NATHACK: a Natural Language Intertace
for Nethack

Cassia Martin, David Molnar, Dev Purkayastha, Noam Zeilberger
January 9, 2003

1 Introduction

Nethack is a popular “rogue-like” (Waijers, 2003) adventure game. Previous
work on rogue-like games has focused on developing agents that can play the
game at a high level of skill, such as the ROG-O-MATIC Belligerent Expert
System (Mauldin et al., 1984). This paper addresses a different direction of
research; we describe NATHACK, an English-language interface for Nethack.

The original user interface for Nethack is based on direct manipulation.
As in most other rogue-like games, information about the world is represented
through the use of ASCII symbols on screen. Figure 1 shows a screenshot
from the game. The player directly manipulates these symbols by pressing
particular keys. For example, in Nethack the player is represented by an
@ sign; pressing the key for ‘left’ moves that sign one space left on the
screen. To kill a monster, the player must enter a sequence of keystrokes
such as “jjlllyF1F1”. That particular example moves the @ sign on the screen
to the sign representing the monster and then attacks twice to the right.
Our system allows the user to issue that same command with more intuitive
English sentence “move to the monster and kill it.”

Previous work combining natural language interfaces and games has mostly
focused on text-based adventure games or “interactive fiction.” Popularized
by Infocom in the early 80s, the hallmark of interactive fiction is that both
the user’s commands and the description of the world use natural language.
One of the first such games, ADVENTURE, recognized only sentences of the
form “verb noun” and matched words only on their first four characters
(Crowther et al., 2001). Recent examples of interactive fiction provide more
robust parsing and augment the game world with a logic for reasoning about
user commands (Koller et al., 2002).

Idefix misses the jackal. Idefix bites the jackal. The jackal is killed!

[t ef... -
———————— | === - | ...
oo
(I
oo HEHEHEE- L |
2 e ###| .| ... O
—|=+-= #H#.. ... | # - [..... | [....]
| - # | <L HHEEEBEHEEEEEEEC L L ## ...
.o - |, {.|# ... I # 1....1
| - [..... - L | ###] ...
I I O I oo, |
Chomsky the Candidate St:18/01 Dx:14 Co:11 In:21 Wi:20 Ch:15 Lawful

Dlvl:1 $:58 HP:12(14) Pw:5(5) AC:4 Exp:1

Figure 1: Screenshot from Nethack

Rogue-like games do not use natural language, either to present their
world or to communicate with the user beyond status messages. We are not
aware of previous attempts to build a natural language interface to rogue-
like games. Given how well the direct manipulation interface has served
rogue-like game for over fifteen years, a natural language interface may seem
unnecessary. When we look closer, several basic features of natural language
interfaces are applicable to the Nethack domain, and it certainly provides a
more intuitive command system for new users.

Marilyn Walker lists several features of natural language interfaces (Walker,
1989). The list below is presented along with sample sentences for a Nethack
command interface.

e Definite Description
Objects can be referred to by their qualities. For example, the sentence
“Kill the jackal” picks out the object which is a jackal. The sentence
“Kill the blue jelly” goes further and adds an adjective.

e Quantification
Natural language allows quantifying over objects, such as in the sen-
tence “Kill all the newts.” This quantification is difficult in a direct
manipulation system.

e Discourse Reference
The sequence of commands to the game can be thought of as a dis-
course. Then the sentence “Where did I drop the Amulet of Yendor?”
is understood as referring back to previous commands and has a well-
defined answer.

e Temporal Specification
“Kill the jelly two turns from now.” “Rest until healed.”

e Coordination
Actions can be sequenced, as in the sentence “Move left and then kill
the monster.” We will see later that this leads to interesting questions
of reference.

e Negation
Quantification in natural language can be extended by negation, as
in “Pick up all items that are not cursed.” Again, this is difficult to
achieve with a direct manipulation interface.

e Comparatives
A comparative term discriminates between objects. The sentences

3

“Run to the nearest door” and “Kill the strongest monster” show how
natural language comparatives can find natural uses in Nethack.

e Sorting
“Kill the strong monsters first” is an example of a command that sorts
available objects and then performs an action on each one.

We stress that our system is a preliminary effort. It does not implement
all of the areas given above, and within the areas that are implemented our
abilities are limited. Even so, we will show that our system implements
enough to be a viable interface for Nethack.

In the rest of the paper, we describe the scope and implementation of our
English language interface to Nethack. Section 2 describes the user interface
in detail and presents examples. Section 3 gives an overview of the system
as composed of a natural language interface and game engine, and Section
4 describes the three stages of natural language representation—syntax, se-
mantics, and executable code. Section 5 traces specific example sentences
through the system. Section 6 highlights unsolved problems. Section 7 gives
further detail on some technical implementation issues. Section 8 offers con-
clusions and presents directions for future work.

2 User Interface

The system accepts text as input into a Prolog environment. Of course, this
text can be entered by any method available to the user. A natural approach
might be to use voice dictation software as a “voice to text” layer.!

This is, as mentioned before, a preliminary system. Of the features of a
natural language input mentioned by Marilyn Walker, we can accept aspects
of definite description, quantification, temporal specification, coordination,
and negation.

We are quite good at definite description. A user can “kill the dog.”
It is also possible to use adjectives to specify the reference more precisely.
For example, “drink the blue potion” is acceptable. We also accept relative
clauses using the word “that.” For example, we can “approach the dog that
is tame.”

Quantification is supported. One can specify and quantify over things,
for example, “the monster” or “all the newts.” In many cases, determin-
ing reference deals with metonymy: in the command “move to the potion”,

'In our testing, the commercial package Dragon NaturallySpeaking Essentials 6.0
worked reasonably well.

“the potion” is actually referring to the potion’s location; the distinction is
handled transparently by the interface.

Some degree of temporal specification is available to the user through
constructs for repeating an action in time. For example, “Walk left five
times” and “Rest until I am healed” are possible commands. The user can
also specify unbounded repetition, such as “Keep moving left”, and interrupt
with “Stop”.

Events can be coordinated through the connectives “and”, “then”, and
“and then”. For example, the sequence “move left, drink the potion of heal-
ing, and then kill the newt” is an acceptable input.

We handle negation only for the verb “to be.” For example, one can “kill
all monsters that are not tame.”

We cannot do any discourse reference, as our system has no memory of
previous commands. We also have no rules in place for comparison. Although
it would be possible to have those in the syntax, they would require a rather
large knowledge base to effectively execute the comparisons.

If our semantics generates more than one possible semantic representation
for an input, it will prompt the user with the alternatives to resolve the
ambiguity. Once one of the choices is selected, it will continue to be evaluated
into Nethack commands.

We have primitive error handling that can occasionally catch grammatical
errors. For example, if you input “kill all the newt” our system will inform
you that you have an error of “number agreement”.

3 System Overview

As diagrammed in Figure 2, our system is broken into two main components,
running as separate processes: the natural language user interface and the
Nethack game itself, augmented with an interpreter for “Scripthack,” which
is based on the embedded language Lua (Ierusalimschy et al., 1996). The
user interface transforms spoken or written English sentences into Scripthack
code, which it passes to the Nethack game process for evaluation by the
Scripthack interpreter. Scripthack code can both query the state of the game
and send commands to Nethack, thus carrying out the user’s instructions.
Transformation from English into Scripthack occurs in three stages. A
direct clause grammar (DCG) for “Nethack English” takes text and converts
it into parse trees for the sentence. If a sentence has syntactic ambiguities,
multiple trees are produced. Next, a denotational semantics converts each of
these parse trees into logical forms based on lambda calculus. Again, multi-
ple expressions are produced for ambigious cases. Finally, lambda calculus

r . &
NL user interface

F————>—-=---9

text ! nethack =

I | |

v ! scripthack | _E
parse trees | interpreter |

L____$_____l

A-calculus

i

scripthack F--"-----———-——-- g

—

Processes are represented by dotted boxes, and interprocess communication
by dotted arrows. Solid boxes stand for the different representations of the
user’s input, and solid arrows translation between them.

Figure 2: System Organization

is converted into executable Scripthack through a deterministic (and fairly
straightforward) translation.

The Scripthack code is written in a language consisting of Lua augmented
with functions for accessing and modifying the state of a Nethack game, al-
gorithms related to game-play (such as pathfinding), and facilities for higher-
order functional programming. The code is executed by a Lua interpreter
embedded within the Nethack process, allowing for a simple, hybrid approach
to interaction with the game. Information about the game is retrieved by
directly accessing memory, but the state is modified indirectly by sending
normal keystroke commands as input to Nethack. This avoids some of the
drawbacks of approaches that either eliminate or entrench the barriers be-
tween a natural language interface and its application: directly manipulating
the game state by setting global variables is tricky and potentially dangerous,
while reading the state by parsing the screen’s graphics is cumbersome.

decl
decl

NPNum
NPNum
NPNum

UPNum
UPNum

PPKind
Deo

CIinf

Urnf,Num
Unotbe, Num
UInf,Num

NSing,Num
NSing,Num

det Num
ppn
adj

adv
adv
adv

count

conn

N e e T A A N A A

imp | adv

UPin

keep vpg.

imp (until | while) decl
mmp conn imp

NPNum VPNum
adj

PN Num
(ppn | detnum) - Num (that vpyym)?
(all of | all) npnum

Urnf,Num CInf adv?
Urnf,Num adv? CIinf

PKind NP—
to

complement options for Inf

verb with infinitive form Inf and number Num
Ube, Num not
Ube, Num VInf,ge

noun with singular form Sing and number Num
adj Nsing,Num

determiner with number Num

my | your

cursed | blue | ...

yes | no | left | ...
adv count
adv conn adv

once | one time | ...

¢ | then | and then | and

Figure 3: A simplified DCG for Nethack English

4 Natural Language Representation

4.1 Syntax

Figure 3 presents a slightly simplified version of the DCG for Nethack En-
glish, complete save for items of the lexicon and verb complement options.
Below we explain some of the rules in greater detail.

e s — imp | adv
The sentences the interface accepts must be either imperative com-
mands or adverbs. The latter are allowed for the case of user response
to system queries. For example, “Yes” in response to “Restore saved
game?”

e imp — keep vpg.
This rule allows for imperatives such as “Keep moving left” or “Keep
killing the monsters.”

e imp — imp (until | while) decl
The interface accepts commands such as “Rest until I am healed.”

® imp — 1Mp conn imp
Imperatives can be chained together in sequence using connectives such
as “and” or “then.” The epsilon transition conn — € allows us to accept
sentences such as “Move left, move down, and then drink the potion.”
However, it also causes the system to accept perhaps ungrammatical
phrases like “Move left, move left.”

e decl — adj
This rule assumes an implicit “I am,” as in “Rest until healed.”

® NPNum — (ppn | detNum) n—,Num (that UpNum)?
The optional (that vpy.,) allows the user to enter relative clauses, for
example, “Kill all the monsters that are not tame.”

® ciny — complement options for Inf
The grammar contains rules specifying allowable complements for dif-
ferent infinitive verbs. For example, there is a rule ¢, — adj, allowing
for verb phrases like “is tame”, and a rule ¢,,ppe — PPio to allow “Move
to the monster.”

® UrnfNum — verb with infinitive form Inf and number Num
Save for irregular verbs, the DCG rules describing the verb lexicon are
all generated automatically from infinitive forms.

8

error (npyum, “determiner on proper noun”) — detyym PPNum
error(np_, “number agreement”) — det_ n__ (that vp_)?
error(imp, “verb tense”) — keep vp_

Figure 4: Examples of error rules

® Unotbe,Num ~—7 Ube,Num not
This rule provides for a limited form of negation by treating “not to
be” as a special verb, accepting sentences such as “Rest while I am not
healed.”

e adv — adv count
In our interface this rule is particularly important for movement, allow-
ing commands such as “Move left three times then up.” It sometimes
produces ambiguous parsings, though, for example for the adverb “up
then right twice,” which can be parsed as either

adv(adv(up), conn(then), adv(adv(right, count(twice))))
or

adv(adv(adv(up), conn(then), adv(right)), count(twice))

e adv — adv conn adv
As with imperatives, adverbs can be sequenced, as in “Move left then
up then right.”

In addition to these rules, the DCG contains several error rules that
attempt to classify syntactic errors. Figure 4 lists examples of these. Error
rules work exactly as do normal DCG rules, but in addition inform the system
of the existence and nature of a grammatical mistake. This allows for graceful
detection, since errors do not cascade upwards. For example, the parser can
still recognize “Kill all newt” as a vp, but notes that the np “all newt” has
a number agreement error.

4.2 Semantics

The semantics of Nethack English parse trees are represented by expressions
of lambda calculus augmented with constants representing lexical primitives
and a variety of meta-semantic operators.

4.2.1 Sequencing

To coordinate two events in time, we use a two-place relation, sequence,
which indicates that the first argument is to be evaluated before the second.
For example, “rest then pray” is represented as sequence(rest(), pray()).

As an alternative to using sequence, another possible approach is anal-
ogous to the “monadic style” of functional programming. In this view, im-
peratives are functions from states of the world to states of the world, and
likewise, for example, quantifiers are functions from states of the world to
predicates to actions to states of the world. So, instead of giving two ac-
tions to the sequence relation, the result of evaluating the first action is
passed as an argument to the second. For instance, the above example be-
comes pray(rest(op)), where oy is the initial state of the world. While this
approach may be aesthetically more satisfying, it is problematic in our situ-
ation because Nethack and the Lua interpreter are both written in C, which
presents a barrier to keeping track of the entire state of the world.

4.2.2 Adjectives

We treat adjectives semantically as predicates that can be joined to nouns
to form more specific predicates. For example, “tame kitten” is a predicate
satisfying objects that are both tame and kittens.

It should be noted that this representation is not always accurate. For
example, the sentence “He is a good linguist but a bad man” would not be
properly represented in our system, since he would have to be both good and
bad. This may not be an issue for our domain, however.

4.2.3 Synonyms

We ease the burden of implementation by treating synonyms as having equiv-
alent semantics. For instance, “move,” “go,” and “walk” all translate into
the same logical form and so eventually have the same effect in the game.
Likewise, both “attack the monster” and “kill the monster” are evaluated as
the(monster, Am.kill(m)).

Where words have similar meanings but some different connotation, it
seems easiest and most tractable to give separate semantics. For example,
“move to” and “approach” are translated into different logical forms which
are eventually implemented as, in the former case, movement to a location,
and in the latter case, movement right next to a location.

10

4.2.4 Subordinate Clauses

Though our grammar only allows imperatives or adverbs as sentences, sub-
ordinate clauses require dealing with declarative phrases. For example, the
parse tree for “rest until I am healed” contains as a subtree the declarative
“I am healed,” which has a truth-functional semantics.

4.2.5 Scope Ambiguity

We used the Hobbs-Shieber quantifier scoping algorithm to generate all pos-
sible interpretations of statements involving quantifiers (Hobbs and Shieber,
1987). In addition to the usual issues, the Nethack semantics are compli-
cated by the presence of imperatives, which have side-effects. For example,
the sentence “rest until healed and then kill all the monsters” is ambiguous:
do “all the monsters” refer to the monsters in the room before or after the
adventurer finishes resting?

The approach we took to dealing with this problem was to specify that
the aforementioned sequence relation is opaque in its second argument. The
Hobbs-Shieber algorithm then generates both possible readings. For exam-
ple, the above sentence is first translated into the following semantics:

sequence(dountil(rest, healed), kill(term(the, monster)))
which can be scoped in two possible ways:

sequence(dountil(rest, healed), the(monster, Am.kill(m)))

the(monster, \m.sequence(dountil(rest, healed), kill(m)))

4.3 Scripthack

Translation of logical forms into executable Scripthack is straightforward,
since the language has lambda expressions as well as routines corresponding
to most of the operators used in our semantics. Most of the implementation
details of these routines for the Scripthack interpreter is beyond the scope
of this paper, but the treatment of quantification and reference is important
for understanding the NATHACK interface.

Quantification using “the” and “and” are both translated into Scripthack
that eventually is interpreted in the same way, returning a list of all objects
from a certain universe that satisfy a given predicate. For example, “the
newts” and “all newts” are both interpreted as filters on the isnewt predicate
over all visible monsters. Real-world English has a more subtle distinction
between the universes “all” and “the” quantify over, but our treatment works

11

reasonably well in this domain, as the user most likely intends to refer to
objects in the immediate vicinity.

A problem with this general approach is dealing with singular nouns,
which naturally should only refer to a single object. If the user commands
“Kill the monster” and there is more than one monster, then the sentence
is most likely ambiguous and the user should be queried. Unfortunately, our
system has no mechanisms in place for feedback from the game engine to
the user interface, and so we use a hack. Since it seems more unintuitive
for the above command to kill all of the monsters, in such situations we
choose an arbitrary one by using a function sg to “singularize” predicates,
that is, make them satisfiable only once (using side-effects). For example,
the sentence “Kill the monsters” is translated into the following Scripthack:

v1=the (ismonster)
v2=(function (nl1l) return (kill(nl)) end)
app(v2,vl)

(app is a higher-order function that applies a function to a list of objects.)
But “Kill the monster” is translated into:

vi=the(sg(ismonster))
v2=(function (nl) return (kill(nl)) end)
app(v2,vl)

5 Examples

We now show some sample sentences and their syntax, semantics, and Scripthack
code.

5.1 “Chase the Idefix”

This is an example of an ungrammatical sentence. In Nethack, “Idefix” is
a proper noun; it is the name of your faithful dog companion. If an input
sentence is not accepted by our DCG, we provide feedback to the user through
error rules.

Parse error(s): determiner-on-proper-noun

Our DCG only allows determiners before normal nouns, so the use of a
determiner followed by a proper noun results in an error.

12

5.2 “Show me my inventory”

imp
|
vp
v c
| /\
show pp np
| /\
pn ppn n

me my inventory
There is only one possible meaning for that phrase:

my(inventory, show(me))

Since there is no ambiguity, this form is sent immediately to the system be
converted into Scripthack. It is first translated into a Scripthack tree, which
is more amenable to translation from lambda calculus, and then reduced to
the string of Scripthack code, showinventory().

5.3 “Keep moving left”

This sentence has an odd syntactic ambiguity, since “moving” takes an empty
complement and so the two rules vp — v ¢ adv and vp — v adv ¢ both

apply:

5 S
| |
mp imp
keep vp keep vp
v adv C \|’ c a(|iv
| | .
moving left moving left

However, both parse trees have the same semantics, and so the user is never
prompted for disambiguation. The system continues with the following logi-

13

cal form:
keep(ly(move, left))
Which results in the following Scripthack:

keep((function (x) return (move(dir_w(myloc()))) end))

5.4 “Approach the dog that is tame”

This simple relative clause has the following parse tree:
S

imp
|
vp
v c
| |
approach np

det n that vp

| | P
the dog v ad]
| |
is tame

The semantics treats the “is tame” clause as a predicate modifying dog:
the(conjunct(be(tame), dog), Ad.approach(d))

which is translated into:

vi=the(and_pred(istame,sg(isdog)))
v2=(function (nl1) return (approach(nl)) end)
app(v2,vl)

5.5 “Drink the blue potion then kill the lichen”

The parse tree for the sentence is:

14

imp
imp conn imp
| | |
vp then vp
/\ /\
v c A\ ¢
| | .l |
drink np kill /np\
T det n
det n | |
| T the lichen

the adj n
| |

blue potion
This sentence is ambiguous, as was discussed in Section 4.2.5, since the ref-
erence of “the lichen” is not fixed. It could refer either to the lichen you see
now while issuing the command, or else the lichen in existence after you finish
drinking the potion. These two interpretations have the following semantics:

the(lichen, Al.the(conjunct(blue, potion), Ap.sequence(kill(l), drink(p))))
the(lichen, Al.sequence(kill(l), the(conjunct(blue, potion), Ap.drink(p))))

If the user decides to use the first meaning, it will result in the following
Scripthack code.

vi=the(sg(islichen))
v2=(function (n2)
v3=the (and_pred(isblue,sg(ispotion)))
v4=(function (n1l)
local n2=Yn2
drink(n1)
return (kill(n2))
end)
return (app(v4,v3))
end)
app(v2,vl)

15

(The 1local n2=%n2 line is only necessary because Lua 4.1 does not have full
lexical scoping; Lua 5.0 does.)

6 Open Questions

We have implemented a successful implementation of a natural-language in-
terface to Nethack that can parse and execute numerous commands. How-
ever, further improvements would be useful for a more robust and intuitive
natural language interface.

6.1 More sophisticated error handling

As explained earlier, error handling and correction is accomplished within
the syntax layer, where errant grammar is tagged within the parse tree so
that an appropriate error message can be sent to the user. Unfortunately,
this requires a separate DCG rule for every kind of grammatical error that
should be accounted for. For this reason, our own implementation of error-
correction deals with a rather small subset of possible user mistakes.

This method is labor intensive, and unless Nethack operates on a suf-
ficiently small subset of grammar, it may be preferable to find some other
method of error correction.

Moreover, we have not addressed the interface question of guiding a user
to correct input. When confronted with a natural language system, users
tend to type all sorts of things outside the expectation or experience of the
designers. An interface should give feedback on its limitations and on proper
format for input, so a user can learn and adapt. In our case, we give only
limited information on a small class of parse errors to the user; improving
and broadening our error handling is an important open problem.

6.2 Semantic errors

The command “kill the coins” is grammatically correct, but semantically
incorrect. Finding semantic errors is an important open question.

In a way similar to our handling of grammatical verb/object agreement
via subcategorization, it would be possible to subcategorize verbs and their
objects for semantic agreement. Thus, the verb “kill” could be marked such
that only accepts “animate” complements, and “coin” would not fulfill that
requirement.

16

6.3 Queries

Most actions are performed by the user to objects in the world, but queries
are also a critical part of a player’s interaction with the environment. We cur-
rently deal with queries phrased as imperative commands, such as “Show me
my inventory”, but valid queries may also take the form of interrogative sen-
tences, such as “How much money do I have?”. Handling this would require
the creation of a separate syntactical form. This would require extensive
work but should nonetheless be tractable.

6.4 Pronouns

One of the key characteristics of natural language is use of pronouns to refer
to previously mentioned objects. (For example, “move to the monster and kill
it”.) One simple (and incorrect) method of pronoun interpretation is using
the most recent noun in place of the pronoun. A more sophisticated notion of
discourse theory is required to find correct interpretations of pronoun phrases.

6.5 Context

Many phrases are ambiguous to our system. For example the command “kill
the monster” causes our system to arbitrarily pick the closest monster and
attempt to attack it. We propose two possible means of disambiguating
unclear sentences. First, a system should refer to the context of the previous
discourse with the user. Second, the system should have access to the context
of the state of the world.

For example if a user had issued the command “attack the blue jelly” two
turns ago, it is fairly likely that a command like “kill it” or “kill the monster”
would continue to refer to the blue jelly. To refer to that user’s discourse, the
system would require a working memory that could be searched for previ-
ous informative user input. The earlier discussion of verb subcategorization
could also prove helpful here, because one would know what nouns would be
acceptable replacements for the ambiguous entries.

The ambiguous command “kill the monster” can also be resolved by
knowledge of the state of the world. If there is only one monster, there
is no actual ambiguity. Even though it is possible for “the monster” to mean
many different creatures, there is only one that it is currently possible for
the user to kill.

We can also imagine the existence of a knowledge base that would allow
reasoning about what a sentence means intuitively, or what choices might
be clearly better for game play. A sentence such as “Kill the dragon with

17

the sword” is ambiguous, because it is not known whether the sword is be-
ing wielded by the dragon or whether the sword ought to be used to kill
the dragon. A knowledge base could inform us that dragon do not carry
swords, thus solving our ambiguity. A pure first order logic combined with
a theorem prover, such as Otter, might be useful for analyzing this knowl-
edge base. Here, however natural-language methods intersect the world of
artificial-intelligence, and we find ourselves beyond our realm of knowledge.

7 System Details

7.1 Parsing

Our DCG interpreter supports limited regular expressions and is based on
the CKY bottom-up parsing algorithm. It performs memoization to cache
all the parse trees generated for a string.

7.2 Nethack and the Scripthack Interpreter

Nethack and the Scripthack interpreter reside in the same process as sepa-
rate threads, communicating through Unix pipes and using semaphores for
synchronization. The specifics of the system are beyond the scope of this

paper.

7.3 Implementation Status and Availability

We have implemented the system described above. You can find our work
at: http://hcs.harvard.edu/"stsfp/nathack.tar.gz

8 Conclusion

Our work demonstrates the viability of natural language interfaces for rogue-
like adventure games. It would be interesting to extend this approach to other
sorts of games. In particular, can natural language be used for coordination
between human and computer players in a 3-D environment, such as id soft-
ware’s Quake? We invite further work on pushing natural language beyond
Infocom style games.

18

9 Acknowledgments

Professor Shieber and Ken Shan provided advice throughout the building of
this project. Professor Ramsey made many helpful comments on software
engineering and pointed us to ROG-O-MATIC. We are grateful to the
maintainers of Nethack for giving us a fine system to play with. Finally, we
acknowledge Idefix, our little dog, who dies very often.

References

Crowther, W., D. Woods, and D. Knuth (2001). Adventure source code in
CWEB. http://www.literateprogramming.com/adventure.pdf.

Hobbs, J. and S. Shieber (1987, January - June). An algorithm for generating
quantifier scopings. Computational Linguistics 13(1-2), 47-63. http://
www.eecs.harvard.edu/ shieber/papers/quantex.pdf.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes (1996, June). Lua — an
extensible extension language. Software — Practice and Ezperience 26(6),
635-652. http://www.lua.org/spe.html.

Koller, A., R. Debusmann, M. Gabsdil, and K. Striegnitz (2002). Put my
galakmid coin into the dispenser and kick it: Computational linguistics
and theorem proving in a computer game. Journal Submission.

Mauldin, M., G. Jacobson, A. Appel, and L. Hamey (1984). ROG-O-
MATIC: A belligerent expert system. In Fifth Biennial Conference of
the Canadian Society for Computational Studies of Intelligence. http:
//www.cs.princeton.edu/ appel/papers/rogomatic.html.

Waijers, B. (2003). The roguelike games home page. http://www.win.tue.
nl/"kroisos/roguelike.html.

Walker, M. (1989). Natural language in a desk-top environment. In Proceed-
ings of HCI89, 3rd International Conference on Human-Computer Inter-
action, pp. 502-509. http://www.research.att.com/“walker/ab9.ps.

19

