
Context-free grammars and
finite-state automata over categories

Noam Zeilberger1

Ecole Polytechnique (LIX)

Theoretical Computer Science Seminar
Birmingham, 1 December 2023

1Based on joint work with Paul-André Melliès, in particular our MFPS 2022 paper “Parsing as a
lifting problem and the Chomsky-Schützenberger Representation Theorem”, and a revised and
significantly expanded version that will hopefully be online soon...

1 / 52

Back in time

“Functors are Type Refinement Systems” (a manifesto, ca. 2010s)

2 / 52

A B

f f is a term with
"intrinsic" type A → B

Typing as a liing problem

R S

A B

f

p
The triple (R,f,S) form a

typing judgment, asserting
that f may be assigned an

"extrinsic" type R → S

Typing as a liing problem

p

R Sα

A B

f

α is a typing derivation
providing evidence
for the judgment

Typing as a liing problem

pp

Beyond type theory

Our original motivations actually came from proof theory, and through chance
circumstances realized a connection with type refinement systems.

In the initial paper series, we sketched how to apply this perspective to other deductive
systems, including linear logic and separation logic.

From 2017, we tried to apply this perspective to parsing.2
Rough analogy: parsing = typing = lifting along a functor

Very slow progress until 2022, when we had the idea of analyzing the
Chomsky-Schützenberger Representation Theorem (1963)

2Inspired in part by Hayo Thielecke’s work on LL and LR!
3 / 52

The C-S Representation Theorem

A language is context-free iff it is a homomorphic image of the intersection of a Dyck
language of balanced brackets with a regular language.

A couple reasons why it is interesting:
1. invokes a non-trivial closure property of CFLs (intersection with regular languages)
2. suggests that Dyck languages are in some sense “universal” CFLs

Can the theorem be analyzed categorically? (Spoiler alert: yes!)
Key ideas on two slides...

4 / 52

Idea #1: fibrational perspectives on grammars and automata

Two key definitions:
§ a generalized CFG is a functor from a free operad (= multicategory) generated

by a pointed finite species into an arbitrary base operad;
§ a generalized NDFA is a functor satisfying the unique lifting of factorizations

and finite fiber properties, from an arbitrary bipointed category or pointed operad.
This enables us to define generalized context-free and regular languages, and to
establish suitable generalizations of many standard closure properties.

In particular, there is a nice proof that gCFLs are closed under intersection with gRLs.

5 / 52

Idea #2: a surprising adjunction between categories and operads

A functor W : Cat Ñ Operad we call the operad of spliced arrows construction enables
us to define “context-free languages of arrows” (which include classical CFLs), and to
turn any categorical NDFA into an operadic NDFA recognizing the same language.

Surprisingly, this functor admits a left adjoint:

Operad K Cat
C

W

The unit of the adjunction implies that any pointed finite species may be equipped
with a universal CFG generating a language of “tree contour words”.

6 / 52

Plan of the talk

1. Context-free languages of arrows in a category (and gCFGs)
2. An interlude on displayed categories and operads
3. Finite state automata over categories and operads
4. The Representation Theorem
5. Related work and ongoing/future directions

7 / 52

Context-free languages of arrows in a category

8 / 52

Background: operads4

An operad is like a category where arrows can take multiple objects as input.

f : A1, . . . ,An Ñ B

We usually refer to objects A,B as “colors” and (multi-)arrows f as “operations”.

Composition of operations has the type of the cut rule in sequent calculus, plus there
is an identity operation for every color:

g : Ω Ñ A f : Γ,A,∆ Ñ B
f ˝i g : Γ,Ω,∆ Ñ B

pi“|Γ|q
idA : A Ñ A

These satisfy appropriate associativity, unitality, and exchange axioms.3

3Equivalently, operads can be defined using parallel composition (= multi-cut) f ˝ pg1, . . . , gnq,
which should satisfy appropriate associativity and unitality axioms.

4Usage note: “operad” = colored non-symmetric operad = multicategory.
9 / 52

Background: species5

A species is a diagram of sets of the form

C˚ V Ci o

We write f : A1, . . . ,An Ñ B for f P V when ipf q “ pA1, . . . ,Anq and opf q “ B.

(Formally, a species is like an operad without composition and identity.)

We say a species is finite when both C and V are finite.

5Usage note: “species” = colored non-symmetric species = multigraph / signature.
10 / 52

Categories of species and operads

There is a category Species whose morphisms are commutative diagrams of the form:

C˚ V C

D˚ W D

ϕ˚
C

i o

ϕV ϕC

i 1 o1

meaning that a map of species ϕ : R Ñ S sends colors to colors and nodes to nodes,
with f : A1, . . . ,An Ñ B in R sent to ϕpf q : ϕpA1q, . . . , ϕpAnq Ñ ϕpBq in S.

A functor of operads F : P Ñ O is a map between the underlying species that respects
composition and identity. These define the morphisms of a (2-)category Operad.

11 / 52

Free / forgetful adjunction

The forgetful functor from operads to species has a left adjoint:

Species K Operad
Free

Forget

OperadpFree S,Oq – SpeciespS,Forget Oq

Operations of Free S may be interpreted as rooted planar trees with colored edges
whose nodes are drawn from the species S, a.k.a. “S-trees”.

12 / 52

The splicing construction

For any category C, the operad of spliced arrows WrCs is defined as follows:
§ colors are pairs pA,Bq of objects of C;
§ operations w0´w1´ . . .´wn : pA1,B1q, . . . , pAn,Bnq Ñ pA,Bq consist of

sequences of n ` 1 arrows in C, where wi : Bi Ñ Ai`1 for 0 ď i ď n under the
convention that B0 “ A and An`1 “ B;

§ the identity operation on pA,Bq is idA´idB;
§ composition performed by “splicing into the gaps”...

13 / 52

The splicing construction

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

pw0´w1´w2´w3q ˝1 pu0´u1´u2q “ w0´w1u0´u1´u2w2´w3
14 / 52

Context-free grammar over a category

A tuple G “ pC,S,S, pq consisting of:
§ a category C
§ a finite species S
§ a color S P S
§ a functor p : Free S Ñ WrCs

The CFL of arrows generated by G is the sub-homset LG “ t ppαq | α : S u Ď CpA,Bq

where ppSq “ pA,Bq.

Observation: a classical CFG is just a CFG over BΣ “ ˚ýaPΣ.

15 / 52

Representing CFGs by functors: an example

Free 𝕊

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

NP

1

3

2

4

id-␣-id ∘ (tom, loves␣-id∘mom)
= tom␣loves␣mom

S

VPNP

NP NP VP

NP

1 2 3 4

id-␣-id mom tom loves␣-id

↦ ↦ ↦ ↦ ↦

S

VPNP

𝕊 Free 𝕊

Categories as typed alphabets

Let Bˆ$
Σ be obtained from BΣ by freely adjoining a pair of objects and arrows:

K ˚ J
ˆ

aPΣ

$

A CFG over Bˆ$
Σ may include non-terminals that can only be derived at the

beginning/end of a string. This already arises in practice (e.g., in LR parsing) but is
usually treated in an ad hoc way.

16 / 52

Properties of CFGs over categories

Let G “ pC,S,S, pq be a CFG. We can neatly express many standard properties:
§ G is linear just in case S only has nodes of arity ď 1.
§ G is bilinear just in case S only has nodes of arity ď 2.
§ G is unambiguous iff for any pair of constants α, β : S in Free S, if ppαq “ ppβq

then α “ β. (p faithful ñ G unambiguous.)
§ A non-terminal R is nullable if there exists α : R in Free S such that ppαq “ id.
§ A non-terminal R is useful if there exist α : R and β : R Ñ S in Free S. (G has no

useless non-terminals ñ [p faithful ðñ G unambiguous].)

17 / 52

Closure properties of CFLs of arrows

1. If L1, . . . , Lk Ď CpA,Bq are CFLs of arrows, so is their union
Ťk

i“1 Li Ď CpA,Bq.
2. If L1 Ď CpA1,B1q, . . . , Ln Ď CpAn,Bnq are CFLs of arrows, and if

w0´ . . .´wn : pA1,B1q, . . . , pAn,Bnq Ñ pA,Bq is an operation of WrCs, then
w0L1w1 . . . Lnwn “ t w0u1w1 . . . unwn | u1 P L1, . . . , un P Ln u Ď CpA,Bq is a CFL.

3. If L Ď CpA,Bq is a CFL of arrows in a category C and F : C Ñ D is a functor of
categories, then the functorial image F pLq Ď DpF pAq,F pBqq is also context-free.

18 / 52

Translation principle

Let G1 “ pC,S1, S1, p1q and G2 “ pC, S2, S2, p2q be two CFGs over the same category,
and suppose there is a fully faithful functor T commuting with the projection functors

Free S1 Free S2

WrCs

p1

T

p2

and preserving the start symbol T pS1q “ S2. Then LG1
“ LG2

, moreover with the
grammars generating isomorphic sets of parse trees for the arrows in the language.

Example application: any CFL is generated isomorphically by a bilinear CFG.

19 / 52

Generalized context-free grammars

For many purposes, a functor p : Free S Ñ O from a free operad generated by a
pointed finite species may be considered as a “generalized” CFG, inducing a language
of constants in O.

Choosing different base operads O yields different interesting examples.
§ O “ WrBΣs: classical CFGs
§ O “ WrCs: CFGs over categories
§ O “!affWrCs: multiple CFGs (Seki et al. 1991, for C “ BΣ)
§ O “!cartWrCs: parallel multiple CFGs (Seki et al.)
§ O “ Set: more “semantic” examples, e.g., the gCFL of series-parallel graphs

Closure properties extend naturally to gCFLs.

20 / 52

An interlude on displayed categories and operads

21 / 52

Parsing as a lifting problem

Given a word w , we often want to compute the set of all its parse trees.

This amounts to computing the inverse image p´1pwq “ tα | ppαq “ w u.

To better understand this view of parsing as a lifting problem, it is helpful to first recall
the correspondence between functors p : D Ñ C and lax functors F : C Ñ SpanpSetq.

22 / 52

From a functor p : D Ñ C to a lax functor F : C Ñ SpanpSetq

For every arrow w : A Ñ B of C, taking fibers F “ p´1 defines a span

F pAq F pwq F pBq

that sends an arrow α : R Ñ S over w to the objects R and S lying over A and B.

Moreover, given u : A Ñ B and v : B Ñ C in C, there is a morphism of spans
F puqF pvq ñ F puvq realized by the mapping

D

C

p

R S T

A B C

α β

u v

ÞÑ

R T

A C

αβ

uv

Similarly, idF pAq ñ F pidAq. However, in general these morphisms are not invertible.

23 / 52

From a lax functor F : C Ñ SpanpSetq to a functor p : D Ñ C

A variant of the Grothendieck construction (à la Bénabou).

The category D “
ş

F has:
§ objects given by pairs pA,Rq of an object A in C and an element R P F pAq;
§ arrows pw , αq : pA,Rq Ñ pB,Sq given by pairs of an arrow w : A Ñ B in C and an

element α P F pwq mapped to pR, Sq by the span F pAq Ð F pwq Ñ F pBq;
§ composition and identity are defined using the lax structure;
§ π :

ş

F Ñ C is the projection functor.

24 / 52

Displayed categories and operads

This correspondence adapts smoothly to one between functors of operads p : P Ñ O
and lax functors F : O Ñ SpanpSetq, viewing SpanpSetq as a 2-categorical operad
whose n-ary operations X1, . . . ,Xn ÝÑ| Y are spans X1 ˆ ¨ ¨ ¨ ˆ Xn Ð S Ñ Y .

Ahrens and Lumsdaine introduced the terminology displayed category for the data of
a lax functor C Ñ SpanpSetq presenting a category D living over C, and similarly we
can speak of displayed operads.

Any gCFG over O induces a corresponding displayed free operad O Ñ SpanpSetq.

25 / 52

Finite state automata over categories and operads

26 / 52

[recognizing the language (a+b)*(abb+ba)]

Reminder on finite state automata

a

b
a

a

a
b

b

0

1 2

3

4

alphabet Σ = {a,b} state set Q = {0,1,2,3,4}

accepting stateinitial state

transitions along letters
An NDFA:

(no ε-transitions)

Representing the "bare" NDFA by a functor

∗
a b

0

1 2

3

4

p

Unique lifting of factorizations property

A functor p : D Ñ C is ULF if either of the following equivalent conditions hold:
§ for every arrow α of D, if ppαq “ uv for some arrows u and v of C, there exists a

unique pair of arrows β and γ in D such that α “ βγ and ppβq “ u and ppγq “ v ;
§ the structure maps of the associated lax functor F : C Ñ SpanpSetq are invertible,

i.e., it is a pseudofunctor.

Proposition. Let p : D Ñ C be a functor into a category C “ Free G freely generated
by some graph G. Then p is ULF iff D “ Free H is free over some graph H and
p “ Free ϕ is generated by a graph homomorphism ϕ : H Ñ G.

27 / 52

Finite fiber property

A functor p : D Ñ C is finitary if either of the following equivalent conditions hold:
§ the fiber p´1pAq as well as the fiber p´1pwq is finite for every object A and arrow

w in the category C;
§ the associated lax functor F : C Ñ SpanpSetq factors via SpanpFinSetq.

Proposition. Let ϕ : H Ñ G be a homomorphism into a finite graph G. Then
Free ϕ : Free H Ñ Free G is finitary iff H is finite.

Corollary. A functor p : Q Ñ BΣ is a bare NDFA iff p is ULF and finitary.

28 / 52

Non-deterministic finite-state automaton over a category

A tuple M “ pC,Q, p : Q Ñ C, q0, qf q consisting of:
§ two categories C and Q;
§ a finitary ULF functor p : Q Ñ C;
§ a pair q0, qf of objects of Q

The regular language of arrows LM recognized by M is the sub-homset

LM “ t ppαq | α : q0 Ñ qf u Ď CpA,Bq

where ppq0q “ A, ppqf q “ B.

29 / 52

Relationship to classical automata

Proposition. A language L Ď Σ˚ is regular in the classical sense if and only if ˆL$ is
the language of arrows recognized by a NDFA over Bˆ$

Σ .

An NDFA M “ pC,Q, p, q0, qf q is:
§ deterministic if p is a discrete opfibration;
§ codeterministic if p is a discrete fibration;
§ bideterministic if p is a discrete bifibration;
§ a partial (co/bi)deterministic automaton if p is a partial discrete op/bi/fibration.

ϵ-transitions are naturally modelled as arrows α : q Ñ q1 such that ppαq “ id, but the
ULF property implies they don’t exist! (Need a more relaxed notion of ULF...)

30 / 52

Examples of NDFA over non-free categories

Product automaton: The product of two finitary ULF functors p : Q Ñ C and
p1 : Q1 Ñ C1 is again a finitary ULF functor p ˆ p1 : Q ˆ Q1 Ñ C ˆ C1. Hence, given an
NDFA M over C and an NDFA M 1 over C1 there is a NDFA M ˆ M 1 over C ˆ C1,
recognizing LMˆM1 “ LM ˆ LM1 .

Singleton automaton: For any arrow w : A Ñ B of a category C, there is a category
of factorizations Factw whose objects are pairs of arrows pu, vq such that w “ uv and
whose morphisms pu, vq Ñ pu1, v 1q are arrows x such that u1 “ ux and v “ xv 1. The
forgetful functor µw : Factw Ñ C is always ULF, but not necessarily finitary. When it
is, Mw “ pC,Factw , µw , pidA,wq, pw , idBqq defines an NDFA such that LMw

“ t w u.

Total automaton: The identity functor idC : C Ñ C is trivially ULF and finitary, hence
MCpA,Bq “ pC, C, idC ,A,Bq is an NDFA recognizing the total homset CpA,Bq.

31 / 52

NDFA over an operad

A tuple M “ pQ,O, p : Q Ñ O, qr q consisting of:
§ two operads O and Q;
§ a finitary ULF functor p : Q Ñ O (in the expected operadic sense);
§ a color qr of Q

The regular language of constants LM recognized by M is the sub-conset

LM “ t ppαq | α : qr u Ď CpA,Bq

where ppq0q “ A, ppqf q “ B.

32 / 52

Operadic NDFA as a unifying concept

Two key examples:
1. Let Σ be a graded alphabet, which we can see as a (uncolored) species.

A non-deterministic tree automaton on Σ is just an NDFA over Free Σ!
2. The splicing functor Wr´s : Cat Ñ Operad preserves finitary-ness and ULF-ness.

Hence an NDFA on a category induces an NDFA over its spliced arrows operad

M “ pC,Q, p, q0, qf q ÞÑ WrMs “ pWrCs,WrQs,Wrps, pq0, qf qq

generating the same language LWrMs
“ LM !

33 / 52

Additional properties of ULF and finitary functors (of categories or operads)

Both ULF and finitary are closed under pullback along arbitrary functors.

Z ˆX Y Y

Z X

G˚ p ULF/fin
{ p ULF/fin

G

Consider a commutative triangle of functors:
X Y

Z
H

F

G

§ if F and G are ULF/finitary, then so is H
§ if G and H are ULF then so is F ; if H is finitary then so is F

34 / 52

A quick aside on (bi)categories of automata

finULF{C = category of bare NDFA and functional simulations
Q Q1

C
finULF

F

finULF

A span
Q

C D

finULF O defines a ND finite state transducer C ÝÑ| D,

associating to every run α : q0 Ñ qf in Q over an arrow w : A Ñ B of C a
corresponding output arrow Opαq : Opq0q Ñ Opqf q in D.

By the aforementioned properties, transducers compose via ordinary span composition.

35 / 52

Closure properties of regular languages

Regular languages of arrows enjoy generalizations of standard closure properties:6

1. If L Ď CpA,Bq is regular then F ´1pLq X DpR, Sq is regular, for any functor
F : D Ñ C and objects R, S such that F pRq “ A,F pSq “ B.

2. If L Ď CpA,Bq is regular and F : C Ñ D is a finitary ULF functor then
F pLq Ď DpF pAq,F pBqq is regular.

Similarly for regular languages of constants.

The restriction to finitary ULF functors in (2) really is necessary.

6We expect more standard closure properties to hold (e.g., union, spliced concatenation), but
ϵ-transitions would help for the proofs...

36 / 52

The Representation Theorem

37 / 52

Classic version

A language is context-free iff it is a homomorphic image of the intersection of a
language of balanced brackets with a regular language.

Proof separates the generation of a context-free language LG in three pieces.
1. A CFG with only one non-terminal generating Dyck words over an alphabet

Σ2n “ t r1, s1, . . . , rn, sn u, describing the shapes of parse trees in G ;
2. An NDFA testing that the words encoding trees may be appropriately colored by

the non-terminals of G according to its productions rules;
3. A homomorphism Σ˚

2n Ñ Σ˚ that interprets each bracket by a word in the original
alphabet, with a choice to either interpret open or close brackets as empty words.

38 / 52

Our version for CFLs of arrows

We say G “ pC, S, p, Sq is C-chromatic when p : Free S Ñ WrCs is injective on colors.
(So non-terminals may be considered as pairs pA,Bq of objects of C.)

Theorem: L Ď CpA,Bq is context-free iff it is a functorial image of the intersection of a
C-chromatic tree contour language with a regular language.

Tree contour languages arise from the contour / splicing adjunction, and as we will see
their use removes any non-canonical choices from the proof.

But first we need to explain how to take the intersection of a CFL with a RL.

39 / 52

Pulling back a CFG along a NDFA

Lemma. Let S be a species, p : Free S Ñ O a functor of operads, and pQ : Q Ñ O a
ULF functor. Then the Operad-pullback of p along pQ is obtained from a
corresponding Species-pullback of ϕ “ p ˝ η : S Ñ O along pQ : Q Ñ O:

S1 S

Q O

ϕ1“p˚
Q ϕ

ψ1

{
ϕ

pQ

P Species
Free S1 Free S

Q O

p1“p˚
Q p

Free ψ1

{
p

pQ

P Operad

40 / 52

Pulling back a CFG along a NDFA

Lemma. Consider a pullback in the category of species:

S1 S

R1 R

ψ1

ϕ1
{

ϕ

ψ

If S is finite and ψ is finitary (i.e., has finite fibers) then S1 is finite.

41 / 52

Pulling back a CFG along a NDFA

Theorem. For any CFG G “ pC, S, S, pGq and NDFA M “ pC,Q, pM , q0, qf q over the
same category, with pGpSq “ ppMpq0q, pMpqf qq, there is a CFG G 1 “ M˚ G generating
the language LG 1 “ p´1

M pLGq X Qpq0, qf q.

Proof: build the diagram on the right.

S1 S

WrQs WrCs

ϕ1
G

ψ1

{
ϕG

WrpM s

P Species
Free S1 Free S

WrQs WrCs

p1
G

Free ψ1

{
pG

WrpM s

P Operad

Interpretation: G 1 generates a context-free language of runs of M!
Corollary. LG X LM “ WrpMspLG 1q

42 / 52

The contour construction

The spliced arrow functor W : Cat Ñ Operad admits a left adjoint:

Operad K Cat
C

W

Given an operad O, the contour category CrOs has oriented colors as objects, and
arrows generated by the sectors of operations, modulo some equations...

43 / 52

The contour construction

R

(c,0)

Rd

Ru

f

c

(f,i)

... ...

g

...

(f,i-1)

(g,0)

(f∘ᵢg,i-1)

(g,m)
(f∘ᵢg,i+m-1)

f

(f,i)

... ...

c

(f,i-1)

(c,0)

(f∘ᵢc,i-1)

R

R₁ Rₙ

Rᵢ

(f,n)(f,0)

Rn
d

Ru

i

Ri+1
u

f

Rd

Ru

Ri-1
d

R i
d

R1
u

(f,i-1) (f,i)

... ...

44 / 52

The contour / splicing adjunction

Natural correspondence:

O WrCs
F

ðñ CrOs CG

Unit and counit:

O ηO
ÝÑ WrCrOss

R ÞÑ pRu,Rdq

f ÞÑ pf , 0q´ . . .´pf , nq

CrWrCss
εC

ÝÑ C
pA,Bqu ÞÑ A
pA,Bqb ÞÑ B

pw0´ . . .´wn, iq ÞÑ wi

45 / 52

Tree contour languages

To any pointed finite species pS,Sq is associated a universal CFG

UnivS,S “ pCrFree Ss,S,S, pS “ ηFree Sq

in the sense that for any other CFG of the form G “ pC,S,S, pGq we have

Free S WrCs “ Free S WrCrFree Sss WrCs
pG pS WrqG s

for qG derived uniquely from the adjunction, and hence LG “ qG LUnivS,S
.

We write TCS,S “ LUnivS,S
and say that it is a language of tree contour words.

46 / 52

Tree contour languages

g

f

ed

c

b

a

a₀

a₁
a₂

a₃

c₁

c₂

f₁

b₀
c₀

d₀ e₀

g₀

f₀

1u

2u

2d
3u

3d

4u

4d

5u

5d

6u
6d

7u

7d

1d

1

2

3

4

5 6

7

a0b0a1c0d0c1e0c2a2f0g0f1a3 : 1u Ñ 1d

47 / 52

Last steps of the proof

Lemma. Any map of species ϕ : S Ñ R factors as

S R “ S ϕC S Rϕ ϕcolors ϕnodes

where ϕcolors is id-on-nodes and surjective on colors and ϕnodes is injective on colors.

Lemma. Every map of species ψ : S Ñ S1 injective on nodes induces a diagram

Free S Free S1

WrCrSss WrCrS1ss

pS

Free ψ

pS1

WrCrψss

where the canonical functor from Free S to pullback of pS1 and WrCrψss is fully faithful.

48 / 52

Last steps of the proof

Build the diagram

Free S

WrCs

p ÞÑ

Free S Free ϕC S

WrCrSss WrCrϕC Sss

WrCs

pS

Free ϕcolors

pϕC S

WrCrϕcolorsss

WrqG s WrqGnodes s

and conclude (with an application of the Translation Principle) that

LG “ qG TCS,S “ qGnodes Crϕcolorss TCS,S “ qGnodes pTCϕC S,pA,Bq X LMcolorsq.

49 / 52

Related work and future directions

50 / 52

Related work (selected)

On modelling CFGs:
§ R.F.C. Walters (1989), “A note on context-free languages”
§ P. de Groote (2001), “Towards abstract categorial grammars”

On modelling NDFAs:
§ B. Steinberg (2001), “Finite state automata: a geometric approach”
§ P. Sobociński (2015), “Relational presheaves as labelled transition systems”
§ T. Colcombet, D. Petrişan (2020), “Aut. minimization: a functorial approach”

On the contour / splicing adjunction:
§ M. Earnshaw, J. Hefford, M. Román (2023), “The Produoidal Algebra of Process

Decomposition” + “Contouring Prostar Autonomous Categories”, who also cite
B. Day and R. Street (2003), “Quantum categories, star autonomy, ...”

51 / 52

Ongoing and future directions

On the CFG side:
§ CYK parsing (briefly discussed in MFPS2022 paper)
§ Pushdown automata and LR/Earley parsing
§ CFLs as initial models of CFGs

On the NDFA side:
§ ϵ-transitions (and Kleene’s theorem for a restricted class of categories?)
§ automata over ω-words, asynchronous automata

On the contour / splicing side:
§ deeper study of the adjunction with Peter Faul, who noticed ε is an equivalence!
§ planar maps as automata over contour categories?

52 / 52

	Context-free languages of arrows in a category
	An interlude on displayed categories and operads
	Finite state automata over categories and operads
	The Representation Theorem
	Related work and future directions

