introduced 60 years ago3 by Joachim Lambek! The
only difference is a restriction on the left rule. . .

A,B,∆ −→ C
A rB,∆ −→ C

rL versus Γ,A,B,∆ −→ C
Γ,A rB,∆ −→ C

rLamb

. . . but this simple restriction accounts for semi-associativity!

3J. Lambek, “The mathematics of sentence structure,” The American
Mathematical Monthly, vol. 65, no. 3, pp. 154–170, 1958.
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≤

Example: (p r(q rr)) rs ≤ p r(q r(r rs))

p −→ p

q −→ q
r −→ r s −→ s
r , s −→ r rs R

q, r , s −→ q r(r rs) R

q rr , s −→ q r(r rs) L

p, q rr , s −→ p r(q r(r rs)) R

p r(q rr), s −→ p r(q r(r rs)) L

(p r(q rr)) rs −→ p r(q r(r rs)) L
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6≤

Counterexample: p r(q r(r rs)) 6≤ (p r(q rr)) rs
p −→ p

q −→ q r −→ r
q, r −→ q rr R

p, q, r −→ p r(q rr) R s −→ s
p, q, r , s −→ (p r(q rr)) rs R

p, q, r rs −→ (p r(q rr)) rs Lamb

p, q r(r rs) −→ (p r(q rr)) rs Lamb

p r(q r(r rs)) −→ (p r(q rr)) rs L
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By abuse of notation, we write “Γ −→ A” to indicate that the
sequent is valid, i.e., has a proof with no premises.

Two basic “meta-theorems”:
I Completeness: if A ≤ B then A −→ B.
I Soundness: if Γ −→ B then φ[Γ] ≤ B, where
φ[A0, . . . ,An] def= ((A0 rA1) · · · ) rAn.

The (meta-)proof of completeness is very easy (give proofs of
reflexivity + transitivity + monotonicity + semi-associativity).

The (meta-)proof of soundness is mildly satisfying (key lemma:
φ[Γ,∆] ≤ φ[Γ] rφ[∆]), but still a quick induction on proofs.
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Gentzen’s original genius was his insight about the importance of
“cut-elimination”, which is essentially a normal form theorem for
sequent calculus proofs.

Classically, the cut-elimination theorem has all sorts of logical
applications, and is the fundamental reason why sequent calculus
may be used as a basis for automated proof search.

The sequent calculus for the Tamari order admits a strong form of
cut-elimination that likewise will have some nice applications...
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We say that a proof is focused (or normal) if it only contains uses
of rL and the following restricted forms of rR and id (and no cut):

Γirr −→ A ∆ −→ B
Γirr,∆ −→ A rB rR foc

p −→ p idatm

where Γirr “irreducible” means its leftmost formula is not C rD
Theorem (Focusing completeness/cut-elimination)

Every valid sequent has a focused proof.

The (meta-)proof is relatively long (∼ 2 pages), but essentially
follows a standard pattern (no surprises other than that it works!).
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Example reductions on proof trees:

C1,C2, Γ −→ A
C1 rC2, Γ −→ A

rL ∆ −→ B
C1 rC2, Γ,∆ −→ A rB rR =⇒

C1,C2, Γ −→ A ∆ −→ B
C1,C2, Γ,∆ −→ A rB rR
C1 rC2, Γ,∆ −→ A rB rL

Γirr
1 −→ A1 Γ2 −→ A2

Γirr
1 , Γ2 −→ A1 rA2

rR A1,A2,∆ −→ B
A1 rA2,∆ −→ B

rL
Γirr
1 , Γ2,∆ −→ B

cut

=⇒

Γirr
1 −→ A1

Γ2 −→ A2 A1,A2,∆ −→ B
A1, Γ2∆ −→ B cut

Γirr
1 , Γ2,∆ −→ B

cut
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Conversely, it is not hard to show that any sequent has at most
one focused proof. We therefore obtain the following

Theorem (Coherence)

Every valid sequent has exactly one focused proof.

With soundness and completeness, coherence says in a sense that
focused proofs are a canonical representation of Tamari intervals.

[The name is inspired by Mac Lane’s coherence theorem in category
theory, which is in fact related, cf. MFPS 2018 paper by Uustalu,
Veltri, and Z, “The sequent calculus of skew monoidal categories”.]
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Application to counting intervals
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Idea: by the coherence theorem, the problem of counting intervals
is equivalent to the problem of counting focused proofs – but since
the latter are just special kinds of trees, this is easy!
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Formally, consider the bivariate OGFs L(z , x) and R(z , x) where
[znxk ]L(z , x) = # focused proofs of sequents Γ −→ A where
len(Γ) = k and size(A) = n.
[znxk ]R(z , x) = # focused proofs of sequents Γirr −→ A
where len(Γirr) = k and size(A) = n.

(here the size of a word is defined as the number of rs).
An immediate corollary of the coherence theorem is that

# intervals in Yn = [zn]L1(z)

where L1(z) = [x1]L(z , x).
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Moreover, from the definition of the inference rules. . .

A,B,∆ −→ C
A rB,∆ −→ C

rL Γirr −→ A ∆ −→ B
Γirr,∆ −→ A rB rR foc

p −→ p idatm

we immediately obtain the following functional equations:

L(z , x) = (L(z , x)− xL1(z))/x + R(z , x)

= x R(z , x)− R(z , 1)
x − 1 (1)

R(z , x) = zR(z , x)L(z , x) + x (2)
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L(z , x) = x R(z , x)− R(z , 1)
x − 1 (1)

R(z , x) = zR(z , x)L(z , x) + x (2)

Finally, we observe that these same equations (1) and (2) were
already considered by Cori and Schaeffer (2003) as counting
“(1,1)-description trees”. They explained how these equations may
be solved using the “quadratic method” to obtain the desired result

[zn]L1(z) = [zn]R(z , 1) = 2(4n + 1)!
(n + 1)!(3n + 2)! .
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Comparison to Chapoton (2006)

Chapoton likewise defined a bivariate OGF Φ(z , x), where x keeps
track of “the number of segments along the left border” of the tree
at the lower end of the interval,4 and obtains by hand that

Φ(z , x) = x2z(1 + Φ(z , x)/x)
(
1 + Φ(z , x)− Φ(z , 1)

x − 1

)
(3)

which he ultimately shows how to solve at x = 1 by appeal to a
different result of Cori and Schaeffer (2003).

In fact (3) can be derived from (1) and (2) by taking

Φ(z , x) = R(z , x)− x

(since Chapoton ignores the case of Y0).

. . . In other words, the two proofs are quite closely related!
4Or rather at the upper end, since he uses the dual convention for Yn.
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Application to the lattice property
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The observation that each Yn is a lattice was made already in
Tamari’s thesis, but sans proof.5 A first proof was worked out by
his student Haya Friedman in 1958, although this did not appear in
print until 1967.6 That was followed by another, simpler proof with
Tamari’s student Samuel Huang.7

For more recent proofs of the lattice property of the rotation order,
see for example Knuth’s 1993 lecture (available on YouTube!), or
the textbook by Caspard, Santocanale, and Wehrung (2016).

5Dov Tamari. Monoïdes préordonnés et chaînes de Malcev. Thèse,
Université de Paris, 1951.

6H. Friedman and D. Tamari. Problèmes d’associativité: une structure de
treillis finis induite par une loi demi-associative. Journal of Combinatorial
Theory, 2:215–242, 1967.

7S. Huang and D. Tamari. Problems of associativity: A simple proof for the
lattice property of systems ordered by a semi-associative law. Journal of
Combinatorial Theory Series A, 13(1):7–13, 1972.
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We give a new proof of the lattice property via sequent calculus.

Our initial step is to define a canonical ordering on lists of words
by Γ ≤ ∆ iff splittings Γ = Γ1, . . . , Γn and ∆ = A1, . . . ,An where
Γ1 −→ A1, . . . , Γn −→ An.

Let F(Y)[n] be the induced poset of “forests” with n + 1 leaves.
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The proof now relies on two key observations.

First, the evident embedding i : Yn → F(Y)[n] forms the right end
of an adjoint triple,

Yn F(Y)[n]
i

ψ

φ φ[Γ] ≤ A ⇐⇒ Γ ≤ i [A]
ψ[A] ≤ ∆ ⇐⇒ A ≤ φ[∆]

where φ is the left-associated product and ψ is the maximal left
decomposition (e.g., ψ[(p r(q rr)) rs] = (p, q rr , s)).

For completely general reasons, this allows us to reduce any join of
trees to a join of forests:

A ∨ B = φ[ψ[A] t ψ[B]]
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Second, any forest with n + 1 leaves divided among k trees
implicitly contains a composition of n + 1 into k parts, inducing a
“forgetful” monotone function α : F(Y)[n] → O[n] from the poset
of forests to the lattice of compositions ordered by refinement.

We can use this to reduce a join of forests in F(Y)[n] to a join of
compositions in O[n] ∼= 2n plus joins of trees in Ym for m < n.

Tying everything together, we get a constructive proof of the
existence of joins that corresponds to a simple recursive algorithm.

(See paper for details. Of course meets can be computed dually!)
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Input:

A = p r((q r(r r((s rt) ru))) rv)
B = (p r(q rr)) r((s rt) r(u rv))

Computation:

round A ψ[A] B ψ[B] ψ[A] t ψ[B]
1 p((q(r((st)u)))v) p, (q(r((st)u)))v (p(qr))((st)(uv)) p, qr , (st)(uv) p,A2 ∨ B2
2 (q(r((st)u)))v q, r((st)u), v (qr)((st)(uv)) q, r , (st)(uv) q,A3 ∨ B3
3 (r((st)u))v r , (st)u, v r((st)(uv)) r , (st)(uv) r ,A4 ∨ B4
4 ((st)u)v s, t, u, v (st)(uv) s, t, uv s, t,A5 ∨ B5
5 uv u, v uv u, v u, v

Output:
A ∨ B = (p r(q r(r r((s rt) r(u rv)))))

37 / 40



Conclusion
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We’ve seen a display of the surprisingly productive interaction
between proof theory and combinatorics:
I Used proof theory to develop simple and systematic

explanations for “Amazing Facts” #1 and #3.
I Conversely, combinatorics provided the original impetus for

studying this apparently very natural sequent calculus, which
also has independent applications (e.g., to category theory).

Questions:
I Does this help in understanding Amazing Fact #2?
I Can related posets/lattices (such as the weak order on

permutations) be considered similarly?
I What else can we learn by counting proofs?. . .
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It is our pleasure to announce that the 14th workshop Computational
Logic and Applications CLA’19 will be held on the 1st and 2nd of July
2019 in Versailles, France. The main purpose of CLA is to provide an
open, free access forum for scientific research concentrated around
combinatorial and quantitative aspects of mathematical logic and their
applications in computer science.
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