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Abstract. A rooted planar map is a connected graph embedded in the 2-sphere, with one edge
marked and assigned an orientation. A term of the pure lambda calculus is said to be linear
if every variable is used exactly once, normal if it contains no β-redexes, and planar if it is
linear and the use of variables moreover follows a deterministic stack discipline. We begin by
showing that the sequence counting normal planar lambda terms by a natural notion of size
coincides with the sequence (originally computed by Tutte) counting rooted planar maps by
number of edges. Next, we explain how to apply the machinery of string diagrams to derive
a graphical language for normal planar lambda terms, extracted from the semantics of linear
lambda calculus in symmetric monoidal closed categories equipped with a linear reflexive
object or a linear reflexive pair. Finally, our main result is a size-preserving bijection between
rooted planar maps and normal planar lambda terms, which we establish by explaining how
Tutte decomposition of rooted planar maps (into vertex maps, maps with an isthmic root, and
maps with a non-isthmic root) may be naturally replayed in linear lambda calculus, as certain
surgeries on the string diagrams of normal planar lambda terms.

1. Introduction: a curious correspondence

The pure lambda calculus is a universal programming language based on only two primitive
operations: for any pair of terms t and u, there is a term t(u) representing the application of t
to u, while for any pair of a term t and a variable x, there is a term λx.t representing the
abstraction of t in x. Terms are always considered up to renaming of abstracted variables, so
that for example λx.x and λy.y both represent the same term (intuitively standing for the
identity function). The main source of computation is the rule of β-reduction:

(λx.t)(u)→ t[u/x]

2012 ACM CCS: [Mathematics of computing]: Discrete mathematics—Combinatorics—Enumeration;
Discrete mathematics—Graph theory—Graphs and surfaces; [Theory of computation]: Models of computation—
Computability—Lambda calculus; Logic—Linear logic.

Key words and phrases: lambda calculus, combinatorics, string diagrams, rooted maps, planarity.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(3:22)2015
c© N. Zeilberger and A. Giorgetti
CC© Creative Commons

http://creativecommons.org/about/licenses


2 N. ZEILBERGER AND A. GIORGETTI

Here t[u/x] denotes the substitution of u for x in t (which technically must be “capture-
avoiding” in a sense we need not get into here [4]). Equating terms modulo β-reduction
yields a theory known as Λβ, wherein, for example, we can derive

(λx.xx)(λy.y) = (λy.y)(λy.y) = λy.y and ((λx.λy.x)w)(λz.z) = (λy.w)(λz.z) = w.

Although it is remarkable that such a simple and conceptual language is Turing-complete,
the focus of this paper will be on a much more restrictive but still important subset of lambda
calculus known as the linear fragment, defined by the requirement that every abstracted
variable must be used exactly once. For example, all of the terms

λx.λy.yx λx.x(λy.y) λx.λy.xy

are linear, but all of the terms

λx.xx λx.λy.x λx.λy.y

are non-linear. As one example of the special properties of the linear fragment, note that the
problem of computing the β-normal form of a linear lambda term is PTIME-complete [21].

Among the linear terms, it is possible to identify an even more restrictive subset of
terms which are planar, in the sense that (reading left-to-right) variables are used in the
reverse order which they are abstracted. Thus the two linear terms

λx.λy.yx λx.x(λy.y)

are planar, but the linear term
λx.λy.xy

is non-planar.
Motivated by questions related to the study of type refinement [23], the first author of this

paper counted β-normal planar lambda terms along a natural notion of size, and obtained
the following sequence of first numbers through a simple recurrence equation:

1, 2, 9, 54, 378, 2916, 24057

Surprisingly, this sequence already existed in the Online Encyclopedia of Integer Sequences
[24], corresponding to the first entries of a series which is indexed in the OEIS as A000168.

It turns out that this series is well-known in combinatorics (see, e.g., [9, VII.8.2]), and
counts rooted planar maps by number of edges. A rooted planar map is essentially a connected
graph drawn on the sphere with no crossing-edges, and with one edge marked and assigned
an orientation. Here are two small examples, where we have chosen to project the maps
onto the page so that the “infinite” (outer) face is to the left of the oriented root edge:
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Rooted planar maps were originally enumerated in the 1960s by Tutte [33, 34] as part
of an attack on the four-color theorem (which, of course, is about unrooted planar maps).
What makes rooted maps easier to count than unrooted maps is that the latter can have
non-trivial symmetries but the former cannot. Tutte was even able to derive a closed form
for the total number of rooted planar maps with n edges: 2·(2n)!·3n

n!·(n+2)! .
The main result of this paper is a size-preserving bijection between rooted planar maps

and normal planar lambda terms. We work towards this result as follows:
• In Section 2, we introduce linear lambda calculus from a combinatorial perspective,

defining linear lambda terms as certain decorations of “lambda skeletons”. We then give
inductive definitions of various properties of linear lambda terms, and use these to derive
functional equations for the generating functions counting normal (and “neutral”) planar
terms by size and number of free variables. By solving these equations, we demonstrate
in particular that the sequence counting closed normal planar lambda terms indeed
coincides with A000168.
• In Section 3, we explain how to apply the machinery of string diagrams to derive

a graphical language for normal planar lambda terms. Our first step is a rational
reconstruction of the well-known “lambda-graphs”, as string diagrams extracted from the
semantics of linear lambda calculus in symmetric monoidal closed categories equipped
with a linear reflexive object. We then introduce the concept of a linear reflexive pair as a
refinement of linear reflexive object, and use this to extract a coloring protocol for the
string diagrams representing normal linear lambda terms.
• Finally, in Section 4 we give the size-preserving bijection between rooted planar maps

and normal planar lambda terms. The idea of the bijection is based on Tutte’s analysis of
rooted planar maps now known as Tutte decomposition [34], which starts by establishing a
trichotomy on rooted planar maps as either being the degenerate vertex map (with no
edges), or else having an isthmic root, or else having a non-isthmic root. After giving a
review of Tutte decomposition, we explain how his analysis may be naturally replayed
in linear lambda calculus as certain surgeries on the string diagrams of normal planar
lambda terms, and show how to use this to obtain a size-preserving bijection.

2. Lambda skeletons, planarity, neutral and normal terms

The main objects we study in this paper are lambda terms satisfying a combination of three
properties: linearity, planarity, and absence of β-redexes. Since this is just a small fragment
of lambda calculus, we do not need to introduce the full machinery of classical lambda
calculus (for which the reader can see [4]), and instead take an approach inspired by the
operadic perspective advocated by Hyland [14] since it makes the underlying combinatorial
structure of linear/planar lambda terms more apparent.

We begin by defining “skeletons” of lambda terms, standing for lambda terms with
placeholders for variable names.

Definition 2.1. A lambda skeleton is an element of the set S(i), defined for i ∈N as the least
graded set satisfying the following rules:

∈ S(1) V
p ∈ S( j) q ∈ S(k)

p(q) ∈ S( j + k) A
p ∈ S(i + 1)
λ .p ∈ S(i) L

The degree of a lambda skeleton p ∈ S(i) is the index i.
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It is worth remarking that lambda skeletons are simply unary-binary trees (also known
as Motzkin trees), where unary “L-nodes” stand for lambdas, binary “A-nodes” stand for
applications, and “(V-)leaves” stand for variables. But whereas unary-binary trees are
usually parameterized by total number of nodes (which gives rise to the Motzkin numbers, as
the number of unary-binary trees with a given number of nodes [9, I.39]), lambda skeletons
are parameterized by the difference between the number of leaves and the number of L-nodes.
In particular, all of the sets S(i) are infinite, so lambda skeletons cannot be counted directly
along their degree.

Linear lambda terms will be defined as certain decorations of lambda skeletons.

Definition 2.2. A pseudo lambda term is a lambda skeleton in which all occurrences of “ ”
have been replaced by variable names. Given a lambda skeleton p ∈ S(i), a list of variable
names Γ = x1, . . . , xi, and a pseudo lambda term t, we write [Γ]t ∈ Λ1(p) to indicate that t is a
linear lambda term (with free variables Γ) decorating p, as defined by the following rules:

[x]x ∈ Λ1( ) V
[Γ]t ∈ Λ1(p) [∆]u ∈ Λ1(q)

[Γ,∆]t(u) ∈ Λ1(p(q)) A
[x,Γ]t ∈ Λ1(p)

[Γ]λx.t ∈ Λ1(λ .p) L

[Γ, y, x,∆]t ∈ Λ1(p)
[Γ, x, y,∆]t ∈ Λ1(p) T

We write [Γ]t ∈ Λ1 to indicate that [Γ]t ∈ Λ1(p) for some p. In general, linear lambda
terms should always be considered with free variables indicated, though at times we will
leave this implicit. We say that two linear lambda terms [Γ]t, [∆]u ∈ Λ1 are α-equivalent if
one can be obtained from the other by renaming of variables (in Γ and ∆, as well as the
variables introduced by lambda abstraction within t and u). Linear lambda terms are always
considered modulo α-equivalence.

Intuitively, a linear lambda term is planar if it is possible to show that it is linear without
using the T(ransposition)-rule. Explicitly, this is equivalent to the following definition.

Definition 2.3. Let [Γ]t ∈ Λ1 be a linear lambda term. We write [Γ]t ∈ Λ0
1(p) to indicate that

t is a planar lambda term (with free variables Γ) decorating the lambda skeleton p, as defined
by the following rules:

[x]x ∈ Λ0
1( )

V
[Γ]t ∈ Λ0

1(p) [∆]u ∈ Λ0
1(q)

[Γ,∆]t(u) ∈ Λ0
1(p(q))

A
[x,Γ]t ∈ Λ0

1(p)

[Γ]λx.t ∈ Λ0
1(λ .p)

L

Similarly we write [Γ]t ∈ Λ0
1 to indicate that [Γ]t ∈ Λ0

1(p) for some p.

One important observation about planar lambda terms is that they are entirely determined
by their lambda skeleton, and conversely, that any lambda skeleton may be decorated by a
(necessarily unique) planar lambda term.

Proposition 2.4. Let [Γ]t ∈ Λ0
1(p) and [∆]u ∈ Λ0

1(p) be two planar lambda terms decorating the
same skeleton p. Then [Γ]t and [∆]u are α-equivalent.

Proof. Immediate by induction on p.
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〈 | x,Γ〉 ⇓ 〈x | Γ〉
x fresh

〈
q | x,Γ

〉
⇓ 〈t | Γ′〉〈

λ .q | Γ
〉
⇓ 〈λx.t | Γ′〉

〈
p1 | Γ

〉
⇓ 〈t1 | Γ

′
〉

〈
p2 | Γ

′
〉
⇓ 〈t2 | Γ

′′
〉〈

p1(p2) | Γ
〉
⇓ 〈t1(t2) | Γ′′〉

Figure 1. From lambda skeletons to planar lambda terms

Proposition 2.5. For any lambda skeleton p ∈ S(i), there is a planar lambda term [xi, . . . , x1]p† ∈
Λ0

1(p).

Proof. There is a simple algorithm for computing p† recursively, by traversing the lambda
skeleton p while maintaining a current list of free variables as a stack (initialized to
Γ = xi, . . . , x1, for some i distinct variable names, with xi at the top):
• (Case p = ): pop a variable name from the top of the stack.
• (Case p = λ .q): generate a fresh variable name not in Γ, push it onto the stack and

continue traversing q.
• (Case p = q(r)): traverse the application left-to-right, i.e., decorate q (while consuming

some variables from the stack) and then decorate r.
In Figure 1 we show this algorithm described in the style of operational semantics, as a
relation between a pair of a lambda skeleton and an input stack and a pair of a planar
lambda term and an output stack. For example, the skeleton λ .λ . (λ . ) ∈ S(0) can be
decorated by the (closed) planar lambda term λx.λy.y(λz.zx), which is the unique planar
decoration of this skeleton up to α-equivalence.

By consequence of Propositions 2.4 and 2.5, the problem of enumerating planar lambda
terms is equivalent to that of enumerating lambda skeletons. From the point of view of
lambda calculus, though, it is natural to further restrain the problem by asking that we
only count β-equivalence classes, which is equivalent (by the normalization theorem for linear
lambda calculus) to only counting β-normal lambda terms.

Let us recall the following well-known characterization of (β-)normal lambda terms, in
mutual induction with so-called “neutral” terms:
• Any variable x is neutral.
• If t is neutral and u is normal then the application t(u) is neutral.
• If t is neutral then t is normal.
• If t is normal then the abstraction λx.t is normal.
These definitions ensure recursively that any term which is neutral or normal cannot contain
a β-redex (λx.t)u as a subterm. On the other hand, the standard formulation of neutral and
normal terms can also plainly be recast as a property of the underlying lambda skeletons.
For reasons which will become apparent in Section 3.2, we refer to the proof that a lambda
skeleton is neutral or normal as a “coloring” of that skeleton (and likewise for linear lambda
terms, by reference to their underlying skeletons).

Definition 2.6. Letting B and R stand for “blue” and “red”, we define two graded sets of
lambda skeletons SB(i) and SR(i), for i ∈N, via the following rules:

∈ SB(1)
v

p ∈ SB( j) q ∈ SR(k)
p(q) ∈ SB( j + k)

a
p ∈ SB(i)
p ∈ SR(i)

s
p ∈ SR(i + 1)
λ .p ∈ SR(i) `

Let p ∈ S(i) be a lambda skeleton. A c-coloring of p, for some c ∈ {B,R }, consists of a
derivation π of p ∈ Sc(i) using the rules v, a, s, and `. We write π : (p ∈ Sc(i)) to indicate that
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π is a c-coloring of p. In turn, a c-coloring of a linear lambda term consists of a c-coloring of
its lambda skeleton. We say that a linear lambda term is neutral if it has a B-coloring, and
normal if it has a R-coloring.

Proposition 2.7. A linear lambda term is normal if and only if it has no subterms of the form
(λx.t)(u).

We emphasize that throughout this paper we will be interested in colorings themselves,
rather than in the mere fact that a linear lambda term is neutral or normal. In particular, the
size of a normal or neutral linear lambda term will be defined as a property of its associated
coloring.

Definition 2.8. Let p ∈ S(i) be a lambda skeleton, and let π : (p ∈ Sc(i)) be a c-coloring of
p. The size |π| of π is defined as the number of uses of the s-rule in π. In turn, the size of a
normal or neutral linear lambda term is defined as the size of its associated coloring.

By inspection, any linear lambda term has at most one B-coloring or R-coloring, which is
why it makes sense to define the size of a neutral or normal linear lambda term as the size
of its associated coloring. However, a term could certainly have both a B-coloring and a
R-coloring – since every neutral lambda term is also normal – and so size is really a property
of a given linear lambda term when viewed as either a neutral term or as a normal term. Note
that this is an instance of the concept of coherence of an interpretation of typing judgments
(in the sense of Reynolds [27, Ch. 16], viewing the colors B and R as “types”), and we will
make further use of this style of definition in Section 4.

Under this definition, for example, the normal linear terms

[x]x(λy.y) [x]λy.yx [x]λy.xy

all have size two, as exhibited by the following R-colorings of their skeletons:

∈ SB(1)
v

∈ SB(1)
v

∈ SR(1)
s

λ . ∈ SR(0) `

(λ . ) ∈ SB(1)
a

(λ . ) ∈ SR(1)
s

∈ SB(1)
v

∈ SB(1)
v

∈ SR(1)
s

∈ SB(2)
a

∈ SR(2)
s

λ . ∈ SR(1) `

Observe, however, that [x]x(λy.y) has size one when viewed as a neutral term rather than
as a normal term.

We now turn to the problem of counting neutral and normal planar lambda terms by
size, which by Propositions 2.4 and 2.5 is equivalent to counting B-colorings and R-colorings.
It is straightforward to go from Definitions 2.6 and 2.8 to the following families of generating
functions Bi(z) and Ri(z) counting B- and R-colorings by size, where the index i stands for
the degree of the underlying lambda skeletons, and the coefficient of zn in each Bi(z) and
Ri(z) counts the total number of B/R-colorings of size n:

Bi(z) = [i = 1] +
∑
j+k=i

B j(z)Rk(z) Ri(z) = zBi(z) + Ri+1(z)

(Here “[i = 1]” denotes the Iverson bracket, 1 if i = 1 and 0 otherwise.) Next, we can formally
aggregate these families

B(z, x) def
=

∑
i≥0

Bi(z)xi R(z, x) def
=

∑
i≥0

Ri(z)xi
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to define a single pair of generating functions counting colorings along both size and degree.
By unfolding definitions, we can then check that B(z, x) and R(z, x) satisfy the following
functional equations:

B(z, x) = x + B(z, x)R(z, x) (2.1)

R(z, x) = zB(z, x) +
1
x

(R(z, x) − R0(z)) (2.2)

Equations of this form can be solved by a technique known as the quadratic method [9, p.515].
In particular we can solve for R0(z), the generating function counting R-colorings of lambda
skeletons of degree 0 (hence, closed normal planar lambda terms) by size:

Proposition 2.9. The generating function R0(z) satisfies

R0(z) = −
1

54z

(
1 − 18z − (1 − 12z)3/2

)
.

Proof. Formula (2.1) becomes
B(z, x) =

x
1 − R(z, x)

and after substituting into (2.2) we derive:

R(z, x) =
zx

1 − R(z, x)
+

1
x

(R(z, x) − R0(z))

x(1 − R(z, x))R(z, x) = zx2 + (1 − R(z, x))(R(z, x) − R0(z))

(x − 1)(1 − R(z, x))R(z, x) = zx2
− (1 − R(z, x))R0(z)

((x − 1)(1 − R(z, x)) − R0(z))R(z, x) = zx2
− R0(z)

Then the idea is to define auxiliary functions F(z, x) and G(z, x) by

F(z, x) def
= x − 1 − R0(z) − 2(x − 1)R(z, x)

G(z, x) def
= F(z, x)2

and look for a function X(z) such that F(z,X(z)) = 0, implying that G has a double root at X.
We have chosen F(z, x) so that by the quadratic formula G(z, x) simplifies to

G(z, x) = (x − 1 − R0(z))2
− 4(x − 1)(zx2

− R0(z)),

and combined with the constraints G(z,X(z)) = 0 and ∂
∂x G(z, x)|x=X(z) = 0 we have a system

of two equations in two unknowns X(z) and R0(z). This system of equations can be solved
mechanically (for example using Maple),

X(z) =
12z + 1 −

√
1 − 12z

18z
R0(z) =

(12z − 1)X(z) − 8z + 1
3

and we obtain the stated formula for R0(z) by algebraic simplification.
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i
n

0 1 2 3 4 5 6 7 8 9

1 1 1 3 14 83 570 4318 35068 299907 2668994
2 0 1 4 20 120 820 6152 49448 418800 3694740
3 0 0 2 15 105 770 5985 49014 419370 3720420
4 0 0 0 5 56 504 4368 38136 339696 3094896
5 0 0 0 0 14 210 2310 23100 224070 2161236
6 0 0 0 0 0 42 792 10296 116688 1245816

Figure 2. The number of neutral planar lambda terms of size n with i free
variables.

i
n

1 2 3 4 5 6 7 8 9 10

0 1 2 9 54 378 2916 24057 208494 1876446 17399772
1 1 2 9 54 378 2916 24057 208494 1876446 17399772
2 0 1 6 40 295 2346 19739 173426 1576539 14730778
3 0 0 2 20 175 1526 13587 123978 1157739 11036038
4 0 0 0 5 70 756 7602 74964 738369 7315618
5 0 0 0 0 14 252 3234 36828 398673 4220722
6 0 0 0 0 0 42 924 13728 174603 2059486

Figure 3. The number of normal planar lambda terms of size n with i free
variables.

Now, the formula for R0(z) given in Proposition 2.9 is just one factor of z times the known
generating function for counting rooted planar maps by number of edges [9, Proposition
VII.11]:

−
1

54z2

(
1 − 18z − (1 − 12z)3/2

)
Since we also trivially have R1(z) = R0(z) (corresponding to the fact that any closed normal
lambda term must be a lambda abstraction), we obtain the

Corollary 2.1. The number of rooted planar maps with n edges is equal to the number of closed
normal planar lambda terms (= R-colorings of degree 0) of size n + 1, and to the number of normal
planar lambda terms with one free variable (= R-colorings of degree 1) of size n + 1.

From the solution for R0(z) we can also derive algebraic generating functions for B(z, x)
and R(z, x), and use these to compute tables of coefficients, such as the small ones listed in
Figures 2 and 3. As a couple of simple observations we note that:
• The series counting neutral planar lambda terms with one free variable (i.e., the coefficients

of B1(z), corresponding to row i = 1 of Figure 2) also appears in the OEIS as series A220910.
• Adding up each column of Figure 2 gives the first row of Figure 3, what can be expressed

in generating functions by the equation R(z, 0) = zB(z, 1). Bijectively, this corresponds to
the fact that any closed normal lambda term begins with a series of i lambda abstractions,
applied to a neutral term with i free variables.
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Finally, although the notion of size given in Definition 2.8 turns out to be a natural one for
neutral and normal linear terms, let us point out that it has various equivalent formulations.
For example, it is almost identical to counting the total number of variable uses in a term:

Proposition 2.10. The size of a normal linear lambda term t with R-coloring π is equal to the total
number of (V-)leaves in its underlying lambda skeleton, or explicitly |π| = |t|, where

|λx.t| = |t| and |x| = 1 and |t(u)| = |t| + |u|.

On the other hand the size of a neutral linear lambda term t with B-coloring π is equal to the total
number of leaves in its lambda skeleton minus one, i.e., |π| = |t| − 1.

To prove this, we first recall the standard lambda calculus notion of head normal form [4, p.173],
which will also be useful in Section 4.

Definition 2.11. Let π : (p ∈ SB(i)) be a B-coloring of a skeleton p. The head of π is defined
as the unique occurrence of “ ” in p reached by walking up the derivation π from the last
rule applied, and always following the left branch of an a-rule until reaching a v-rule. In
turn, the head variable of a linear lambda term [Γ]t ∈ Λ1(p) with B-coloring π : (p ∈ SB(i)) is
defined as the variable annotating the head of π. (Note that the head variable of a neutral
linear term [Γ]t necessarily occurs in Γ.) Alternatively, let π : (p ∈ SR(i)) be a R-coloring of
a skeleton p. The body of π is defined as the unique subskeleton of p reached by walking
up the derivation π from the last rule applied, always moving to the premise of an `-rule
until reaching the premise of an s-rule. In turn, the neutral body of a linear lambda term
[Γ]t ∈ Λ1(p) with R-coloring π : (p ∈ SR(i)) is defined as the (neutral) linear lambda term
annotating the head of π.

For example, y is the head variable of the neutral term [y, x](y(λz.z))(λw.wx), while [w, x]wx
is the neutral body of the normal subterm [x]λw.wx. To check that this agrees with
Definition 2.11, here is the corresponding coloring, where for clarity we have kept all of the
variable names decorating the skeleton:

y ∈ SB(1)
v

z ∈ SB(1)
v

z ∈ SR(1)
s

λz.z ∈ SR(0) `

y(λz.z) ∈ SB(1)
a

w ∈ SB(1)
v

x ∈ SB(1)
v

x ∈ SR(1)
s

wx ∈ SB(2)
a

wx ∈ SR(2)
s

λw.wx ∈ SR(1) `

(y(λz.z))(λw.wx) ∈ SB(2)
a

Proof of Proposition 2.10. Let π be the R-coloring of a normal linear lambda term t. There is
a one-to-one correspondence between s-nodes in π and variables occurring in t, by walking
up from the neutral body of an s-node to the corresponding head variable, and walking
back down to the conclusion of the s-node. The same argument works if we begin with a
neutral linear term t with B-coloring π, except that the head variable of t itself does not lead
back to an s-node.
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2.1. Related work. Although lambda calculus is an old subject, its combinatorial aspects
have been relatively less studied. In the published literature, Grygiel and Lescanne [12]
give recurrence formulas and generating functions for counting pure lambda terms of a
given size and number of free variables, as well as for counting normal forms, while David
et. al [7] study asymptotic properties of normalization. Most closely related to the present
paper are works on the combinatorics of linear lambda calculus (under the alternative name
of “BCI” combinatory logic), by Grygiel, Idziak, and Zaionc [11] and by Bodini, Gardy, and
Jacquot [5]. Both note a connection between the sequence counting general linear lambda
terms (not necessarily β-normal) to series A062980 of the OEIS, but they do not consider
planarity.

3. A graphical language for (neutral and normal) linear lambda terms

Section 4 establishes a bijection between normal planar lambda terms and rooted planar
maps, relying on an inductive classification of rooted planar maps due to Tutte. On the
other hand, rooted maps also have a very concrete topological interpretation. So, for the
purpose of explaining the bijection – as well as for better understanding the motivation for
studying normal planar lambda terms in the first place – it is helpful to have an analogous
graphical representation of linear lambda terms.

The representation we will use is a variation of an old representation sometimes referred
to as lambda-graphs with back-pointers [2, 20, 32], and which itself can be seen as a variation
on linear logic proof-nets [10] adapted to the special case of linear lambda calculus [13].
Other than some superficial syntactic differences, the main refinement we introduce is
the addition of a coloring protocol that exactly reflects the restriction of the diagrams
to normal and neutral linear lambda terms. Rather than presenting these diagrams as
“colored lambda-graphs” or “colored proof-nets”, however, one aim of the next section is to
explain lambda-graphs within the well-understood framework of string diagrams, which
were originally introduced by Joyal and Street [16] as a categorical formalization of many
different kinds of diagrammatic reasoning (such as Penrose diagrams in physics). As far
as we know, this rational reconstruction of lambda-graphs is new, although the ideas we
present are quite simple – just enough to motivate the coloring protocol. We will try to
keep the exposition relatively elementary, but some background in category theory and
lambda calculus may be helpful for reading Section 3.1. On the other hand, the intrepid
reader may try skipping straight to Figures 4 and 5 (in Section 3.2) to get a quick feel for
the colored diagrams, before heading to Section 4 where we make extensive use of this
graphical language.

3.1. From reflexive objects to lambda-graphs. Our starting point is the insight, due to
Dana Scott [29], that whereas terms of simply-typed lambda calculus can be interpreted
as morphisms in arbitrary cartesian closed categories (see, e.g., [17]), terms of pure (or
“untyped”) lambda calculus can also be modelled internally to a cartesian closed category,
given an object of that category equipped with a certain special structure (turning it into a
so-called reflexive object).

Let us recall (for background and details see [19]) that a cartesian closed category can be
described as a closed symmetric monoidal category in which the monoidal structure is cartesian:



A CORRESPONDENCE BETWEEN ROOTED PLANAR MAPS AND NORMAL PLANAR LAMBDA TERMS 11

• A monoidal category is a category C equipped with a tensor product and unit operation

• : C × C → C I : 1→ C

which are associative and unital up to coherent isomorphism.
• It is closed if in addition it is equipped with left and right residuation operations

\ : Cop
× C → C / : C × Cop

→ C

which are right adjoint to the tensor product in each component:

C(y, x \ z) � C(x • y, z) � C(x, z / y)

Note that this is equivalent to the existence of a pair of natural transformations

C(y, x \ z) C(x • y, z)
λx

y,zoo
ρ

y
x,z // C(x, z / y)

together with a pair of evaluation maps

x • (x \ z)
levalx,z // z (z / y) • y

revaly,zoo

satisfying equations

((idx • λ
x[ f ]); leval) = f = ((ρy[ f ] • idy); reval)

g = λx[(idx • g); leval] ρy[(h • idy); reval] = h
for all morphisms f : x • y→ z and g : y→ x \ z and h : x→ z / y.
• It is symmetric if there is a family of isomorphisms

γx,y : x • y ∼
→ y • x

which are involutive in the sense that (γx,y;γy,x) = idx•y for all x, y ∈ C, and which satisfy
a few additional, natural equations.
• It is cartesian if the tensor product coincides with the categorical product, this meaning

that we have a natural isomorphism

C(x, y • z) � C(x, y) × C(x, z).

Note that this is equivalent to the existence of a family of duplication and erasure operations

∆x : x→ x • x
ex : x→ I

satisfying certain natural equations.
Any cartesian monoidal category is also symmetric, and the tensor product is usually
written x • y = x × y and called a categorical product (or simply a product), while the unit is
written I = 1. In a closed cartesian monoidal category (more often called a cartesian closed
category, or “ccc”), the left and right residuals, which are isomorphic, are usually written
x \ y � y / x = yx and called exponential objects.

Now, Scott defined a reflexive object in a ccc C as an object u ∈ C equipped with a pair of
morphisms

u
A // uu
L

oo
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such that the L; A = iduu . The idea is that the two morphisms A and L model the operations
of application and lambda abstraction, respectively, while the equation

L; A = iduu (3.1)

models β-conversion (or more precisely β-equivalence). A trivial reflexive object in the
cartesian closed category of sets and functions takes u to be the one-element set 1 = {∗},
with L and A witnessing the isomorphism 11 � 1. In fact, for cardinality reasons, this is the
only reflexive object in the category of sets and functions. On the other hand, Scott also
gave an explicit construction of a non-trivial model of the pure lambda calculus by taking
u = P(N) to be the lattice of subsets of the natural numbers, and uu to be not the space of all
functions P(N)→ P(N), but rather only those functions preserving directed joins [28]. In
terms of the abstract axiomatization introduced in [29], Scott’s (earlier) construction could
be interpreted as building a reflexive object in the cartesian closed category of domains and
continuous functions.

It is also possible to consider a dual equation

idu = A; L (3.2)

modeling η-equivalence, which induces an isomorphism uu � u, but Scott’s definition of
reflexive object (and his original model in [28]) only required that uu be a retract of u. A
simple but important observation, however, is that the principle of α-equivalence is valid by
construction even without either equation (3.1) or (3.2), since the definition itself involves
only the two operations A and L, with no mention of formal variables.

The idea here is closely related to a technique sometimes used in programming
languages and proof assistants under the heading of higher-order abstract syntax (HOAS).
Since a reflexive object lives inside a ccc, and since terms of simply-typed lambda calculus may
be interpreted in any ccc, we can use lambda calculus itself, in addition to the operations A
and L, in order to construct morphisms in C denoting pure lambda terms. For example, the
closed lambda term

λx.xx
may be encoded in C as the morphism ε[λx.xx] : 1→ u defined by

ε[λx.xx] = λu[∆; (A × idu); reval]; L (3.3)

where we have applied the “currying” transformation λu to the morphism

u
∆u // u × u

A×idu // uu
× u reval // u

to obtain a morphism 1→ uu, and then composed with the operation L : uu
→ u. But this

can be more slickly written simply as

ε[λx.xx] = L(λ̄x.A(x)@x)

where the “λ̄” and “@” in the definition of ε[t] correspond to lambda abstraction and
application interpreted by appeal to the “meta-level”, so to speak – in other words,
translated mechanically into the more explicit definition (3.3) by invoking the ccc structure
of C. Similarly, the closed term

t = (λx.xx)(λy.y)
may be encoded in C as the morphism (again of type 1→ u)

ε[t] def
= A(L(λ̄x.A(x)@x))@(L(λ̄y.y))
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and now by purely equational reasoning we can verify, for example, that the morphism
encoding t is equal to the morphism encoding λy.y:

ε[t] = A(L(λ̄x.A(x)@x))@(L(λ̄y.y)) (by definition)

= (λ̄x.A(x)@x)@(L(λ̄y.y)) (by 3.1)

= A(L(λ̄y.y))@(L(λ̄y.y)) (by ccc axioms)

= (λ̄y.y)@(L(λ̄y.y)) (by 3.1)

= L(λ̄y.y) (by ccc axioms)
= ε[λy.y] (by definition)

Although it might at first appear circular, this kind of trick is often useful in practice.
Our next step is to observe that Dana Scott’s idea also works perfectly well for modelling

linear lambda calculus in its pure, untyped form, if one simply drops the condition that C
be a ccc and replaces it by the weaker condition that C be a closed symmetric monoidal
category (smcc). As in a ccc, in a smcc the left and right residuals are isomorphic x \ y � y /x,
and they are sometimes denoted collectively by [x, y] (matching the notation for the internal
hom in category theory) or by x( y (matching the notation for the implication connective
in linear logic). For what comes next, however, it will be important for us to maintain the
distinction between the two isomorphic forms of residuals, and moreover to give an explicit
name

σx,y : x \ y ∼
→ y / x

for the isomorphism from the left residual to the right residual.

Definition 3.1. A linear reflexive object in a smcc C is an object u ∈ C equipped with a pair of
morphisms

u \ u L // u A // u / u
such that L; A = σu,u.

There are certainly some degrees of freedom in this definition that one might consider. For
example, one could imagine defining a linear reflexive object as an object equipped with a
pair of morphisms

u / u L′ // u A′ // u \ u

such that L′; A′ = σ−1
u,u, or perhaps as one equipped with a pair

u
A′′ // u / u
L′′

oo

such that L′′; A′′ = idu/u, and so on. We will come back to the difference between these
conventions later, but for now we want to take Definition 3.1 as given, and explain how
to go from there to a graphical representation of linear lambda terms, by applying the
principles of string diagrams more or less mechanically.

We refer to Selinger’s survey article [31] for background reading. Briefly, the basic
starting point for string diagrams is to dualize the usual object-and-arrow diagrams of
category theory, so that objects become (possibly labelled) wires (or “strings”), and arrows
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become nodes between wires:

x F // y { F

x

y

Moreover, composition of morphisms is depicted by connecting diagrams end-to-end,

x F // y G // z {
F

x

y

G

z

while the tensor product is depicted by laying out diagrams in parallel (with the tensor unit
represented by the blank page):

x • z F•G // y • w {

x

F

y

z

w

G I I // I {

In general, string diagrams may be treated up to deformation, meaning roughly that it is
possible to freely stretch and bend wires and move around nodes, so long as the interface of
the diagram (i.e., the boundary of input and output wires) remains fixed (for a more precise
definition, see [16]). For example, all of the diagrams

F

G

= F G =
F

G

are essentially interchangeable, where the isotopy of diagrams is justified by the equations

(F; id) • (id; G) = (F • id); (id • G) = F • G = (id • G); (F • id) = (id; F) • (G; id)

which hold in any monoidal category.
This basic setup may then be developed by supposing that the monoidal category

is equipped with additional structure. For example, the symmetry isomorphisms of a
symmetric monoidal category are naturally depicted as crossing wires:

x • y
γx,y // y • x {

x y

y x

Representing the evaluation maps and currying transformations of a smcc is in general a bit
more subtle (cf. [3]), but there is a special class of closed symmetric monoidal categories
known as compact closed categories, which have a particularly simple and elegant graphical
language. A symmetric monoidal category is said to be compact closed if every object is
equipped with left and right duals, where a right dual of x ∈ C is an object x∗ ∈ C together
with a pair of maps

I
η
// x • x∗ x∗ • x ε // I
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such that (η • idx); (idx • ε) = idx and (idx∗ • η); (ε • idx∗) = idx∗ , and similarly a left dual of
x ∈ C is an object ∗x ∈ C together with a pair of maps

I
η′
// ∗x • x x • ∗x ε′ // I

such that (η′ • id∗x); (id∗x • ε′) = id∗x and (idx • η′); (ε′ • idx) = idx. Note that any compact
closed category is also closed (i.e., has left and right residuals), by defining

x \ y def
= ∗x • y y / x def

= y • x∗ (3.4)

and using the maps η(′) and ε(′) to build the associated currying transformations and
evaluation maps. Also note that whenever both left and right duals exist in a symmetric
monoidal category they are necessarily isomorphic, and hence the isomorphism ∗x � x∗
holds in any compact closed category.

String diagrams for compact closed categories (cf. [31, §4]) are constructed by first
assigning orientations to the wires to distinguish an object from its duals:

x ∈ C { x x∗, ∗x ∈ C { x

Then, the η(′) and ε(′) maps are depicted as oriented caps and cups,

I
η
// x • x∗ {

x x
x∗ • x ε // I {

x x

I
η′
// ∗x • x {

x x
x • ∗x ε′ // I {

xx

while the equations governing them correspond to “straightening” the wires:

(η • idx); (idx • ε) = idx { = (idx∗ •η); (ε • idx∗) = idx∗ { =

(η′•id∗x); (id∗x•ε′) = id∗x { = (idx•η
′); (ε′•idx) = idx { =

Now, since every compact closed category is also a smcc, we can ask what it means for
a compact closed category C to admit a linear reflexive object. Expanding Definition 3.1
in terms of the canonical description (3.4) of left and right residuals in a compact closed
category, a linear reflexive object in C consists of an object u ∈ C equipped with a pair of
morphisms

∗u • u L // u A // u • u∗

such that L; A = σu,u, where the map σu,u is constructed using the symmetry and the
isomorphism ∗u � u∗. In turn, following the diagrammatic conventions for compact closed
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categories, such a structure corresponds to a pair of basic “components” L and A,

∗u • u L // u { L u A // u • u∗ { A

satisfying the following graphical equation:

L; A = σu,u {
L

A

=

To see how this plays out in the interpretation of linear lambda terms, let us first take the
step of rendering L-nodes by black vertices and A-nodes by white vertices, so as to make
the diagrams a bit more evocative:

=

As suggested by the orientations on the wires, L-nodes and A-nodes can actually be
interpreted as operations on lambda terms, with certain wires representing inputs and other
wires representing outputs. We can visualize this by annotating the wires explicitly with
input and output terms:1

x t

λx.t

t

ut(u)

x t

(λx.t)(u) u

=

x t

t[u/x] u

(LR)

Intuitively, an L-node emits a fresh variable x on one wire, then binds x in the term t on
its incoming wire to produce a term λx.t on its other outgoing wire. Similarly, an A-node
takes two lambda terms t and u on its incoming wires, and outputs the application t(u)
on its outgoing wire. Moreover, these interpretations are compatible with the graphical
interpretation of β-conversion.

Formally, suppose we are given a lambda skeleton p ∈ S(i) and a derivation π of
[Γ]t ∈ Λ1(p), witnessing the fact that t is a linear lambda term decorating p. Then whenever
we have a linear reflexive object (u,L,A) in a smcc C, first of all we can define a morphism
~π�u : ~Γ�u → u in C, where ~Γ�u ∈ C is defined inductively by ~x�u = u, ~Γ,∆�u =

1These annotations are not to be confused with the convention of labelling wires by objects of the category.
Here, every wire represents either the linear reflexive object u or its duals ∗u � u∗, and so the orientations suffice
as object labels.



A CORRESPONDENCE BETWEEN ROOTED PLANAR MAPS AND NORMAL PLANAR LAMBDA TERMS 17

~Γ�u • ~∆�u, ~·�u = I. Moreover, we can define a diagram πd with i incoming wires and one
outgoing wire

t

πd

xi x1· · ·
···

which can be seen as a representation of the image of ~π�u in the free compact closed
category over C. The morphism ~π�u and diagram πd are defined by induction on π as
follows:

Case π = [x]x ∈ Λ1( ) V : Then ~π�u = u
idu // u and πd =

x

x

. (Draw an oriented wire.)

Case π =

π1
[Γ]t ∈ Λ1(p)

π2
[∆]u ∈ Λ1(q)

[Γ,∆]t(u) ∈ Λ1(p(q)) A : Then

~π�u = ~Γ�u • ~∆�u
~π1�u•~π2�u // u • u

A•idu // (u / u) • u reval // u andπd = t u

πd
1

Γ

πd
2

∆

t(u)

.

(Connect the outgoing wire of πd
2 and the outgoing wire of πd

1 to an A-node.)

Case π =

π1
[x,Γ]t ∈ Λ1(p)

[Γ]λx.t ∈ Λ1(λ .p) L : Then ~π�u = ~Γ�u
λu[~π1�u]// u \ u L // u andπd =

t

x

πd
1

Γ

λx.t

.

(Connect the outgoing wire and the leftmost incoming wire of πd
1 to an L-node.)
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Case π =

π1
[Γ, y, x,∆]t ∈ Λ1(p)
[Γ, x, y,∆]t ∈ Λ1(p) T : Then

~π�u = ~Γ�u • u • u • ~∆�u
id~Γ�u•γu,u•id~∆�u// ~Γ�u • u • u • ~∆�u

~π1�u// u and πd =
πd
1

t

Γ y x ∆

.

(Crossover the input wires representing x and y.)
Here are some example lambda terms together with their annotated diagrams:

[x]λy.yx {

x

λy.yx

y

yx
[u]λv.(λw.wv)u {

u

v

w

wv

λw.wv

(λw.wv)u

λv.(λw.wv)u

The nice thing is that once we’ve defined the inductive procedure for translating linear
lambda terms (i.e., decorated lambda skeletons) into string diagrams, we can work directly
with the diagrams in a much more abstract way. For instance, by the principle ofα-conversion,
the following are also perfectly legal annotations of the above diagrams:

u

λv.vu

v

vu

a

b

c

cb

λc.cb

(λc.cb)a

λb.(λc.cb)a

By looking at the underlying wiring rather than the annotations (which are merely a guide
for relating the diagrams to traditional syntax), we can represent lambda terms intrinsically
up to renaming of variables. Likewise, another important advantage of string diagrams
is that substitution can be represented simply by plugging one diagram into another. For
example, the diagram
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represents the lambda term [x]λv.(λw.wv)(λy.yx) that results from substitution of the term
[x]λy.yx for the variable u in the term [u]λv.(λw.wv)u.2

We conclude this section with a few historical and technical remarks:
(1) The graphical language we have derived using the general mechanisms of string

diagrams really is not much more than the linear fragment of the language of lambda-
graphs (sometimes called “lambda-graphs with back-pointers” [2]). In particular,
the idea of representing lambda terms as directed graphs with explicit links from a
variable to its binding lambda abstraction may be traced at least as far back as Richard
Statman’s thesis [32], if not further.3 Moreover, linear lambda-graphs have a very simple
relationship with proof-nets for the implicative fragment of linear logic [13].

(2) However, something to emphasize is that string diagrams are not simply special kinds
of directed graphs (with two kinds of vertices, and with open edges representing inputs
and outputs), but rather they are graphs drawn on the page, and so the order in which
wires are positioned around L-nodes and A-nodes matters for determining planarity.
Observe that the three example diagrams we showed above are all planar diagrams in
the sense that they involve no crossing wires, and indeed the three linear lambda terms

[x]λy.yx [u]λv.(λw.wv)u [x]λv.(λw.wv)(λy.yx)

are all planar in the sense of Definition 2.3. On the other hand, the β-reduction of
[u]λv.(λw.wv)u results in a term [u]λv.uv which is not planar in the sense of Definition 2.3,
and whose string diagram is not planar in the sense that it contains a crossing:

u

v

w

wv

λw.wv

(λw.wv)u

λv.(λw.wv)u

= v

uv

λv.uv

u

Now, we need to be a bit careful here: if planarity is really a topological invariant of
string diagrams, technically speaking it does not make sense for two diagrams to be
equivalent when one is planar and the other is not. But this just reflects the fact that
β-reduction is naturally oriented, and our definition of a linear reflexive object (following
the pattern of Scott’s original definition of a reflexive object in a ccc) does not take that
into account. A more “honest” version of Definition 3.1 would take place inside a higher
category, so that the rule of β-reduction could be more faithfully described as an oriented
cell

L; A⇒ σu,u

rather than as an equation (cf. [30]). On the other hand, we do not need to pursue this
additional level of sophistication here, because in the next section we will describe a

2Note that these two advantages – the representation of terms modulo α-equivalence, and the ability to
easily express substitution – are well-known arguments for the use of HOAS in proof assistants.

3Pierre Lescanne (personal communication) notes that a similar convention appears in the opening chapter
of Bourbaki’s Theory of Sets, as a variable-free syntax for logical formulas involving quantifiers.
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simple way of restricting to only the string diagrams which represent β-normal lambda
terms, such that this question does not even arise.

(3) Since order matters, some alternative definitions of linear reflexive object would have
given rise to a different notion of planarity. For example, if we had asked for a pair of
morphisms

u
A′′ // u / u
L′′

oo

such that L′′; A′′ = idu/u (or L′′; A′′ ⇒ idu/u), then the various components would be
drawn as follows:

xt

λx.t

t

ut(u)

xt

(λx.t)(u) u

=

xt

t[u/x] u

(RL)

In the literature on lambda-graphs, both of the alternative conventions (LR) and (RL)
appear. For example, Guerrini [13] displays β-reduction as a crossing, while Mairson [20]
displays it as a planar rewriting (and Buliga [6] considers both possibilities). Notably,
Abramsky [1] has discussed a notion of planarity that coincides with the fragment of
linear lambda terms whose string diagrams are planar by the (RL) convention. For
example, the two terms [x]λy.xy and [x]x(λy.y) are planar according to Abramsky’s
definition (“RL-planar”), whereas the (“LR-planar”) term [x]λy.yx is not RL-planar.

There is actually a trivial bijection between LR-planar terms and RL-planar terms,
based on the fact that both are fully determined by their lambda skeletons. Indeed, it is
possible to adapt the algorithm described in Figure 1 to annotate a lambda skeleton with
an RL-planar term, where the only modification needed is that instead of traversing
applications left-to-right, they are traversed right-to-left (hence the mnemonics “LR”
and “RL”). Therefore, at this level of abstraction, the choice of planarity convention
might seem like just a matter of taste. However, we believe the (LR) convention to be
more natural when viewing planarity as a property of linear lambda terms, rather than
as defining an independent “planar lambda calculus”. We will provide some evidence
for this view in Section 4, by showing that normal LR-planar lambda terms admit a
computationally-natural analogue of Tutte decomposition. In particular, although the
said bijection between LR-planar terms and RL-planar terms preserves the property of
being β-normal (so that normal RL-planar terms are also in size-preserving bijection
with rooted planar maps), it considerably changes the computational structure of terms.

(4) Finally, let us point out that not every possible string diagram composed out of L-nodes
and A-nodes results in a valid linear lambda term. For example, the diagram
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xy

λy.λz.z

z

λz.z
y

x

(xy)(λy.λz.z)

only represents a pseudo lambda term,4 which is ill-scoped in the sense that the variable
y is used before it is bound by λy. This is a phenomenon which is well-known in the
literature on lambda-graphs (see, e.g., the scoped lambda-graphs of [2]), as well as in the
literature on proof-nets (where it leads to so-called correctness criteria). In terms of the
categorical semantics, this corresponds to the fact that arbitrary diagrams composed of
L-nodes and A-nodes can be interpreted as morphisms in any compact closed category
containing a linear reflexive object, but not every smcc is compact closed. Again, though,
this is perfectly fine for our purposes here, since we will always be able to verify that
the diagrams we consider come from the interpretation of a linear lambda term.

3.2. A coloring protocol for neutral and normal terms. Now that we have explained the
semantic basis of lambda-graphs as string diagrams for linear lambda terms, we will
move more quickly in describing how to color these string diagrams to obtain a graphical
representation of neutral and normal terms. Our coloring protocol is again derived
mechanically from a refinement of the definition of a linear reflexive object.

Definition 3.2. A linear reflexive pair in a smccD is a pair of objects B,R ∈ D equipped with
a quadruple of morphisms

B \ R ` // R
c // B
s

oo
a // B / R

such that s; c = idB and `; c; a = (idB \ c); σb,b; (idB / c).

This is actually a “refinement” in a technical sense: if one ignores the morphism c : R→ B
and associated equations (which we shall explain shortly), this is essentially a linear variation
of the refinement type signature originally presented by Pfenning in [25]. There, he gave an
elegant formulation of the standard inductive definition of neutral and normal lambda
terms (which we recalled in Section 2), as a refinement of the higher-order abstract syntax
representation of lambda terms.5 Our categorical reformulation is based on a functorial
view of type refinement [23], the idea being that one should view a linear reflexive pair in
some smcc D as living over a linear reflexive object in another smcc C, equipped with a
(smcc) functor |−| : D→ C such that

|B| = |R| = u |`| = L |s| = idu = |c| |a| = A.

This definition of linear reflexive pair may also be compared to Melliès’ definition of
Frobenius pair [22], which is a refinement of the notion of a Frobenius monoid.

4Thanks to Ed Morehouse for this example.
5In fact, he considered a slightly more sophisticated, dependently-typed HOAS representation of natural

deduction proofs (which are isomorphic to simply-typed lambda terms), and its refinement to represent normal
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x t

λx.t

t

t

t

t

t

t(u) u

tx

u(λx.t)(u)

=

x t

ut[u/x]

t

t

=

t

t

Figure 4. Basic components and reduction rules representing a linear reflex-
ive pair, annotated with their corresponding actions on lambda terms.

In Figure 4, we describe the graphical language that results from interpreting a linear
reflexive pair in a compact closed category (reading the components left to right as `, s,
c, and a, followed by the two equations). The recipe is precisely analogous to the one we
detailed in Section 3.1, but we comment on a few points:
(1) The objects B and R are interpreted respectively as blue and red oriented wires. To

increase visual contrast and make the diagrams readable without color, we place an
extra stroke on red wires.

(2) `-nodes are a colored version of L-nodes, where reading counterclockwise the wires run
as follows: outgoing-red, incoming-red, outgoing-blue.

(3) a-nodes are a colored version of A-nodes, where reading counterclockwise the wires run
as follows: incoming-blue, outgoing-blue, incoming-red.

(4) The annotations are derived from the forgetful functor |−| : D→ C described above. In
particular, observe that s-nodes and c-nodes act as identity operations on lambda terms.

Moreover, by a simple extension of the inductive procedure described in Section 3.1, any
neutral or normal linear lambda term [xi, . . . , x1]t may be assigned a morphism of the form
~π� : B • . . . • B→ B or ~π� : B • . . . • B→ R in any smcc with a linear reflexive pair, as well
as a corresponding colored diagram of the form

t

πd

xi x1· · ·
···

or

t

πd

xi x1· · ·
···

.

Diagrams of such neutral or normal terms have the additional property of containing no
c-nodes, and in fact, all of the diagrams that we consider below have no c-nodes – so it is
worth commenting on the presence of the operation c : R→ B and its associated equations
in Definition 3.2.

In proof theory and type systems, this technique is actually well-established (cf. [8, 26]):
starting from a language restricted to only neutral and normal terms, one can represent
arbitrary terms by adding “virtual” coercions from normal to neutral, which can then be
eliminated by a process analogous to cut-elimination for sequent calculus. In the presence

and neutral proofs. But the adaptation of the refinement type signature in [25] to the case of pure lambda
calculus is straightforward.
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x

x

x(λy.y)

x

λy.yx

x

x(λy.y(λz.z))

x

x(λy.λz.zy)

x

(x(λy.y))(λz.z)

x

λy.y(x(λz.z))

x

λy.y(λz.zx)

x

λy.(y(λz.z))x

x

λy.(yx)(λz.z)

x

λy.λz.z(yx)

x

λy.λz.(zy)x

x

Figure 5. String diagrams of the 12 normal planar lambda terms of size ≤ 3
(with one free variable). We annotate the incoming wire with the name of
the free variable, and the outgoing wire with the represented lambda term.

of c-nodes, any linear lambda term can be represented by many different diagrams, but
the normalization theorem for linear lambda calculus implies that these can all be reduced
to a unique c-node-free one. However, we are not going to study normalization in this
paper, and the only reason we give the general definition of a linear reflexive pair and its
associated graphical language is because these are natural refinements of the definition and



24 N. ZEILBERGER AND A. GIORGETTI

associated graphical language of a linear reflexive object. In the next section we will consider
string diagrams representing normal linear lambda terms, hence which are c-node-free,
and moreover we will be mainly interested in the planar case. Figure 5 shows all such
(c-node-free, planar) diagrams for the 12 normal planar lambda terms of size ≤ 3, while
Appendix A shows all diagrams for the 54 normal planar terms of size = 4.

4. Relating normal planar lambda terms to rooted planar maps
via Tutte decomposition

In this section we give our main result, a size-preserving bijection between normal planar
lambda terms and rooted planar maps. By “normal planar lambda term”, we mean a linear
lambda term which
(1) is planar in the sense of Definition 2.3,
(2) is equipped with an R-coloring in the sense of Definition 2.6, and
(3) has one free variable.
Our proof relies on an inductive characterization of rooted planar maps originally described
by Tutte [34], so we begin by recalling his analysis in Section 4.1 (for another presentation,
see Flajolet and Sedgewick [9, VII.8.2]). The idea will then be to reconstruct Tutte’s analysis
in the setting of linear lambda calculus, to obtain a “parallel” decomposition of normal
planar lambda terms. We show how to do this in Section 4.2, using both traditional lambda
calculus notation (following the conventions of Section 2) as well the string diagrams of
Section 3. Finally, in Section 4.3 we explain how to combine these parallel analyses to obtain
a size-preserving bijection between rooted planar maps and normal planar lambda terms.

4.1. Tutte decomposition of rooted planar maps. A (topological) map M on a closed, oriented
surface S [15, 18] is a partition of S into three finite sets of cells V, E, and F, such that: a
vertex v ∈ V is a point of S, an edge e ∈ E is a simple open Jordan arc in S whose extremities
are vertices, and a face f ∈ F is a connected component of the complement of V ∪ E in S,
homeomorphic to an open disk.

An edge equipped with one of two possible orientations is called a dart. Each dart d
has an opposite dart −d, corresponding to the same edge with the opposite orientation. The
initial vertex (source) of a dart and the face to the left of a dart are both said to be incident to
that dart. An isthmus (resp. loop) is an edge whose two orientations are incident to the same
face (resp. vertex). The degree of a vertex or face counts the total number of darts incident to
that vertex or face (so that an edge is counted twice in the degree of a face if it is an isthmus,
and twice in the degree of a vertex if it is a loop).

A planar map is a map on the sphere. Every planar map M has an underlying graph
which is a connected planar graph, possibly with loops and multiple edges. A degenerate
example of a planar map is the vertex map – containing a single vertex, no edges, and a single
face – while any other planar map must contain at least one edge. By definition, a rooting of
a planar map M consists of a choice of a dart, unless M is the vertex map, in which case it is
also considered rooted by default. Then, a rooted planar map is a planar map equipped with
a rooting, treated up to root-preserving homeomorphism. Tutte’s analysis begins by noting
that any rooted planar map M can be categorized into one of three possible classes:
(1) M is the vertex map.
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A

B

C

(a) Map with isthmic root.

A
B

(b) Map with non-isthmic root.

A

B

(c) Map with non-isthmic root.

Figure 6. Examples of rooted planar maps (root marked A).

(2) M has an isthmic root: deleting the root edge separates the underlying graph into two
connected components.

(3) M has a non-isthmic root: the underlying graph remains connected when the root edge
is deleted.

The isthmic and non-isthmic cases are illustrated in Figure 6, with root dart A indicated by
an arrow. In these diagrams and more generally, we refer to the face incident to (i.e., to the
left of) A as the outer face of M (following the convention that we always draw rooted planar
maps on the page with the “infinite” face to the left of the root). Tutte’s analysis goes on to
describe how any map which is not a vertex map may be decomposed in terms of smaller
rooted planar maps, by a deterministic procedure:
(a ) Isthmic root. Let M1 and M2 be the two planar maps resulting from deleting the isthmic

root A. Each of M1 and M2 is either the vertex map, or else may be rooted by walking
along the outer face of M and choosing respectively the dart immediately following −A
and A (marked B and C in Figure 6a).

(b) Non-isthmic root. Let M1 be the planar map resulting from deleting the non-isthmic
root A. Again, if it is the vertex map then we are done, and otherwise M1 can be rooted
by taking the dart (marked B in Figure 6b) immediately following −A when walking
along its incident face, unless that dart is −A itself, in which case we take the dart
(marked B in Figure 6c) immediately following A along the outer face.

Note that Tutte [34] used slightly different conventions for rooting submaps than what we
describe here, but for the purpose of counting rooted planar maps (as was Tutte’s original
application), the precise convention used does not matter so long as it is deterministic.

Now, let us view (a) as an operation id taking a planar map M with an isthmic root as
input, and decomposing it into a pair of rooted planar maps M1 and M2. There is clearly a
reverse operation ic, which given any pair of rooted planar maps M1 and M2 joins them
together to create a rooted planar map with an isthmic root (note that this binary operation
is “anti-commutative”, in the sense that swapping the arguments reverses the orientation of
the root dart). We have

id(ic(M1,M2)) = (M1,M2)
for any pair of rooted planar maps M1 and M2, and conversely

M = ic(id(M))

for any planar map M with an isthmic root. Moreover, we have that the number of edges in
ic(M1,M2) is equal to one plus the sum of the numbers of edges in M1 and M2, and that the
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degree of the outer face of ic(M1,M2) is equal to two plus the sum of the degrees of the outer
faces of M1 and M2 (since the outer face is incident to both the root dart and the opposite
dart: see Figure 6a, which shows a map with outer face degree nine, constructed from two
maps with outer face degrees four and three, respectively).

Similarly, let us view (b) as an operation nd taking a rooted planar map M with a
non-isthmic root as input, and producing a rooted planar map M1 as output. Going in the
other direction, there is a family of operations n(k)

c , which given any rooted planar map M1
with outer face of degree ≥ k, constructs a rooted planar map with a non-isthmic root as
follows: starting at the source vertex x of the root dart, walk backwards (i.e. in the opposite
direction of the root dart) k darts along the outer face of M1 until reaching a vertex y, and
then add a new edge between x and y with the new root dart oriented from x to y, in such a
way that the border of the new root face is composed in this order of the new root dart and
the sequence of k darts composing the reverse walk. (For example, the maps in Figures 6b
and 6c may be constructed as n(8)

c (M1) and n(11)
c (M1), respectively, for the same underlying

rooted planar map M1 of outer face degree 11.)
We have that

nd(n(k)
c (M1)) = M1

for all rooted planar maps M1 and k bounded by the degree of the outer face of M1, and
conversely, that there exists a k such that

M = n(k)
c (nd(M))

for any rooted planar map M with a non-isthmic root. Moreover, we have that the number
of edges in n(k)

c (M1) is equal to one plus the number of edges in M1, and that the degree of
the outer face of n(k)

c (M1) is k + 1.
This combination of observations yields a complete characterization of rooted planar

maps, by induction on the number of edges:

Theorem 4.1 (Tutte [34]). Let M be a rooted planar map with e(M) edges and outer face degree
o(M). Then exactly one of the following cases must hold:

(i) M is the vertex map and e(M) = o(M) = 0.
(ii) M = ic(M1,M2) for some M1 and M2 such that e(M) = 1 + e(M1) + e(M2) and o(M) =

2 + o(M1) + o(M2).
(iii) M = n(k)

c (M1) for some M1 and 0 ≤ k ≤ o(M1) such that e(M) = 1 + e(M1) and o(M) = k + 1.

4.2. Decomposition of normal planar lambda terms. Here and below, we write “NLT”
and “NPT” as abbreviations for “normal linear term” and “normal planar term”, respectively,
it being implicit that we always consider lambda terms with exactly one free variable,
unless otherwise stated. (Note that a normal lambda term with an arbitrary number of free
variables can always be seen as one with exactly one free variable, by adding or removing
leading λs.)
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4.2.1. A trichotomy on normal linear terms. NLTs (which may or may not be planar) are
naturally partitioned into three classes, depending on how the free variable is used.

Definition 4.1. We say that [x]t is the identity term if t = x, that it is function-open if x(u) is a
subterm of t (for some u), and that it is value-open if u(x) is a subterm of t (for some u).

Proposition 4.2. Every NLT is either the identity term, function-open, or value-open (mutually
exclusively).

Proof. Immediate by induction, after generalizing the induction hypothesis to consider
linear lambda terms with an arbitrary number of free variables. Observe that in pure
lambda calculus we have terms such as [x]λy.x which fail to fall into any of these classes,
or terms such as [x]λy.y(xx) which classify as both function-open and value-open, but all
such counterexamples are ruled out by the requirement that every variable is used exactly
once.

It is informative to restate this classification in terms of linear reflexive pairs and string
diagrams.

Proposition 4.3. Let [x]t be a NLT, let ~π� : B→ R be its interpretation in an smcc with a linear
reflexive pair, and let πd be its corresponding string diagram.

(1) If [x]t is the identity term then ~π� = s and πd = .

(2) If [x]t is function-open then ~π� = (a; f ) for some f : B / R→ R and πd =
f

.

(3) If [x]t is value-open then ~π� = (s;λ[a; reval]; f ) for some f : B \ B→ R and πd =
f

.

Propositions 4.2 and 4.3 apply to arbitrary NLTs, and hence in particular to NPTs. For
example, consider once again the diagrams of the first three NPTs:

x

x

x(λy.y)

x

λy.yx

x

Here we can see that the leftmost diagram corresponds to the identity term, the middle
diagram to a function-open term, and the rightmost diagram to a value-open term. Reading



28 N. ZEILBERGER AND A. GIORGETTI

across the rows of the bottom half of Figure 5, we can quickly check that among the nine
NPTs of size = 3, the first four are function-open and the next five are value-open.

We now consider how to further decompose the function-open and value-open classes,
in the case where the NLT is planar.

4.2.2. The planar function-open case.

Proposition 4.4. Let [x]t be a NPT, let ~π� : B → R be its interpretation in an smcc with a
linear reflexive pair, and let πd be its corresponding string diagram. If [x]t is function-open, then

~π� = (a; (idB/R • (λ[h]; `)); reval; g) for some g : B→ R and h : B→ R, and πd =

g

h

.

Proof. We get half of the factorization by Proposition 4.3(2). For the second half, we reason
that since x is the only free variable in t, the constraint of planarity forces the argument of x
to be a closed NPT, hence of the form λy.u for some u with one free variable y.

Proposition 4.4 suggests a natural way of performing surgery on the diagram of a function-
open NPT, discarding a small piece of πd to obtain a pair of diagrams with the same
interface:

g

h {
g + h (FO)

Moreover, this operation is clearly reversible: given any pair of diagrams with one incoming
blue wire and one outgoing red wire, we can join them together to obtain a diagram of the
original shape:

g

+

h =

g

h

Finally, if we add annotations to the diagrams,

t

g

x

+

u

h

y

=

x

g

t[x(λy.u)/x]

h
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then we can verify that this operation is easily implemented on NPTs: given a pair of
NPTs [x]t and [y]u, we produce a new function-open NPT by replacing x with x(λy.u) in t.
For example, combining [x]x(λy.y) and [x]λy.yx in either order yields the following two
function-open NPTs (after some renaming of variables):

x(λw.w)

x

+

λz.zy

y

=

(x(λy.λz.zy))(λw.w)

x

λy.yx

x

+

z(λw.w)

z

=

λy.y(x(λz.z(λw.w)))

x

4.2.3. The planar value-open case. We begin with an easy observation that holds in the general
value-open case.

Proposition 4.5. If [x]t is a value-open NLT then it must begin with a lambda abstraction, i.e.,
there exists a normal linear term (with two free variables) [y1, x]t′ such that t = λy1.t′.

Proof. Let [Γ]u be the neutral body of [x]t, in the sense of Definition 2.11. By construction, Γ
must be of the form Γ = yi, . . . , y1, x for some i ≥ 0. But since [x]t is value-open, x cannot
be applied in u, and hence the head variable of u (again in the sense of Definition 2.11) is
necessarily distinct from x. This implies that i > 0, and the proposition follows.

Combining Proposition 4.5 with Proposition 4.3, we obtain the following characterization
of value-open NLTs.

Proposition 4.6. Let [x]t be a NLT, let ~π� : B → R be its interpretation in an smcc with a
linear reflexive pair, and let πd be its corresponding string diagram. If [x]t is value-open, then

~π� = (s;λ[a; reval]; g; `) for some g : B \ B→ B \ R, and πd =
g

.
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Based on this knowledge, here is how we can perform surgery on the diagram of a any
value-open NLT to obtain a new diagram with one incoming blue wire and one outgoing
red wire:

g

{

∗ g (VO)

In words, the surgery consists of first removing an s-node, an a-node, and an `-node to leave
a diagram with four dangling wires, then splicing the two blue wires at the top together, and
finally wrapping the blue wire at the bottom back up to the top. In terms of the categorical
semantics, surgery (VO) corresponds to extracting the morphism g : B \ B→ B \ R given by
Proposition 4.6, pre-composing it with the currying of the identity morphism on B,

I
λ[idB] // B \ B

g
// B \ R

and then uncurrying to obtain a morphism B→ R. To borrow terminology from the theory
of programming languages, this combined operation can be described as “plugging g with
the identity continuation”, and we will notate it below by 〈g | idB〉. Finally, in terms of
Proposition 4.5, the surgery has the effect of simply removing the outermost “λy1” and the
application to x.

Although the (VO) surgery works for any NLT, it is clear that it preserves the planarity
of the original diagram. For example, here is a demonstration of surgery on the diagram of
a value-open NPT of size 6 (yielding a function-open NPT of size 5):

λy.(y(λz.z))(λw.λu.λv.(v(uw))x)

x

{

∗

(y(λz.z))(λw.λu.λv.v(uw))

y

In general, the transformation (VO) is not reversible: given a diagram with one incoming
blue wire and one outgoing red wire representing a morphism h : B→ R, in order to invert
the surgery we have to choose a particular factorization h = 〈g | idB〉 of h as a morphism
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g : B \ B→ B \ R plugged with the identity continuation:

h = g

Topologically, such a factorization can be seen as grabbing a blue wire somewhere inside
the diagram of h as a “handle”, and pulling it to the outside. However, in order to
produce a diagram representing a normal planar term, we do not want to consider arbitrary
factorizations h = 〈g | idB〉, but only those factorizations in which the diagram of g is also
planar, so that the result of inverting (VO) will be another NPT. A bit of geometric reasoning
convinces us that such factorizations should correspond precisely to blue wires incident to
the outer region of the diagram, where (by analogy to maps) we say that an oriented wire is
incident to a region if it has that region to the left, and by “outer region” we mean the open
half-plane incident to the incoming and outgoing wires. We shall refer to such blue wires as
the outer neutral handles of the NPT, deferring a more formal description to Definition 4.7
below.

Consider again the function-open NPT which resulted from value-open surgery above:

7

1

5

4

6
2

3

(y(λz.z))(λw.λu.λv.v(uw))

y

Here we have numbered all of the outer neutral handles (while dotting out the remaining
blue wires), starting from the bottom of the diagram and walking backwards (i.e., coun-
terclockwise) along the outer region. Each outer neutral handle corresponds to a way of
factoring the term by “focusing” on a neutral subterm:
(1) [y](y(λz.z))(λw.λu.λv.v(uw))
(2) [y](y(λz.z))(λw.λu.λv.v(uw))
(3) [y](y(λz.z))(λw.λu.λv.v(uw))
(4) [y](y(λz.z))(λw.λu.λv.v(uw))
(5) [y](y(λz.z))(λw.λu.λv.v(uw))
(6) [y](y(λz.z))(λw.λu.λv.v(uw))
(7) [y](y(λz.z))(λw.λu.λv.v(uw))
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4

1

2

3

λz.λw.(wz)(λu.u(λv.vy))

y (1) [y]λz.λw.(wz)(λu.u(λv.vy))
(2) [y]λz.λw.(wz)(λu.u(λv.vy))
(3) [y]λz.λw.(wz)(λu.u(λv.vy))
(4) [y]λz.λw.(wz)(λu.u(λv.vy))

t1 = [x]λy.λz.λw.((wz)(λu.u(λv.vy)))x
t2 = [x]λy.λz.λw.(wz)(λu.(u(λv.vy))x)
t3 = [x]λy.λz.λw.(wz)(λu.u(λv.(vy)x))
t4 = [x]λy.λz.λw.(wz)(λu.u(λv.v(yx)))

Figure 7. Diagram of a NPT with outer neutral handles indicated and
numbered. On the right, we show the associated factorizations of the NPT into
a neutral subterm and its surrounding context, as well as the corresponding
value-open NPTs which result from inverting the transformation (VO).

Performing an inverse (VO) operation while focused on any of these subterms yields a
different value-open NPT:

t1 = [x]λy.((y(λz.z))(λw.λu.λv.v(uw)))x
t2 = [x]λy.(y(λz.z))(λw.λu.λv.(v(uw))x)
t3 = [x]λy.(y(λz.z))(λw.λu.λv.v((uw)x))
t4 = [x]λy.(y(λz.z))(λw.λu.λv.v(u(wx)))
t5 = [x]λy.((y(λz.z))x)(λw.λu.λv.v(uw))
t6 = [x]λy.(y(λz.zx))(λw.λu.λv.v(uw))
t7 = [x]λy.((yx)(λz.z))(λw.λu.λv.v(uw))

In turn, performing (VO) on any of the tk (i.e., erasing x and removing the leading λy) yields
back the original function-open NPT. Observe that certain ways of focusing on a neutral
subterm are excluded because they do not correspond to outer neutral handles. For example,
attempting to perform an inverse (VO) operation starting from the factorization

[y](y(λz.z))(λw.λu.λv.v(uw))

would indeed result in a value-open NLT,

[y](y(λz.z))(λw.λu.λv.v(uw)) { [x]λy.(y(λz.z))(λw.λu.λv.v((ux)w))

but one which is not planar. In Figure 7 we give another example of a NPT with outer
neutral handles indicated, as well as the associated value-open NPTs that arise by inverting
(VO).

With that by way of geometric intuition, we can now give a formal specification of
the outer neutral handles of a NPT, defining these by induction for any neutral or normal
planar term with any number of free variables.

Definition 4.7. Let [Γ]t be a neutral or normal planar lambda term. A neutral handle of [Γ]t
is a factorization of t into a neutral subterm and its surrounding context. The set O(π) of
outer neutral handles is defined by induction on the coloring π of [Γ]t, as follows:
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Case πd =
x

x

: Then O(π) = { x } .

Case πd = t u

πd
1

Γ

πd
2

∆

t(u)

:

Then O(π) =

{ t(u) } ∪ { t(H) | H ∈ O(π2) } ∪ {H(u) | H ∈ O(π1) } if |∆| = 0
{ t(u) } ∪ { t(H) | H ∈ O(π2) } if |∆| > 0

.

Case πd =
t

t

πd
1

Γ

: Then O(π) = {H | H ∈ O(π1) } .

Case πd = t

x

πd
1

∆

λx.t

: Then O(π) = {λx.H | H ∈ O(π1) } .

4.3. The size-preserving bijection. Let us write fc(t1, t2) for the binary operation taking
a pair of NPTs t1 and t2 and joining them together to form a function-open NPT by the
procedure described in Section 4.2.2. Similarly, we write v(k)

c (t1) for the operation taking a
NPT t1 with ≥ k outer neutral handles and factoring it along the kth to produce a value-open
NPT by the procedure described in Section 4.2.3. We now establish a lambda calculus
analogue of Theorem 4.1:

Theorem 4.2. Let [x]t be a NPT with R-coloring π. Then exactly one of the following cases must
hold:

(i) [x]t is the identity term and |π| = |O(π)| = 1.
(ii) [x]t = fc([x1]t1, [x2]t2) for some [x1]t1 and [x2]t2 (with R-colorings π1 and π2) such that
|π| = |π1| + |π2| and |O(π)| = 1 + |O(π1)| + |O(π2)|.

(iii) [x]t = v(k)
c ([x1]t1) for some t1 (with R-coloring π1) and 1 ≤ k ≤ |O(π1)| such that |π| = 1+ |π1|

and |O(π)| = k + 1.

Proof. Following Proposition 4.2 and the discussions in Sections 4.2.2 and 4.2.3, what is left
to verify is that the operations fc and v(k)

c have the right effect on the numbers of s-nodes
and outer neutral handles. Consider the fc operation yielding a function-open NPT, as
expressed in string diagrams:

g

+

h =

g

h
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Figure 8. Correspondence between the NPTs of size ≤ 3 and rooted planar
maps with ≤ 2 edges.

By inspection, the resulting diagram includes all and only the s-nodes coming from the two
input diagrams, and all of the outer neutral handles plus one additional one leading into
the a-node. Likewise, consider the v(k)

c operation yielding a value-open NPT:

h =

k

g
⇒ ∗ (k) h =

g

By inspection, the resulting diagram has one additional s-node, and exactly k + 1 outer
neutral handles, corresponding to the first k outer neutral handles of the input diagram plus
one additional one leading into the s-node.

Theorem 4.3. There is a one-to-one correspondence between rooted planar maps with n edges and
outer face degree d, and NPTs with n + 1 s-nodes and d + 1 outer neutral handles.

Proof. By playing Theorems 4.1 nd 4.2 in parallel, to decompose a rooted planar map/NPT
and then recompose it as the corresponding NPT/rooted planar map. (This uses an induction
on the number of edges of a rooted planar map, and on the size of an NPT.) Note that the off-
by-one offset between number of edges/outer face degree and size/number of outer neutral
handles means that we need to apply the arithmetic identities (n+1)+ (n′+1) = 1+ (n+n′+1)
and 1 + (d + 1) + (d′ + 1) = (2 + d + d′) + 1 in the isthmic/function-open case.
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Figure 9. Full decomposition of a normal planar lambda term with seven
s-nodes and three outer neutral handles, in parallel with the corresponding
rooted planar map with six edges and outer face degree two.
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In Figure 8, we show the result of applying this bijection to all NPTs of size at most three,
while in Figure 9, we give an illustration of the proof of Theorem 4.3 in action, animating
the full decomposition of a particular NPT (with 7 s-nodes and 3 outer neutral handles) in
parallel with the decomposition of the corresponding rooted planar map (# edges = 6, outer
face degree = 2).

Corollary 4.4. The following families of objects are all in size-preserving bijection:
• rooted planar maps
• normal planar lambda terms
• R-colorings of lambda skeletons
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[16] André Joyal and Ross Street. The geometry of tensor calculus I. Advances in Mathematics, 102:20–78, 1993.



A CORRESPONDENCE BETWEEN ROOTED PLANAR MAPS AND NORMAL PLANAR LAMBDA TERMS 37

[17] Joachim Lambek and Philip Scott. Introduction to Higher-order Categorical Logic. Cambridge University Press,
1986.

[18] Sergei K. Lando and Alexander K. Zvonkin. Graphs on Surfaces and Their Applications, Encyclopaedia of
Mathematical Sciences 141, Springer-Verlag, 2004.

[19] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
[20] Harry G. Mairson. From Hilbert Spaces to Dilbert Spaces: Context Semantics Made Simple. In Proceedings

of the 22nd Conference on Foundations of Software Technology and Theoretical Computer Science, 2–17, Kanpur, India,
2002.

[21] Harry G. Mairson. Linear lambda calculus and PTIME-completeness. Journal of Functional Programming
14(6), 623–633, 2004.
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Appendix A. All normal planar lambda terms of size four

Unannotated string diagrams:

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16. 17.

18. 19. 20. 21. 22.

23. 24. 25. 26.

27. 28. 29. 30. 31.

32. 33. 34. 35. 36.



A CORRESPONDENCE BETWEEN ROOTED PLANAR MAPS AND NORMAL PLANAR LAMBDA TERMS 39

37. 38. 39. 40. 41.

42. 43. 44. 45. 46.

47. 48. 49. 50. 51.

52. 53. 54.

Corresponding normal planar lambda terms (with one free variable x):

(1) x(λy.y(λz.z(λw.w)))
(2) x(λy.y(λz.λw.wz))
(3) x(λy.(y(λz.z))(λw.w))
(4) x(λy.λz.z(y(λw.w)))
(5) x(λy.λz.z(λw.wy))
(6) x(λy.λz.(z(λw.w))y)
(7) x(λy.λz.(zy)(λw.w))
(8) x(λy.λz.λw.w(zy))
(9) x(λy.λz.λw.(wz)y)

(10) (x(λy.y))(λz.z(λw.w))
(11) (x(λy.y))(λz.λw.wz)
(12) (x(λy.y(λz.z)))(λw.w)
(13) (x(λy.λz.zy))(λw.w)
(14) ((x(λy.y))(λz.z))(λw.w)
(15) λy.y(x(λz.z(λw.w)))
(16) λy.y(x(λz.λw.wz))
(17) λy.y((x(λz.z))(λw.w))
(18) λy.y(λz.z(x(λw.w)))

(19) λy.y(λz.z(λw.wx))
(20) λy.y(λz.(z(λw.w))x)
(21) λy.y(λz.(zx)(λw.w))
(22) λy.y(λz.λw.w(zx))
(23) λy.y(λz.λw.(wz)x)
(24) λy.(y(λz.z))(x(λw.w))
(25) λy.(y(λz.z))(λw.wx)
(26) λy.(y(λz.z(λw.w)))x
(27) λy.(y(λz.λw.wz))x
(28) λy.((y(λz.z))(λw.w))x
(29) λy.(yx)(λz.z(λw.w))
(30) λy.(yx)(λz.λw.wz)
(31) λy.(y(x(λz.z)))(λw.w)
(32) λy.(y(λz.zx))(λw.w)
(33) λy.((y(λz.z))x)(λw.w)
(34) λy.((yx)(λz.z))(λw.w)
(35) λy.λz.z(y(x(λw.w)))
(36) λy.λz.z(y(λw.wx))

(37) λy.λz.z((y(λw.w))x)
(38) λy.λz.z((yx)(λw.w))
(39) λy.λz.z(λw.w(yx))
(40) λy.λz.z(λw.(wy)x)
(41) λy.λz.(z(λw.w))(yx)
(42) λy.λz.(zy)(x(λw.w))
(43) λy.λz.(zy)(λw.wx)
(44) λy.λz.(z(y(λw.w)))x
(45) λy.λz.(z(λw.wy))x
(46) λy.λz.(z(λw.w)y)x
(47) λy.λz.((zy)(λw.w))x
(48) λy.λz.(z(yx))(λw.w)
(49) λy.λz.((zy)x)(λw.w)
(50) λy.λz.λw.w(z(yx))
(51) λy.λz.λw.w((zy)x)
(52) λy.λz.λw.(wz)(yx)
(53) λy.λz.λw.(w(zy))x
(54) λy.λz.λw.((wz)y)x
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