
Parsing as a liing problem and the
Chomsky-Schützenberger Representation Theorem

CMU
Pi�sburgh, PA

21 July 2022

based on a paper presented at MFPS 2022

preliminary version: h�ps://hal.archives-ouvertes.fr/hal-03702762

Noam ZeilbergerPaul-André Melliès

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

(comments welcome!)

1

1. Introduction

2

A functorial view of type systems
(cf. M&Z, "Functors are Type Refinement Systems", POPL 2015)

Manifesto.

The standard interpretation of type systems as categories
collapses the distinction between terms, typing judgments,
and typing derivations, and is therefore inadequate for
understanding what type systems do mathematically.
Instead, type systems are better modelled as functors
p : 𝔻 → 𝕋 from a category 𝔻 whose morphisms are typing
derivations to a category 𝕋 whose morphisms are the terms
corresponding to the underlying subjects of those derivations.

3

A B

f f is a term with
"intrinsic" type A → B

Typing as a liing problem

𝕋

4

R
S

A B

f

p
The triple (R,f,S) form a

typing judgment, asserting
that f may be assigned an

"extrinsic" type R → S

Typing as a liing problem

𝔻

𝕋

5

R
Sα

A B

f

p

α is a typing derivation
providing evidence
for the judgment

Typing as a liing problem

𝔻

𝕋

6

A functorial view of context-free grammars

We developed this perspective in a series of papers, and believe
it may be usefully applied to a large variety of deductive systems,
beyond type systems in the traditional sense. In this work, we
focus on derivability in context-free grammars, a classic topic in
formal language theory with wide applications in CS.

Our starting point will be to represent CFGs as functors of operads
p : 𝔻 → 𝕋, where 𝔻 is a freely generated (colored) operad and
𝕋 = W[Σ] is something we call the "operad of spliced words".

7

c

c : R

g

Reminder on operads

f
f

g

c

f∘(c,g,idG) : Y,P,G → Yf∘₀c : B,G → Y

f

f : R,B,G → Y g : Y,P → B idG : G → G

operations identity

partial / parallel
composition

c

(Usage note: "operad" = colored operad = multicategory.)

+ associativity
&

unitality axioms

8

Reminder on CFGs

A context-free grammar is a tuple G = (Σ, N, S, P) consisting of:

• a finite set Σ of terminal symbols
• a finite set N of non-terminal symbols
• a distinguished element S ∈ N called the start symbol
• a finite set P of production rules R → σ where R ∈ N and σ ∈ (N ∪ Σ)*

We write σ₁ ⇒ σ₂ if there exist ρ, τ ∈ (N ∪ Σ)* and a production rule
R → σ such that σ₁ = ρRτ, σ₂ = ρστ. The language of G is the set
of strings { w ∈ Σ* | S ⇒⁺ w }.

9

The operad of spliced words

Observation: any production rule can be factored as
R → w₀R₁w₁...Rₙwₙ, where w₀,w₁,...,wₙ ∈ Σ* and R₁,...,Rₙ ∈ N.

If we forget the non-terminals, the remaining sequence
w₀-w₁-...-wₙ can be seen as an n-ary operation of the
operad of spliced words W[Σ]. Composition in this (uncolored)
operad is performed by "splicing into the gaps", for example:

(ha-ha-ha)∘(foo,bar-baz) = hafoohabar-bazha

10

Representing CFGs as functors of operads: example

𝔻

W[Σ]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

S

VPNP

NP NP VP

NP

1 2 3 4

ε-␣-ε mom tom loves␣-ε

↦ ↦ ↦ ↦ ↦

S

VPNP

NP

1

3

2

4

ε-␣-ε ∘ (tom, loves␣-ε∘mom)
= tom␣loves␣mom

(derivations)

(spliced words)

11

Plan for the talk

It turns out that taking "spliced words" extends to a functor W[-] : Cat → Operad,
allowing us to define CFGs of arrows over any category. We'll see that representing
CFGs as functors leads to a simplification of many standard concepts, and that
closure properties of CF languages generalize to CF languages of arrows.

Later, we will see that W[-] has a le adjoint C[-] : Operad → Cat. This consruction,
called the "contour category" of an operad, has a nice geometric interpretation,
and we will use it to prove (a refinement and generalization of) the
Chomsky-Schützenberger Representation Theorem*.

In between, we will also talk about automata over categories and operads.

*original version: « any CF language is the homomorphic image of the intersection of a Dyck language with a regular language »

12

Related work

The idea of defining CFGs as functors from free multicategories was discussed
briefly by R.F.C. Walters in "A note on context-free languages", JPAA 62 (1989)

This idea is also closely related to Philippe de Groote’s encoding of CFGs
as abstract categorial grammars, although the ACG work is expressed within
a λ-calculus framework rather than a categorical / operadic one.

See introduction to our paper for a bit more discussion of related work.
Additional pointers to related work are of course welcome.
(Has the contour / splicing adjunction not been noticed before??)

13

2. Context-free languages of arrows

14

The operad of spliced arrows

Let ℂ be a category. The operad W[ℂ] is defined as follows:

• its colors are pairs (A,B) of objects of ℂ;
• its n-ary operations (A₁,B₁),⋯,(Aₙ,Bₙ) → (A,B) consist of sequences
 w₀−w₁−⋯−wₙ of n+1 arrows in ℂ separated by n gaps notated −,
 where each arrow must have type wᵢ : Bᵢ → Aᵢ₊₁ for 0 ≤ i ≤ n, under the
 convention that B₀ = A and Aₙ₊₁ = B;
• composition of spliced arrows is performed by “splicing into the gaps”
 (see next slide)
• the identity operation on (A,B) is given by idA−idB.

(W[ℂ] generalizes W[Σ], taking ℂ = 𝔹Σ the free monoid seen as one-object category.)
15

The operad of spliced arrows

BA

w

A B

A₁ B₁ A₂ B₂ A₃ B₃

w₀ w₃

w₁ w₂

w₀−w₁−w₂−w₃ : (A₁,B₁),(A₂,B₂),(A₃,B₃) → (A,B) w : (A,B)

operations

16

The operad of spliced arrows

A B

A B

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

identity

partial
composition

17

Cat
W[-]

The splicing functor

The operad of spliced arrows construction defines a functor

Operad

since any functor of categories F : ℂ → 𝔻 induces a functor of operads
W[F] : W[ℂ] → W[𝔻].

18

Species (some terminology)

A (colored non-symmetric) species is a span of sets of the form

C* V C
with the following interpretation: C is a set of "colors", V a set of "nodes",
and i : V → C* and o : V → C return respectively the list of input colors and the
unique output color of each node. We say a species is finite (aka "polynomial")
iff both C and V are finite. A map of species is a pair of functions (φC,φV)
making the diagram commute:

i o

C* V C
i o

D* W D
i' o'

φV φCφC*

19

Species Operad
Free

Forget

⊤

The free / forgetful adjunction

Any operad has an underlying species, where C is the set of colors and V the
set of operations, just forgetting about composition and identity.

Conversely, to any species 𝕊 there is an associated free operad Free 𝕊.

Species(Free 𝕊, 𝕆) ≅ Operad(𝕊, Forget 𝕆)

20

Definition

A context-free grammar of arrows is a tuple G = (ℂ, 𝕊, S, φ) consisting of a
category ℂ, a finite species 𝕊 equipped with a distinguished color S ∈ 𝕊 and a
functor of operads p : Free 𝕊 → W[ℂ].

The context-free language of arrows LG generated by the grammar G is the
subset of arrows in ℂ which, seen as constants of W[ℂ], are in the image of
constants of color S in Free 𝕊, that is, LG = { p(α) | α : S }.

Proposition: A language L ⊆ Σ* is context-free in the classical sense iff it is the
language of arrows of a context-free grammar over 𝔹Σ.

21

(Another look at the example)

Free 𝕊

W[𝔹Σ]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

NP

1

3

2

4

id-␣-id ∘ (tom, loves␣-id∘mom)
= tom␣loves␣mom

S

VPNP

NP NP VP

NP

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦ ↦

S

VPNP

𝕊 Free 𝕊

22

Refining classical CFGs with "gap types"

A feature of the general notion of CFG of arrows is that non-terminals are sorted.
Adopting our conventions for type refinement, we sometimes write R ⊏ (A,B) to
indicate p(R) = (A,B) and say that R refines the gap type (A,B). The language
generated by a grammar with start symbol S ⊏ (A,B) is a subset of ℂ(A,B).

As a simple example, consider the category 𝔹Σ
⊤ = 𝔹Σ +σ 1 constructed from 𝔹Σ

by freely adjoining an object ⊤ and an arrow $: ∗ → ⊤. A CFG over 𝔹Σ
⊤ may

include production rules that can only be applied upon reaching end of input,
like Knuth's "0th production" rule S' → S$ from the original paper on LR parsing.
(Here S ⊏ (∗,∗) is "classical" and S' ⊏ (∗,⊤) is "end-of-input-aware".)

More significant examples coming up, including CFGs over runs of automata!

23

Reformulating standard properties of CFGs

Let G = (ℂ, 𝕊, S, p) be a CFG of arrows.

• G is linear iff 𝕊 only has nodes of arity ≤ 1. It is le-linear iff it is linear
 and every unary node x of 𝕊 is mapped by p to an operation of the form id−w.

• G is bilinear (a generalization of Chomsky NF) iff 𝕊 only has nodes of arity ≤ 2.

• G is unambiguous iff for any constants α, β : S in Free 𝕊, if p(α) = p(β) then α = β.

• A non-terminal R is nullable if there exists a constant α : R of Free 𝕊 s.t. p(α) = id.

• A non-terminal R is useful if there exists a constant α : R and a unary op β : R → S.
 Note that if G has no useless non-terminals then G is unambiguous iff p is faithful.

24

Basic closure properties of CF languages

[Union] If L₁, L₂ ⊆ ℂ(A,B) are CF, so is L₁ ∪ L₂ ⊆ ℂ(A,B).

[Spliced concatenation] If L₁ ⊆ ℂ(A₁,B₁),...,Lₙ ⊆ ℂ(Aₙ,Bₙ) are CF, and
w₀−w₁−⋯−wₙ : (A₁,B₁),...,(Aₙ,Bₙ) → (A,B) is an operation of W[ℂ], then
w₀L₁w₁⋯Lₙwₙ ⊆ ℂ(A, B) is also CF.

[Functorial image] If L ⊆ ℂ(A, B) is CF, and F : ℂ → 𝔻 is a functor of
categories, then F(L) ⊆ 𝔻(F(A), F(B)) is also CF.

(Proofs le as an exercise!)

25

The translation principle

Let G₁ = (ℂ, 𝕊₁, S₁, p₁) and G₂ = (ℂ, 𝕊₂, S₂, p₂) be two CFGs over
the same category ℂ.

If there is a fully faithful functor of operads T : Free 𝕊₁ → Free 𝕊₂
such that p₁ = T p₂ and T(S₁) = S₂, then LG₁ = LG₂.

Example use of translation principle: for any CFG of arrows, there
is a bilinear CFG of arrows generating the same language.

26

Parsing as a liing problem

Besides characterizing the language generated by a grammar, we're oen
interested in the dual problem of parsing. In our functorial formulation
of context-free grammars, parsing an arrow w may be considered as the
problem of computing its inverse image along p : Free 𝕊 → W[ℂ].

One high-level tool for analyzing this problem is the correspondence between
functors of categories p : 𝔻 → 𝕋 and lax functors F : 𝕋 → Span(Set) into the
bicategory of spans of sets, which can be extended smoothly to functors of
operads. Adapting terminology introduced by Ahrens and Lumsdaine, we
refer to a lax functor of operads F : 𝕋 → Span(Set) as a displayed operad.

27

Displayed free operads, and generalized CYK parsing

One can derive an inductive formula for displayed free operads, which
refines the inductive formula for free operads Free 𝕊 ≅ I + S∘Free 𝕊
that characterizes the free operad over 𝕊 as a species of 𝕊-labelled trees.

Specializing the formula to the underlying functor of a CFG seen as a displayed
operad F : W[ℂ] → Span(Set), we obtain a formula for the fiber Fw of parse trees
of any given arrow w. We can also derive an inductive rule for computing the
set Nw of non-terminals deriving w, which is essentially the rule given by
Leermakers (1989) in his generalization of CYK parsing to arbitrary CFGs. As he
explained, the relation Nw can be solved in cubic time for bilinear grammars.

28

3. Finite-state automata
over categories and operads

29

[recognizing the language (a+b)*(abb+ba)]

Reminder on finite state automata

a

b
a

a

a
b

b

0

1 2

3

4

alphabet Σ = {a,b} state set Q = {0,1,2,3,4}

accepting stateinitial state

transitions along letters
An NDFA:

(no ε-transitions)

30

Representing automata as functors

∗
a b𝔹Σ

0

1 2

3

4

p

ℚ

31

Two key properties of NDFAs

Let p : 𝔻 → 𝕋 be a functor of categories.

p is finitary if either of the following equivalent conditions hold:
• the fibers p⁻¹(A) and p⁻¹(w) are finite for every object A and arrow w in 𝕋;
• the associated lax functor F : 𝕋 → Span(Set) factors via Span(FinSet).

p is ULF if either of the following equivalent conditions hold:
• for any arrow α of 𝔻, if p(α) = uv for some pair of arrows u and v of 𝕋, there
 exists a unique pair of arrows β and γ in 𝔻 such that α = βγ, p(β) = u, p(γ) = v.
• the associated lax functor F : 𝕋 → Span(Set) is a pseudofunctor.

Proposition: a functor p : ℚ → 𝔹Σ is the underlying bare automaton of a NDFA
with alphabet Σ iff p is both finitary and ULF.

ULF = "unique liing of factorizations" (Lawvere & Meni)

32

Definition

A NDFA over a category is a tuple M = (ℂ, ℚ, p : ℚ → ℂ, q0, qf) consisting of
two categories ℂ and ℚ, a finitary ULF functor p : ℚ → ℂ, and a pair q0, qf of
objects of ℚ.

The regular language of arrows LM recognized by the automaton M is the
subset of arrows in ℂ that can be lied along p to an arrow α : q0 → qf in ℚ,
that is, LM = { p(α) | α : q0 → qf }.

Proposition: A language L ⊆ Σ* is regular in the classical sense iff L$ is the
regular language of arrows of a NDFA over 𝔹Σ

⊤.

33

Automata over operads

The notions of finitary and ULF extend smoothly to functors of operads.

By analogy, an NDFA over an operad is a tuple M = (𝕆, ℚ, p : ℚ → 𝕆, q)
where p : ℚ → 𝕆 is a finitary ULF functor of operads, and q a color of ℚ.

When 𝕆 is a free operad, this recovers the standard notion of ND finite state
tree automaton. But the notion of NDFA over an operad is more general!

Proposition: if a functor of categories p : ℚ → ℂ is finitary or ULF, so is the
functor of operads W[p] : W[ℚ] → W[ℂ].

∴ any NDFA over a category induces an NDFA over its spliced arrow operad,
by the mapping (p : ℚ → ℂ, q0, qf) ↦ (W[p] : W[ℚ] → W[ℂ], (q0,qf))

34

4. The Representation Theorem

35

Overview

Chomsky & Schützenberger (1963): Any CF language is the homomorphic image
of the intersection of a Dyck language with a regular language.

Our version: Any CF language of arrows in ℂ is the functorial image of the
intersection of a ℂ-chromatic tree contour language and a regular language.

The proof relies on two constructions that are of more general interest:

1. The pullback of a CFG of arrows along an NDFA, which we use to show that
 CF languages are closed under intersection with regular languages.

2. The contour category of an operad, providing a le adjoint to the splicing
 functor, which we use to define a "universal CFG" for any pointed finite species.

36

An important property of ULF functors

Let pQ : ℚ → 𝕆 be a ULF functor of operads. Then the pullback of
p : Free 𝕊 → 𝕆 along pQ in the category of operads is obtained from
a corresponding pullback of φ : 𝕊 → 𝕆 along pQ : ℚ → 𝕆 in Species.

𝕊

𝕆ℚ

𝕊'Free 𝕊

𝕆ℚ

Free 𝕊'
φp

pQpQ

ψFree ψ

φ'p' pullbackpullback

37

Pulling back a CFG along a NDFA

By the previous result, we can compute the pullback on the right:

𝕊

W[ℂ]W[ℚ]

𝕊'Free 𝕊Free 𝕊'
φGpG

W[pM]

ψFree ψ

φ'p' pullbackpullback

W[ℂ]W[ℚ] W[pM]

The pullback of G along M is the grammar G' = (ℚ, 𝕊', (S,(q0,qf)), p').
Note that G' generates a language of runs of M!

Taking the image of G' along pM yields a grammar generating LG ∩ LM.

38

The contour category of an operad

Let 𝕆 be an operad. The category C[𝕆] is a quotient of the free category with:

• objects given by oriented colors Rε consisting of a color R of 𝕆 and an
 orientation ε ∈ { u,d } ("up" or "down");
• arrows generated by pairs (f,i) of an operation f : R₁,...,Rₙ → R of 𝕆 and an
 index 0 ≤ i ≤ n, defining an arrow Ri

d → Ri+1
u where R0

d = Ru and Rn+1
u = Rd;

subject to the equations idRᵘ = (idR,0) and idRᵈ = (idR,1) plus the equations

for every operation f, operation g of positive arity m > 0, and constant c.
39

The contour category of an operad

R

(c,0)

Rd

Ru

c

R

R1

(f,3)

(f,0)

R3
d

Ru

2
3R
u

f

Rd

Ru

R1
d

R2
d

R1
u

(f,1) (f,2)

R2

R3

sector

40

The contour category of an operad

f

(f,2)

g

(f,1)

(g,0)

(f∘₁g,1)

(g,2)
(f∘₁g,3)

f

(f,2)

c

(f,1)

(c,0)

(f∘₁c,1)

(f∘₁g,2) = (g,1)

(f∘₁g,0) = (f,0)
(f∘₁g,4) = (f,3)

(f∘₁c,0) = (f,0)
(f∘₁c,2) = (f,3)

41

The contour / splicing adjunction

This construction provides a le adjoint to the splicing contruction:

CatOperad
C[-]

W[-]

⊤

The unit and counit have nice descriptions:

Operad(𝕆, W[ℂ]) ≅ Cat(C[𝕆], ℂ)

R ↦ (Rᵘ,Rᵈ)
f ↦ (f,0)─⋯─(f,n)

(A,B)ᵘ ↦ A (A,B)ᵈ ↦ B
(w₀−⋯−wₙ,i) ↦ wᵢ

η : 𝕆 → W[C[𝕆]] ε : C[W[ℂ]] → ℂ

42

Free contour categories

The contour category of a free operad is itself a free category,
with C[Free 𝕊] generated by the corners* (x,i) consisting of an
n-ary node x and index 0 ≤ i ≤ n.

We sometimes write C[𝕊] as another name for this category.

CatOperad
C[-]

W[-]

⊤

GraphSpecies
⊤

⊤ ⊤

Although C[-] dœs not preserve ULF in general, we have that for any species map
ψ : 𝕊 → ℝ, the functor of categories C[ψ] : C[𝕊] → C[ℝ] is ULF.

*Note that the word "corner" comes from the theory of planar maps, but in parsing theory,
corners are called "dotted rules"!

43

The universal CFG of a pointed finite species

By the contour / splicing adjunction, any p : Free 𝕊 → W[ℂ] factors as

W[C[Free 𝕊]]Free 𝕊
η𝕊 W[ℂ]

W[q]

for a unique functor of categories q : C[Free 𝕊] → ℂ.

The CFG Univ𝕊,S = (C[Free 𝕊],𝕊,S,η𝕊) is therefore "universal", in the sense that any
other CFG G = (ℂ,𝕊,S,p) with the same species and start symbol is obtained
uniquely as the functorial image G = q Univ𝕊,S.

The language generated by Univ𝕊,S is a language of tree contour words.

44

A tree contour word over a species 𝕊

a0b0a1c0d0c1e0c2a2f0g0f1a3 : 1u → 1d

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

a : 2,3,4 → 1 d : 5
b : 2 e : 6
c : 5,6 → 3 f : 7 → 4
g : 7

𝕊

45

Idea of the representation theorem

Separate the generation of a CF language into three pieces:

1. generate "uncolored" contour words describing shapes of 𝕊-trees;

2. use an automaton to check that the contour words denote
 well-colored 𝕊-trees with root color S;

3. interpret each corner of the contour as an appropriate arrow.

46

Another basic fact about species

Any map of species φ : 𝕊 → ℝ factors as:

𝕊 φC 𝕊 ℝ
φcolors φnodes

id on nodes id on colors

In particular, we can apply this factorization to the underlying
map of species φ : 𝕊 → W[ℂ] of a given CFG of arrows.

The functor C[φcolors] : C[𝕊] → C[φC 𝕊] paired with the states
Sᵘ and Sᵈ defines an automaton on contour words!

47

Free 𝕊 Free φC 𝕊

W[C[Free φC 𝕊]]

Free φcolors

η𝕊

W[C[Free 𝕊]]

W[ℂ]

W[C[Free φcolors]]

ηφC 𝕊

W[q] W[qnodes]

(∗)

The proof in a diagram

LG = q L𝕊,S = qnodes C[φcolors] L𝕊,S = qnodes (LφC𝕊,S ∩ LMcolors)

*The naturality square is not a pullback, but the canonical functor Free 𝕊 → Free ℝ to the pullback is fully faithful,
hence we can apply the translation principle!

48

From contour words to Dyck words

g

f

ed

c

b

a

1u0

2u0

2d0 3u0

3u1 3d0

4u0

4d0

4d1

5u0

5d0

6u0 6d0

7u0

7d0

1d0
1u1

1d1

2u1 2d1

5u1

5d1

6u1

6d1

3d1

4u1

7u1

7d1

[a₀

[a₁

[b₀

b₀]

a₁] [a₂

[c₀

[c₁

[d₀

[e₀

[g₀

g₀]

c₀]

d₀]

c₁] [c₂

e₀]

c₂]

a₂]

[a₃ [f₀

[f₁

f₁]

f₀]

a₃]

a₀]

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

49

5. Example

50

Colors / nodes factorization

φC 𝕊

W[𝔹Σ]

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦

S

VPNP

NP NP VP

NP

1 2 3 4

↦ ↦ ↦ ↦

𝕊

φcolors

φnodes

51

Translation of corners

10 ↦ id
11 ↦ ␣
12 ↦ id

20 ↦ mom

30 ↦ tom

40 ↦ loves␣
41 ↦ id

C[φC 𝕊] 𝔹Σ

52

1

3

2

4

1

3 2 1

32

4

...

10301140204112 1030112012 40102011301241

Uncolored tree contour words

tom␣loves␣mom tom␣mom loves␣mom␣tom

Free φC 𝕊

W[𝔹Σ]

53

Coloring automaton

1 2 3 4

Su

NPu NPd VPu

VPd

Sd NPu NPd NPu NPd VPu

NPu NPd

VPd

10

Su NPu NPd

20

30

VPu

1140

VPd

41 12

Sd

C[φC 𝕊]

C[𝕊]

54

6. Conclusion

55

Summary and future directions

Both CFGs and NDFAs may be naturally represented as functors, and generalized
to define context-free / regular languages of arrows in a category.

Parsing may be naturally formulated as a liing problem.

The Chomsky-Schützenberger Representation Theorem is deeply related to an
elementary "contour / splicing" adjunction between operads and categories.

Are there other applications of spliced arrow operads and contour categories?

Next on our agenda: pushdown automata and LR parsing!

56

