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THE MATHEMATICS OF SENTENCE STRUCTURE

1. Introduction. The aim of this paper is to obtain an effective rule (or
algorithm) for distinguishing sentences from nonsentences, which works not
only for the formal languages of interest to the mathematical logician, but also
for natural languages such as English, or at least for fragments of such lan-
guages. An attempt to formulate such an algorithm is implicit in the work of
Ajdukiewicz.t His method, later elaborated by Bar-Hillel [2], depends on a
kind of arithmetization of the so-called parts of speech, here called syntactic

types.t ]

The decision problem for this system is solved affirmatively, following a pro-
cedure first proposed by Gentzen for the intuitionistic propositional calculus.{f

[...]
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Let capitals denote sequences of types, possibly empty sequences. By
“U, V” we mean the sequence obtained by juxtaposing U and V; if U is empty
it means V, and if V is empty it means U. The following rules are consequences
of (a) to (e), provided T, P and Q are not empty.

(1) x—>x
(2) ifT,y—>x (2) ify, T >
then T — x/y then T — y\x
3) if T—>yandU,x,V—3 3) YfT—>yandU,x,V—>z
then U, x/y, T, V — 2 then U, T, Y\, V — 2
(4) if U, %9 V-—z
then U, xy, V — 2
(5) if P—>xand Q—y

then P, Q — xy

[...]

Con\-rersely, we shall deduce rules (a) to (e) from (1) to (5), so that the two
sets of rules are equivalent. For the moment we assume one additional rule, the

so-called cut,
(6) ifT—>xand U,x,V—oythenU, T, V> y

It will appear later (Gentzen’s theorem) that this new rule does not increase
the set of theorems deducible from (1) to (5).



ON THE CALCULUS OF SYNTACTIC TYPES

In classical physics it was possible to decide whether an equation was gram-
matically correct by comparing the “dimensions” of the two sides of the
equation. These dimensions formed an abelian group with three generators
L, M and T, admitting fractional exponents.?

One may ask whether it is similarly possible to assign “grammatical types”
to the words of English in such a way that the grammatical correctness of a
sentence can be determined by a computation on these types. As long as
“John loves Jane” fails to imply “Jane loves John” one cannot expect these
types to form an abelian group. Probably they should not form a group at
all.

Some time ago [3] I suggested a group-like mathematical system, which I
called the “syntactic calculus”. For reasons that will appear later, it would
have been better to call it the “associative syntactic calculus”. My method
was closely related to an earlier syntactic method by Bar-Hillel, which in turn
goes back to the “semantic types” of Ajdukiewicz, Lesniewski and ultimately
Husserl. Independent type theories were also developed by Church and Curry,?
who calls his types “functional characters”.



ON THE CALCULUS OF SYNTACTIC TYPES

Appendix Ii

The associative syntactic calculus also has application in mathematics. In
multiplicative ideal theory AB, A/B and B\A may be interpreted as the
product, right residual quotient and left residual quotient of the ideals A and
B respectively. More interesting perhaps is the application to bimodules
worked out by G. D. Findlay and the present author in 1956. Here is a
necessarily abbreviated report of our work, which has never been published.

The idea is briefly this: Each proof of a formula in the associative syntactic
calculus may be used to construct a canonical mapping between functors of
bimodules built up from () and Hom. For example the proof of the formula
C/(AB)— (C/B)]A from postulates (1) to (5) gives an explicit construction for
the canonical mapping of Hom#(A &) sB, C) into Homs(A, Hom#(B, C)), where
rAs, sBr and gCr are given bimodules. The decision procedure for the as-
sociative syntactic calculus can then be used to find all canonical mappings
from one functor into another.



ON THE CALCULUS OF SYNTACTIC TYPES

The decision procedure for the associative syntactic calculus given in [3]
can be used to find all canonical mappings (according to our recursive def-
inition of “canonical”) from one functor into another. However, this decision
procedure operates not on formulas x — y but on “sequents” xi, xz, - -+, Xn — 3.
These are the associative analogues of the G-formulas of Appendix I. The
suggested method for finding canonical mappings therefore does not deal with
mappings ¢ : A— B directly but with multilinear mappings @: A; X Az X ---
X A, — B. It has already been observed by Bourbaki!* that linear mappings
of the kind we are interested in are best defined with the help of multilinear
mappings. The details are too technical to be given here, but an example
may help the interested reader to reconstruct the general method.



DEDUCTIVE SYSTEMS AND CATEGORIES

II. STANDARD CONSTRUCTIONS AND CLOSED CATEGORIES

0. INTRODUCTION
We wish to explore the connection between

(1) pre-ordered sets with structure,

(2) deductive systems,

(3) categories with structure.



DEDUCTIVE SYSTEMS AND CATEGORIES

II. STANDARD CONSTRUCTIONS AND CLOSED CATEGORIES

A multicategory consists of a class of objects

together with a class of multimaps

g: Al’ A2' e o o) An ; B I

n being any non-negative integer. Among the multimaps

are the identity maps lA: A —> A, Multimaps may be

composed by "substitution" as follows: Given multimaps

g:A .CO’A qB’ f: oo o A' PP —QB ’

1’ n
there is a multimap

f(oo.'g'ooo): e« e o Al' RN An' e e —> B .

Substitution, also called cut, must satisfy four conditions.
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outline

0. Monoidal categories and representable multicategories

1. The Tamari order

2. Skew monoidal categories

3. Partially normal skew monoidal categories
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monoidal categories

A category C equipped with:

e a bifunctor ® : C x C -» Cand an object| € C
 three natural isomorphisms

(XA’B’C(A@)B)@C:)A@(B@C)
Al ®A S A
0a A® 1= A

e satisfying some coherence equations...
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monoidal categories

...such as the pentagon equation:

o A®(B® (C® D)) A ® Ugcp
A,B,C®D T

/ A® (B® C)® D)
(A ® B) ® (C ® D) b Gageco

(A®(B®C))®D
(XA@B,C,TD\ /

® D
(A®B)® C) ® D Ia.B.C

Theorem (Mac Lane 1963, Kelly 1964): "given these egns, all
diagrams commute".
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multicategories

Recall that a multicategory has objects, multimaps, identity maps,
and composition satisfying some equations.

Composition has the type of cut in intuitionistic linear sequent calculus:

f 9
Q- A [ LA, A->C

= cutr_.a(f,q)
[ . Q A->C -AT3
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multicategories

A multicategory M is said to be representable if for any list of
objects Q there is an object ®Q equipped with a multimap

Mg : Q - ®Q
and a family of bijections of multihomsets
Lo : M(IM,Q,A;C) » M(IN,®Q,A;C)
whose inverse is the operation of precomposing with m, I.e.,
cutr (Mg, Lof) = f g = Lo(cutra(mg, 9))

forallf: I, Q,A-Candg: I, ®Q,A-C.
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multicategories

Proposition: M is representable iff it has (mg, Lg) forQ = A,Band Q = -.
(Terminology: "M has tensors and a unit object"” or "M is monoidal".)

Theorem (Lambek 1969, Hermida 2000): "monoidal categories and
monoidal/representable multicategories are equivalent".
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the Tamari order

Least preorder on words with a product operation s.t.:
(A-B)-C = A:(B:-C) semi-associativity

Al < Az Bi1 < B>
A1:B1 < A2'B>

mohnotonicity
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the Tamari order

equivalently, ordering on binary trees induced by right rotation, e.q.,

(A-(B-C))-D A-((B-C)-D) A-(B-(C-D))

MR
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the Tamari order

Let Y, be the set of binary trees with n nodes, under the rotation order.

Three fascinating facts about Y,:

1. it is a lattice!
(the "Tamari lattice")

2. 1ts Hasse diagram is the 1-skeleton of a (n-1)-dim polytope!
(the "associahedron")
2(4n 4+ 1)! . |
T DIBn 1 2) intervals!
(cf. https://oeis.org/A000260)

3. It contains exactly
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a sequent calculus for the Tamari order

The LMCS paper uses proof theory to explain facts #1 and #3.

The starting point is a very simple sequent calculus:

©—A I'A,A— B

yp—y i I 0.A 5 B cut
A7B7A—>C o] Ir— A AHB‘R
A<BA_—=C T'A— A+B
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a sequent calculus for the Tamari order

Example:

r—r s—s g
qg— @ r,s—>r-sR

q,r,s —> qe(res)

p—p q'r,5—>CI‘(f‘5);
\V SV p,qer,s —rpe(qge(res)) 1

pe(qger),s—pe(qge(res))

(po(qor))OSHP‘(CI’(r'S))

L
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a sequent calculus for the Tamari order

Counterexample;

q%q yr —
p— p q,r—>q°rRR

p,q,rHP‘(CI‘r) S—=5

p,q,r,s — (pe(qer))es amb

V $\V Paqar’S%(P'(q'r)).sLamb
p,qe(res) —>(pe(ger))es

p.(q.(ros))H(P‘(CI‘r))’S

R

L
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left representability

multicategorically, the restriction on the left rule corresponds to
weakening the universal property of the tensor...

L, : M(I,Q,A;C) = M(I',®Q,A;C)

to the case ' = -. (We'll get back to this later.)
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reflexivity = id

transitivity = cut

completeness

Proposition: if A = B then A - B.

semi-associativity =

B—B (—C

A— A B,C — B C
A, B,C — A« (B ()
AeB,C —> Ae(B ()

(AeB)e(C — Ao (B ()

L
L

Ay — Ay B — By

monotonicity =

A1, B — Ay ¢ B

Ay e By —> Ay ¢ By L

R
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soundness

Proposition: if A - B then A < B.

more generally, if [ - B then ® < B, where
®(AO,A1,...,An) . — (AO ¢ Al)""An

proof by induction on sequent calculus derivations.

key lemma ("oplaxity"): ®(I',A) < ®[ « ®A



25

coherence theorem

A derivation Is focused If it stays in the following subsystem:

A B, A—C ; Mmr—sA4 A— B
AeB A —C"° [T A —s AeB

. Rfoc

D — D Z'datm

(I" irreducible If atomic leftmost formula; no cut allowed.)

Theorem: every valid sequent has a unique focused derivation.
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applications

: : Friedman & Tamari 1967
1. new proof that Y, Is a lattice  huang & Tamari 1971

key idea: prove in mutual induction w/lattice structure on contexts

2(4n 4+ 1)!
(n 4+ 1)!(3n + 2)!

2. new proof that # intervals in Y, Is Chapoton 2006

key idea: count focused derivations! Easy using generating functions...

See LMCS paper for detalils.
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skew monoidal categories

A category C equipped with:

e a bifunctor ® : C x C -» Cand an object| € C
e three natural transformations

(XA’B’C(A@)B)@C_)A@(B@C)
Al ®A - A
ox:A>A® I

e satisfying five coherence equations...
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skew monoidal categories

...Including the pentagon egn + four more;

Qa1 B

(A®I]) ® B > A ® (| ® B)
pA®BT 2 ¢A®)\B
A®B A®B

|®|
pl/ 7 \)\I
| |

O AB QaB|

(l®A)®B > | ® (A ® B) (A®B) ® | > A ® (B®I)

A ® B S / AreB pA@B\ 4 / A ® pg
®

A®B A

No longer true that "all diagrams commute"!
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skew monoidal categories

Some examples:

e (N,=) with "skewed addition" x ®"y :=(X ~n) +Vy
e the category of pointed sets with (A,x) ® (B,y) := (A+B,Inl x)

e A®P B := A ® D(B) where D is a lax monoidal comonad

e the functor category [],C] with F ® G := Lan(J,F) o G defined
by left kan extension along a functor ] : ] =» C.



a skew sequent calculus

Extend the sequent calculus with an explicit "stoup" on the left,
which may be empty or contain a formula.

L Alr—c
A Ald AT CShIt
SIT— A A|A—C |0 —A S|A.AM —C
t
S| T,A—C > S| Ao, LA — C -t
— | I'—C A|B,I' —C S| I'—A —|A—B

L R
|‘F—>C’IL —‘ —>|IR A®B|F—>C® S‘F,A—>A®B 9

30
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a skew sequent calculus

example derivations and non-derivations:

T =x i T R X |12 %
b= X| —XQ®| R X1 —x
X | __)de.
. —\X—axlsi"ft x| S - Bk
X — X X|—1®X
L

|®X‘ — X

QL

= A1?7?
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completeness + soundness

Let Fsk,: be the free skew monoidal category over a set of atoms.
(we give an explicit construction of Fsk,. by generators and relations)

Forany f: A » B € Fsk, there is a derivation cmplt(f) : A| = B

For any derivation g :S | I =» B there is sound(qg) : [S | '] = B € Fsky;

where [Ao

[[_

lllll

’’’’’

= (Ao ® A1)---*An
= (l * A1)---*An

Moreover, cmplt and sound respect equality, if we impose a suitable
equivalence relation = on derivations. (See paper for detalils.)
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a focused subsystem

A\F—>LC TF—>RC

: . - 1foc
1A — C shift T — O switch X| —op X id
RS f
| I —, C 1 a1 R
A|B,I' —  C T|I'—>rA —|A—_ B
®|— ®Rfoc
ARB|I' — C T|INA—RAQRB

Theorem: for any derivationf: S | [ = B there is a focused derivation
focus(f) : S | I = B. Moreover, f = g iff focus(f) = focus(g).
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coherence theorem(s)

With soundness + completeness, focusing gives us a two-part
coherence theorem for skew monoidal categories.

Coherence (equality): two maps f,g : A = B € Fsk,. are equal iff
focus(cmplt(f)) = focus(cmplt(g)).

Coherence (enumeration): the homsets of Fsk,. can be enumerated
without duplicates as Fsk(A,B) = { sound(emb(f)) |f: A| - B }.
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notes

Lack and Street (2014) also proved a coherence theorem for Fsk of the form
coherence (equality), building on Huang & Tamari (1972). Bourke and Lack (2018a)
refined this with a more explicit description of the morphisms of Fsk.

Bourke and Lack (2018b) defined skew multicategories, and proved an
equivalence between skew monoidal cats and left representable skew multicats.

We give a light reformulation of B&L(b)'s definitions inspired by the sequent calculus
in the Lambek Volume paper. Our focused sequent calc can be seen as a canonical
construction of the free left representable skew multicat (and hence Fsk).

The development in our paper has been formalized in Agda, see Niccolo's
webpage (http://cs.ioc.ee/~niccolo/skewmonseqcalc/).
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partial skewness/normality

A skew monoidal category is said to be left/right/associative normal
If the corresponding transformation A/p/a is invertible.

"A monoidal category is just a fully normal skew monoidal category."

The ACT2020 paper explains how to adapt the skew sequent calculus
to reflect the three normality conditions (eight possible combinations).

Agda: https://github.com/niccoloveltri/skewmoncats-normal
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associative normality (focused)

ldea: introduce a judgment S | Q : I = C with an "anteroom" Q for formulae

S|QABT—cC  S|Q:DT—cC D#A®B SIT—.C
— ®C . move . switchy ¢
S|QARB: T —cC S|Q,D:-T"—cC S| :I'—cC
A‘F—>|_C —‘F—)LC A|BEF—>CC T |1 —rC _
pass IL QL switchrL
— ‘A,F — C ||F—>|_C A'iil?;{ii'B‘F—N_C 7 |1 — C
T‘F—)RA —|A—>|_B
ax IR QR
X| —rX — | —r T | I'A—RARXB

Remark: Lack and Street (2014) observed that the free associative-normal skewmoncat
on one gen isiso to A, and proved that Fsk = A, is faithful. Can we prove this directly?
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concluding thoughts

proof theory and category theory are extremely closely related,
as emphasized by Lambek.

skew monoidal categories have a very interesting proof theory!
(as do skew closed categories.)

a more conceptual understanding of left representability would
be desirable.

can we can find other applications of proof theory to combinatorics
and vice versa?



