A Categorical Perspective on
Type Refinement Systems

Noam Zeilberger?
University of Birmingham

Cambridge Logic Seminar
9 December 2016

1 Joint work with Paul-André Melliés.

1/46

What is a type refinement system?

Intuition: a type refinement system is a type system built over a
typed programming language, as an extra layer of typing.

Examples (90s-10s): DML, SML Cidre, Stardust, Liquid Haskell,
Typed Racket, TypeScript, Flow, ...

2 /46

What is a type system?

As with many terms shared by large communities, it is
difficult to define “type system” in a way that covers its
informal usage by programming language designers and
implementors but is still specific enough to have any bite.

— Benjamin Pierce (2002), TaPL

3/46

What is a type?

One reason it is hard to give a formal definition is because there
are two competing philosophies of types...

“ala Church” vs. “ala Curry”

a.k.a.

intrinsic vs. extrinsic

Intuition from logic: types-as-sorts vs. types-as-predicates

4/46

The extrinsic view: an excerpt

We now proceed, in outline, as follows. We define a new
class of expressions which we shall call types; then we say
what is meant by a value possessing a type. Some values
have many types, and some have no type at all. In fact
“wrong” has no type. But if a functional value has a type,
then as long as it is applied to the right kind (type) of
argument it will produce the right kind (type) of result-
which cannot be “wrong”!

— Robin Milner (1978), “A Theory of Type Polymorphism
in Programming”

/46

Problem: the “naive” reading of type theory through the lens of
category theory is biased towards the intrinsic view of typing.

6 /46

The naive reading

type system = category of well-typed terms

[x.t]
_—

x:AFt:B = [A] [B]

7 /46

The problem with the naive reading

But every morphism f: A— B of a category is intrinsically
associated with a unique pair of types! (Namely, A and B.)

This makes it difficult to interpret extrinsic typing rules such as the
subsumption rule or intersection introduction:

'-t:A A<B T'Ht:A THt:B
I'+~t:B I'~t:AAB

More fundamentally, the problem is that the naive reading does
not distinguish terms from typing derivations.

8 /46

A more subtle reading

Define the semantics of a typed language by induction on typing
derivations, then prove a coherence theorem:

a B
if THt:Aand T't:A then [al =[] :[T1— [Al]

In general, coherence is a nontrivial theorem...

Nicely discussed by Reynolds (1991-2000):
» The Coherence of Languages with Intersection Types
» Theories of Programming Languages (Chs. 15 & 16)

» The Meaning of Types: from Intrinsic to Extrinsic Semantics

9 /46

Our goal: stay naive (rather than subtle), just not too naive!

10/ 46

Functors are type refinement systems

11 /46

Remembering to forget

Intuitively, most type systems come with an “erasure” operation...

Derivations

Terms

Well, what if we take an arbitrary functor U :92 — 3 and try to
view it as a type system? We'll think of the morphlsms of @ as
derivations, and the morphisms of 9 as terms.

That would make a type refinement system, though, wouldn't
it? Because both 2 and I have types (= objects), and in some
sense those of & “refine” those of I~

12 /46

An example

isEven
bool

S

13 /46

An example

isEven
bool

S

13 /46

An example

S

odd, even, pos — nat
true, false — bool
@ — idpat
B— succ

Lo 1
isEven v Y,0 — isEven

13 /46

An example

9
odd, even, pos — nat

true, false — bool

@ — idpat

) B— succ

isEVen / Y,0 — isEven
g
a p
odd <t pos odd = even (odd, even, pos C nat)

Y
even = true
isEven

9
odd = false (true, false C bool)

isEven

13 /46

Functors are type refinement systems

9

a
R:f's S<gT (RCA) (5TCB)

NB: the functor U: 92 — I need not be faithful!

14 /46

The interpretation of typing rules

We call a rule admissible relative to U:2 — J if given derivations
of the premises, we can construct a derivation of the conclusion.

Warmup. Show that the following rules are admissible for any U:
R=S S=T
f g

R=T
fig

15 /46

A basic idea worth exploring...

P.-A. Mellies and | have coauthored several papers around this:
» Type refinement and monoidal closed bifibrations arxiv:1310.0263
» Functors are type refinement systems popL201s
> An Isbell duality theorem for type refinement systems mscs (to appear)

> A bifib. reconst. of Lawvere's presheaf hyperdoctrine vics2016

| also wrote some expository notes for OPLSS 2016 (see webpage)

16 /46

Outline

Our goals for today:

1.

2
3.
4

Functors are type refinement systems v/

. Reading Groth. in translation. (Also maybe: A and v.)

Monoidal closed refinement systems.

. Using monoidal closed bifibrations as a logical framework.

17 /46

Reading Grothendieck in translation

18 /46

Pushforward refinements?

A pushforward of R along f is a refinement

RCA f:A-B
pushRC B

equipped with a pair of typing rules
R=S

fig
R:f>pusth fol pusth:g>5 lE

satisfying a pair of equations on typing derivations...

2. .. with respect to a given refinement system U:92 — J .

19 /46

Pushforward refinements

...satisfying a pair of equations on typing derivations

R=S
£l e ¢E
R:f>pusth ° pusth:g>S °
R=S = R=S
fig fig

B — n
R:f' pushf R pusth? S

R=S
1 ___'e __1F
pusth:g>S = pusth:g>5 ©

20 /46

Pullback refinements

A pullback of S along f is a refinement

f:A-B SCB
pul, SC A

equipped with a pair of typing rules
R=S
foE Y
puIIfS?S R:g>pullf5

satisfying the pair of equations on typing derivations...

21 /46

Pullback refinements

...satisfying the pair of equations on typing derivations

B
R=S
gi;f fDI - fDE
R= pull¢ S pullf S=S§
g f : B
R=S ' = R=S
gif gif
n -
R— pulsS pull;S=$ FE
R=S -
g.f

n _ - - fDl
R=pull;S = R= pull; S

22 /46

Grothendieck remixed

Proposition/Definition: A refinement system U:2 — J is a
fibration iff it has all pullbacks. It is an opfibration iff it has all
pushforwards. It is a bifibration iff it has both.

23 /46

Grothendieck remixed

In a refinement system 2 — 3 with (chosen) pushforwards, each
morphism f : A— B induces a functor pushs: 24 — 9g,

RCB f:A—B RisaRe
pushfRC A pushs Ry <g push¢ R»

where each 2, is the subcategory of & consisting of refinements
R C A and subtyping derivations Ry <4 R> as morphisms.

24 /46

Grothendieck remixed

We can derive the subtyping rule explicitly from the typing rules:

Ri= Ry Ry= pushfR> fol
ida f

Ri = pushf R
1idA;i"p f 2

R, — pushs Ry
lf;idBp f 2

pushs R1 = push¢ R> fo
idg

25 /46

Grothendieck remixed

Moreover, we can show that
push(gor) R = pushg pushs R pushjg R=R

where = denotes “vertical” isomorphism, i.e., pairs of subtyping
derivations which compose to the identity.

All this is just another way to say that a (cloven) opfibration
2 — T induces a (pseudo)functor I — Cat.

26 /46

Grothendieck remixed

A RS that is a bifibration admits invertible inferences
pushfR<p$
R=S
.
R<apullsS
meaning that every f: A— B gives rise to an adjunction:

pushg
—
Da 1 P8
~N—W
pull,

27 /46

Example: SubSet — Set

Formally, the objects of SubSet are pairs (A, R < A), its morphisms
(A,R)— (B,S) are functions f: A— B such that

Va.ae R=>f(a)e$
and U:SubSet — Set is the projection (A, R)— A.

Pushforward and pullback given by image and inverse image:

pushs (A R)=(B,{f(a)lae R})
pulls(B,S)=(A{alf(a)eS})

28 /46

Other examples of bifibrations

Other typical “semanticky” refinement systems:
» Downset — Poset: types = posets, terms = monotone
functions, refinements = downwards closed subsets

» Psh — Cat: types = categories, terms = functors, refinements
= presheaves, derivations = natural transformations

» Rel, — Rel: like SubSet — Set, but with terms = relations
instead of functions

» Dist. — Dist: like Psh — Cat, but with terms = distributors
instead of functors

All of these are bifibrations.

As we will discuss later, these are also examples of (cartesian or
symmetric) monoidal closed refinement systems.

29 /46

Example: Hoare logic

Take 9 as a one-object category of commands.

Take 9 as a category of predicates and valid Hoare triples.

9

Now push = strongest post, pull = weakest pre. .. but existence
depends on particular class of commands and predicates!

30 /46

Union and intersection refinements

A union/intersection of Ry and R» is a refinement...

RiCA RCA RiCA RCA
RivRo,C A RinRCA

R R:
1=f'5 2=f>5

RVvR—=s VB R=rvm Vi
f ida

SR S=R
E. f f

RiAR,— R " S=RiAR, M
ida f

...satisfying “B" and “n" equations (analogous to push/pull).

31/46

Distributivity principles

We can prove these equivalences in general:

push¢(RV S) =pushf RV push¢ S (1)
pull,(RAS)=pullgRApull, S (2)

But the following hold only going forwards (in general):

pushs(RAS) < pushs R Apushs S (3)
pully Rvpull, S <pull,(RVS) (4)

(Exercise: find counterexamples going backwards!)

32/46

Monoidal closed refinement systems

33 /46

Monoidal closed refinement systems

The presence of push/pull/Vv/A is a property of a refinement
system, which can be expressed for any functor U: 2 — 9.

On the other hand, we might ask that 2 and 9 come with some
extra structure, and that U preserves that structure.

A monoidal closed refinement system is defined as a strict
monoidal closed functor between monoidal closed categories.

(SMC and CC refinement systems are defined analogously.)

34 /46

Examples: SubSet — Set and Rel. — Rel

SubSet — Set is a cartesian closed refinement system:

(A R)x(B,S)=(AxB,{(a,b)lac RAbeS})
(A R)—(B,S)=(BA{f|Va.ae R=>f(a)€S})

Rel. — Rel is a symmetric monoidal closed refinement system:

(ALR)®(B,S)=(AxB,{(a,b)lac RAbeS})
(AR)—(B,S)=(AxB,{(a,b)lac R=beS})

35/46

Refinement vs. typing vs. subtyping

A mc refinement system admits the following refinement rules

RCA SCB RCA SCB
ReSC A®B R—oSCA—B

and typing rules

Rl?RQ 51?52 R®5?T
R1®51?®;R2®52 Scuﬁf)R_OT
and subtyping rules
RisaRy 5155 Ro<saRi S1=55

R1®S1 <488 R2®5> Ri—S51<pAoBR2—5

36

46

Using monoidal closed bifibrations
as a logical framework

37 / 46

Monoidal closed bifibrations

Of particular interest is when U:2 — J is both a mc refinement
system and (independently) a bifibration.
(cf. Hermida, Hasegawa, Katsumata.)

For one, we automatically get some distributivity principles:

push(reg)(R®S) =pushs R®push, S (5)
pusth—opullgSEpull(f_og)(R—OS) (6)

But the real magic starts to happen when we combine these logical
connectives with specific gadgets in I ...

38 /46

From Hoare logic to separation logic

Say we want to define separating conjunction and magic wand...

PCW QLW PCW QLW
P+QC W empC W P—+xQC W

Before: W the unique object of a one-object category I~

Now: W a monoid object in a monoidal closed category 713

PxQ < push,(P® Q)
f
emp = push./
P—xQ = pu”curry(m)(’D_oQ)

where m: We W — W and e: [/ — W are the monoid operations.

30r a commutative monoid in a smc category if you prefer.

39 /46

From Hoare logic to separation logic

Modelling? this signature in Rel. — Rel...

hePxQ < 3h1,h2.m(h1,h2,h)/\h1EP/\thQ
heP—xQ < Vh, h' . m(hH,h"YAh eP=>h"eQ

recovers the standard set-theoretic semantics of separation logic,
where the relation m: W x W -» W encodes the graph of a partial
commutative monoid multiplication m(hy, ha,h) < h1®hp = h.

4Here, a “model” is a structure-preserving morphism of refinement systems:

D ﬂ) Rel.

|

9 —— Rel

40 /46

The fibrational Day construction

More generally, if U:2 — 3 is a mc bifibration and A is a monoid
in I, then 9, is monoidal closed by:

R4S push,,(R®S)
Ia < push,/
R—o4 S = pull cyyry (my (R — S)
where m: A® A— A and e: [— A are the monoid operations.

(The Day construction on presheaves is an instance of this.)

41 /46

Fibrational biorthogonality

Kind of similarly, if U:2 — 9 is a mc fibration and
plug : A® B — C is any pairing operation in 9, then every
refinement L C C induces a contravariant adjunction

()
S\
Da L DY
N~—
)

where the operations (=)* and +(-) are defined by:

def
R+ < pu”lcurry(p/ug) (R_OJ-)

S = pu”rcurry(p/ug) (J- o 5)

42 /46

Simply typed lambda calculus a la Curry (a la Scott)

STLC can be thought of as a refinement of pure lambda calculus:

STLC

|

LC

We can formalize this as a cartesian closed refinement system over
the free ccc with a reflexive object...

43 /46

Simply typed lambda calculus a la Curry (a la Scott)

LC

44 /46

Simply typed lambda calculus a la Curry (a la Scott)

STLC

LC

44 /46

Simply typed lambda calculus a la Curry (a la Scott (a la Plotkin))

This definition only asks for the (LF-like) axioms®

PEn E v o I T e e e R

But we might impose additional conditions on models.

For example, we might interpret simple types by a logical relation.
Abstractly, a type-indexed family R, C U is logical just in case

Ro—r=pullg(Ry — Rr)
OTOH, we might also consider interpretations where
Rs—r =pushy (Ry — R;)

These Qs seem to be connected to bidirectional typing...

5_..and perhaps corresponding /1 equations on derivations.

45 / 46

Conclusion

Summary:
» A (naive!) categorical perspective on extrinsic typing.
» Fibrations are fine, but we can also have fun with functors!
» Attentive to the logical interplay push/® vs. pull/—

» Just a starting point for mathematical study.

Thanks for listening!

46

46

	Functors are type refinement systems
	Reading Grothendieck in translation
	Monoidal closed refinement systems
	Using monoidal closed bifibrations as a logical framework

