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Abstract

Variable binding is a prevalent feature of the syntax and proof theanyasfy logical systems. In this paper,
we define a programming language that provides intrinsic support forbpthsenting and computing with
binding. This language is extracted as the Curry-Howard interpretatiarf@afused sequent calculus with
two kinds of implication, of opposite polarity. Thepresentational arrovextends systems of definitional
reflection with the notion of a scoped inference rule, which permits the adegepresentation of binding
via higher-order abstract syntax. On the other hand, the usaraputational arrowclassifies recursive
functions over such higher-order data. Unlike many previous appes®oth binding and computation can
mix freely. Following Zeilberger [POPL 2008], the computational functioacgpadmits a form of open-
endedness, in that it is represented by an abstract map from pattersréssons. As we demonstrate

with Coq and Agda implementations, this has the important practical benefit éheamreuse the pattern
coverage checking of these tools.
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1 Introduction

A logical framework provides a set of abstractions that facilitate the sgmtation ofogical systemsuch
as programming languages and logics. Moreover, logical framewoddd@generic infrastructure, such as
tools for computing with and reasoning about logical systems, to be implememtedar a framework and
reused across many logical systems. In this sense, one of the most welt-kogical frameworks is the
datatype mechanism of functional programming languages such as SMCaand/ilner et al., 1997, Coq
Development Team, 2007]. Datatypes permit facile representations ofdterfiler algebraic terms that fea-
ture prominently in the syntax and proof theory of logical systems, and theeabhfbnctional programming
language provides a generic mechanism for computing with such repamésan. The LF logical frame-
work [Harper et al., 1993] enriches ordinary datatypes with one addit@imstraction: intrinsic support for
binding and scope, facilitating the representatiomvafonvertible variables, capture-avoiding substitution,
and hypothetical judgements (uniform reasoning from assumptions téusiorts). However, LF is only a
representation language, and requires a separate language, Suatlfd®fenning and Sdirmann, 1999],
for computation. Because of this stratification, LF is less general than Nédtygees in one important way:
it is impossible to embed computations in data. There is no LF analogue of a datétipan SML func-
tion as a component, nor of an iterated inductive definition [Marif-0971]. In this work, we focus on
providing an abstraction for representing binding, as in LF, while simultasig@llowing computations to
be embedded in data, as in ML.

Our approach to this problem builds on definitional reflection [Schroe&ldéster, 1984], which is a log-
ical analogue of ML datatypes. Definitional reflection internalizes definltipimference rules as a logical
primitive: a logic with definitional reflection contains a class of atdPrefined by a databadeof inference
rules, which have the forl? < A; < ... < A,,. Forexample, thetworulg® < A;; P < Ay < Aj)
define P as equivalent tod; vV (42 A As). Recursive definition is also allowed; for example, the rule
databaseély = (nat; nat < nat) defines the natural numbers. The sequent calculus right rule foredefin
atoms is rule application:

PeAj<...«4,eyd WWTI'= 4, - (WI'= 4,
()T ' =P

The left rule for defined atoms is thiefinitional reflectiorrule!:

VIP<=A <...<A4,eV): (W A,... A, = C
()T, P= C

The definitional reflection rule can be read as asserting that the ruleagatéexhaustive: to reason from
P, it suffices to reason from the premises of all rules concluding hrough the Curry-Howard correspon-
dence, we can think of inference rules as datatgestructorse.g., the two rules iy correspond to zero
and successor. The right rule fBrbuilds a term by applying a datatype constructor. The left rule states that
P may be destructed lyyattern-matchinggiving a case for each possible constructor.

Now, there turns out to be a close relationship between the ability to desttogical constant by
pattern-matching and the logical notionsoetusingandpolarity [Andreoli, 1992, Girard, 1993, Zeilberger,
2008]. Roughly, only the constructors fpositiveconnectives (like multiplicative conjunctiah and addi-
tive disjunctions in linear logic) can be matched against. Connectivesegfativepolarity (like additive
conjunction& and implication—o in linear logic) must have explicit destructors (e.g., first and second pro-
jections, application), though there is a dual sense in which these may besghatidinst teonstructa term.

!l.e., the rule “reflects” upon the possible proofsihccording to its definition.



Our work began by observing a seeming paradox about the polarityriable binding: In some respects,
binding behaves like implication, ordinarily negative, with application definedubstitution. However,

it is also possible to pattern-match against data with variable binding, sugpéstivay correspond to a
positive connective.

In this paper, we propose an extension of definitional reflection cdiéiditional variation,which, via
Curry-Howard, yields a functional programming language with intrinsigosutofor representing and com-
puting with binding. We present this logic as a focused sequent calculusighhe definitions of atoms
are open-ended, and can be varied by means of logical conne@messuch connective is indeed a positive
form of implication R = A, called therepresentational arrowA proof of R = A is a proof of A which
may use the additional inference rule this connective introduces a new, scoped inference rule, which
corresponds to a new, scoped datatype constructor. The reptéaseaitarrow thus provides an abstraction
for encoding binding through higher-order abstract syntax. On ther dtand, the familiacomputational
arrow —, of negative polarity, classifies clausal, pattern-matching functions s higher-order data.
This yields a programming language which has the expressiveness oVillithé computational arrow)
while permitting direct representations of variable binding (via the reptatienal arrow). Moreover, both
function spaces can be used in datatype definitions, providing datatygidsetily mix binding and compu-
tation. We leave the study of a dependent version of this language, wiigld \wnrich a type theory such
as Coq with intrinsic support for binding and scope, to future work.

Following Zeilberger [2008], our computational arrow admits a form ofrepadedness, in that such
functions are represented abstractly by meta-level functions from pstteexpressions. These meta-level
functions can be taken to be constructive, in which case all implicationdfamieely computable, or non-
constructive, in which case the operational behavior is necessardylargas in Howe [1991]). The open-
endedness of the computational arrow has important practical ben@fs tlfese meta-level functions can
be presented as programs in existing proof assistants, which permits usséexsting pattern coverage
checkers. Second, open-endedness means that functions writtemiial ggoof assistants, using different
implementations of binding, can be combined in a single program.

The technical contributions of this paper are as follows:

e In Section 2, we present a focused sequent calculus for definitianation, and give the expansions
and reductions witnessing admissibility of identity and cut.

e In Section 3, we discuss some interesting distributivity properties-pnd prove that the type the-
ory includes (simply-typed) LF as a subsystem—proving that the repeggemal arrow adequately
represents binding.

e In Section 4, we give a proof term assignment to our sequent calcukldjng a functional pro-
gramming language with an operational semantics given by cut elimination. Ve prpe safety,
and illustrate programming in this language via several examples that mix binaihgoaputation.
Additionally, we discuss implementations of the type theory in Agda [Norell, 8Ad Coq [Bertot
and Cagtran, 2004].

Comparison with Other Techniques for Representing Binding

We now describe the high-level differences between our approaaptegsenting binding and other tech-
nigues which have been discussed in the literature. We defer a detailedicedccomparison with related
work to Section 5.



Concrete Implementations One approach to computing with binding is simply to work directly with a
concrete implementation. The most minimalist implementation of binding is de Bruijn ingleeBruijn,
1972], in which variables are represented as numbers indexing podiifiamnta a context. However, de
Bruijn indices are regarded as being difficult for programmers to work:vi@hexample, terms are thought
to be difficult to write and to read, and structural properties such asew@ads (extending a context with
additional variables) and exchange (permuting variables in the contextiyegndices to be adjusted. Con-
sequently, it is common to represent the indices into the context as some rameaf fitom (e.qg., strings).
Unfortunately, when bound variables are represented by atoms, @ lgpwend variable can be represented
equally well by any atom, so terms must be explicitly quotientedvbgquivalence. When free variables
are represented by atoms, inference rules must be carefully crafteducegthat they yield general enough
inductive hypotheses for proving theorems by rule induction (see [#ydet al., 2008] for comparison
of exists-fresh, forall-fresh, and cofinite rules). An alternative toading between de Bruijn and named
form is to use one representation for bound variables and anothaefmwvaériables. For example, locally
nameless (de Bruijn indices for bound variables) / globally named (namés#&variables) is thought to
provide a good balance of advantages and disadvantages [Ayderinjr2€0s].

To our minds, the chief disadvantage of working directly with a concrete impletien of binding
is that it provides too “leaky” an interface. That is, the programmer is sxgdo the gory details of the
particular representation of binding, and must program differently fiderént representations. Moreover,
it may not be easy to port code written with respect to one implementation of gitali@nother.

In contrast to these concrete implementations, our representational fuspéae provides an abstract
interface for binding. Variables in a logical system of interest ¢hject languageare represented by
inference rule variables in our type theory. This interface hides theretndetails of how these variables
are implemented, and, we argue, leads to natural representations adModeover, by exploiting the
open-endedness of our computational function space, programmersvigh to work with a particular
concrete implementation of binding may do so.

Nominal Logic Unlike the above concrete implementations, nominal logic [Gabbay and Pit8] d8&s
provide an abstract interface for binding, and this interface has bedarimepted in several programming
languages (e.g., FreshML [Pitts and Gabbay, 2000, Shinwell et al.] 28@83he Isabelle nominal datatype
package [Urban, 2008]). In nominal logic, variables of a logical sysaee represented using namegsand
binders are represented by a primitives > ¢, which pairs a name with a term¢. The nominal logic
interface for binding then provides notions of name permutation and fesshi-equivalence for binders,
and induction and recursion moduieequivalence. This interface hides the details of these operations from
programmers, and provides a reusable implementation of binding.

However, the nominal apparatus is, in a sense, more general than whquised simply to represent
variable binding. This is because hames in nominal logic are atomgeitial scopeit is always permis-
sible to mention a name (just as it is always permissible to mention a string in ML) even if there is no
enclosing binder bringing into scope. Consequently, the nominal interface for binding requiresimegh
for ensuring that certain names are fresh with respect to (roughlyffeetin”) certain computations. For
example, in order for a function to be well-defined@®quivalence classes of nominal terms, it is necessary
to prove that the result of the function is independent of the narappearing in any bindet.a> ¢ that
the function processes—i.e., that the name appearing in the binder is fitbstespect to the result of the
function. Thisfreshness condition for bindefBitts, 2006] must be proved for each function definition. Pitts
and Gabbay [2000] employ a conservative freshness analysis t@adisctnese conditions. Pottier [2007]
describes a specification logic in which these conditions can be provedw&het al. [2003] exploit an



effectful operational semantics to ensure that the conditions cannabliaged.

In contrast, we present an interface for binding in which variables drerémtly scoped: a represen-
tational function introduces a new, scoped constant, notated by a metadaaedle. Just as an ill-scoped
ML program will be rejected by the type checker, an ill-scoped objecttlagg program will not be rep-
resentable as data using this interface for binding. Moreover, it is imgedsiba function to violate the
freshness condition for binders: since a binder in our interfagisa pair of a name (which is a piece
of data) and a term, but a meta-level binder of a variable in a term, there isme to be dependent
on. Our type theory ensures respect deequivalence using little more infrastructure than is necessary to
scope-check an ML program. Nonetheless, when they are in scajahlea are treated just like any other
datatype constructor, and therefore can be pattern-matched agamptireal for equality, etc, permitting a
programming style similar to nominal code.

Higher-Order Abstract Syntax Inthe LF logical framework [Harper et al., 1993], variable binding isrep
resented usingigher-order abstract syntafHOAS): object language variables are represented by LF vari-
ables, and object language binders are represented by the LF fuggéioa. Object-languageconversion

is represented by LE-conversion, and object-language substitution is represented by Isktsitibn. Such
substitutions arise frompplyingan LF function representing a binder, using a standard implication elim-
ination rule (modus ponens). These technigques adequately capturetithe afovariable binding because
object-language entities are represented by uninterpreted base typaaductive types) in LF; conse-
qguently, an LF function cannot case-analyze its argument, but mustwsiéatmly. Thus, the LF function
space provides an adequate interface for representation, but no &ilitymputation. Computational lan-
guages such as Twelf [Pfenning and &chann, 1999] provide an additional layer on top of LF, in which the
terms of the LF type theory itself are treated as an inductive definition. Rangbe, in Twelf II, metatheo-
rems about LF terms are proved by using the induction principle for LF terrdeftoe total relations. This
stratification explains why the LF function space seems to have two diffefiemination forms: in LF, a
function is eliminated by application, which gives substitution; in Twelf, wheeetéinms of LF are treated
as an inductive datatype, it is eliminated by pattern-matching. As we notee athow stratification also
means that there is no way to embed a Twelf computation in an LF representation.

In this paper, we avoid the stratified approach taken by LF/Twelf, as hathepresentational arrow
(which provides the functionality of the LF function space) and our contjgumal arrow (which provides
the functionality of Twelf metatheorems) are connectives in a single langudgeever, this means we
must choose sides: is the representational arrow eliminated by applicationl(&) or by pattern-matching
(as in Twelf)? Here, we take the Twelf elimination form as primitive: our reprgational arron? = A is
eliminated by pattern-matching, which exposes a value of #/petentially using the rul&. Consequently,
the representational arrow is a funny sort of implication, in that it needatiéfy modus ponens: we need
not make ara priori commitment to a substitution principle for rulégin the rule context. In contrast,
because LF functions are internally eliminated by modus ponens, LF egppa¢i®ns inherently commit to a
notion of substitution for object-language variables. Our representatiopbcation R = A thus provides
primitive support forscoped constantsvithout committing to structural properties, such as substitution, for
the rule context. Indeed, in our type theory, it is not necessarily the tbase¢hese structural properties
hold for all rule systems, because computational functions can be usesl pinetimises of rules. Such rules
have proven quite useful in frameworks, such as Coq, based on dénatective definitions [Martin-bf,
1971, Coquand and Paulin-Mohring, 1989]; one common use is to negatelactive definition, with a
premiseP — 1 asserting the refutability aP. However, such rules can invalidate structural properties: for
example, given a derivation including a proof(df) P — _L, it is not possible to weake# by addingP.



Thus, our language of inference rules is more general than LF, in thatritits computational premises.
In compensation, this generalization weakens what can be said geneatwallithe class of all rule systems
that can be represented. However, this weakening is not an obstagaigciice: we prove that structural
properties such as substitution hold generically for all LF-like rule systeaesyvering the benefits of the
LF elimination form for its function space. By exploiting computational opedeeimess, we may imple-
ment this proof as a datatype-generic program, so that when programesgist themselves to LF-style
representations, they can rely on the rule context behaving like a hyjwattjadgement. However, if a pro-
grammer uses more general representation techniques, such as itedaig/éndefinitions, the structural
properties of the hypothetical judgement are not assured, and expiitifigation must be provided. In this
sense our calculus unifies the practical benefits of the LF approaehnewte structural properties are avail-
able “for free”, with the benefits of more concrete approaches, whichmip more general representation
techniques at the expense of demanding proof of the structural piesper

2 Focusing on Definitional Variation

In this section, we present a focused sequent calculus for intuitionidtidtamal variation. When describ-
ing this calculus, we foreshadow the proof-term assignment given itio8et, freely interchanging logical
and type-theoretic terminology (“proposition” and “type”, “implication” arfdriction space”, “logic” and
“type theory”, etc.).

Before discussing the technical details, we build intuition for the polaritieseottimnectives. One way
to view positiveandnegativepolarity is in terms of Michael Dummett’s distinction between verificationist
and pragmatist “meaning-theories” [Dummett, 1991]. Positive connedieeik a sense “defined” by how
you verify them; the sequent calculus we present makes this idea formadt i plositive connective is fully
specified by axiomatizing the structure of the values that introduce it. Coestyglits elimination form is
any context that consumes all such values. Dually, negative coneeetig “defined” by how you use them;
in our presentation, a negative connective is fully specified by the wahisens its elimination forms make.
Consequently, its introduction form is any data that supports all suchattzms.

For example, the computational arrow is negative because it is biasedisouse: to observe a function
oftype A — B, apply itto any value of typel and then observe the resiliit Consequently, a computational
arrow may be introduced by giving a proof &f for every value of typed—in other words, by defining a
function using pattern-matching. On the other hand, the representativoal is positive because it is
biased towards verification: to build a value of tyfe=- A, build a value of typeA using the additional
inference ruleR. Consequently, a representational arrowliminatedby pattern-matching, corresponding
to informal proofs by rule induction on syntax with variable binding.

Our focused sequent calculus is defined in two stages, following the dtleilberger [2007]. First,
the (polarized) connectives are defined by axiomatizing the structupmsitie) values and (negative) ob-
servations. Second, there is a general focusing framework that igendent of the particular connectives
of the logic. The two judgements defining the connectives are conceptudaly i that the remaining
judgements quantify over them. For the sake of presentation, we startsbyildeg the connective judg-
ments in the simple propositional case, then present the general focuksgand finally return to revise
the definitions of the connectives in the setting of definitional variation.

We write C* andC'~ to stand for positive and negative formuls,” and X ~ for positive and negative
propositional variables (atomic propositions), afdido stand for a list of negative formulas and positive
atoms. The positive connectives are defined using the judgetnéntC'*, which corresponds to applying
only linear right-rulesto showC™* from A. For example, the rules defining conjunction, disjunction, and



atoms are as follows:

AL lFCF A lECf AlFCf AlF Oy
XtI-Xt A, Ao IFCF @ Cf AlFCfecCcy AFCHocCS

Foreshadowing the Curry-Howard interpretation, we will refer to dgidns of this judgement aslue pat-
terns;linearity captures the restriction familiar from functional programming thatteepabinds a variable
exactly once.

Negative connectives are defined using the judgemertt— I+ ~, which corresponds to usidmear
left-rulesto decompos€'~ into the consequeneg which is either a negative atoMm™ or a positive formula
C™. The derivations are elimination contexts for negative types (which giaanly calledspine$, except
that the contexts are made up of patterns rather than full terms; hencdern¢oréhem asspine patterns.
The rules for atoms, ordinary implication, and negative conjunction arellasvs:

Ay IFCfF No; Cf IFy A;Cr IFy A; Cy IFy
S XTIFEXT Ay, Ao Cf — C5 -y A; C7&Cy IFy A; Cr&Cy Ik y

We have adopted linear logic notation by writiggfor positive ands, for negative conjunction. In the
present setting, both of these connectives encode ordinary intuitiongstjarection with respect to prov-
ability, but they have different proof terms: positive conjunction is intictliby an eager pair whose com-
ponents are values, and eliminated by pattern-matching against both congyoregrative conjunction is
eliminated by projecting one of the components, and introduced by patterfingtgainst either possible
observation, i.e. by constructing a lazy pair.

2.1 Focusing Judgements

In Figure 1, we present the focusing rules. In these rdlesands for a sequence of linear conteitsbut
I"itself is treated in an unrestricted manner (i.e., as in ML, variables are bowgdio a pattern, but may be
used any number of times within the pattern’s scope).

The first two judgements concern the positive connectives. The judddienC '] defines right-focus
on a positive formula, ovalues a value is a value pattern under a substitution for its free variables. Focus
judgements make choices: to proge” in focus, it is necessary to choose a particular shape of value by
giving a value pattern, and then satisfy the pattern’s free variablese¥aite eliminated the left-inversion
judgement’; vo F ~, which defines &alue matchor case-analysis. Inversion steps respond to all possible
choices that the corresponding focus step can make: the rule'fquantifies over all value patterns for that
formula, producing a result in each case. By convention, we tacitly tsallg quantify over metavariables
such asA that appear first in a judgement that is universally quantified, so in fulbtbmise reads “for all
A, if Al CTthenll, A - ~.” Here~ ranges over consequences, which are either negative atoms orgositiv
formulae; for atoms, the only case-analysis is the identity. The positiveectimas are thus introduced by
choosing a value (focus) and eliminated by contexts that are preparaddterany such value (inversion).

The next two judgements concern the negative connectives, wherel#tiemship between introduc-
tion/elimination and focus/inversion is reversed. A negative formuliinatedby the left-focus judge-
mentI’; [C~] F +, which chooses how to obseré&™ by giving a spine. A spine consists of a spine pattern,
a substitution, and a case-analysis. The spine pattern and substitutionpiseoa negative typ€— to
some conclusiony, for instance a positive typ€ . However, it may take further case-analysis of this
positive type to reach the desired conclustonDually, negative types ailiatroducedby inversion, which
responds to left-focus by giving sufficient evidence to support abjide observations. The right-inversion
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Hypothesis a = Xt|C™
Consequence v o= X |CT
Linear context A = A«
Unrestricted context ' == - |[A
AlFCT TEFA
Right Focus ' [CT] ' [CT]
V(AIFCT): T,Ak~y
Left Inversion Tivo by X~ FX- | BN ORI
A;C lFyyg THA Tiygky
Left Focus L [CTEy ;[CTFy
V(A; CT IFy): T,AFy XteTl
Right Inversion r+c- X+
PE[CT]  C el LiCT]ky
No Focus 'k~ EC* Tk~
''FA Tha
Assumptions I'EA I'k- 'EA«

Figure 1: Focusing rules




judgement’ - «, where assumptions are negative formula or positive atoms, specifies the structure of a
spine match A spine match forC'~ must show that for all spine patterns decompoding, the conclusion
of the spine pattern is justified by the variables bound by the patterns in it.

The judgement” + ~, defines an unfocused sequent, oreapression from an expression, one can
right-focus and introduce a value, or left-focus on an assumptidhand apply a spine to it. Finally, a
substitutionl’ - A provides a spine-match for each hypothesis.

At this point, the reader may wish to work through some instances of thesgusieg the above pattern
rules) to see that they give the expected derived rules for the comescti

'-xX- vy Trz- DXtH-Z" T)YTFHZ-
PH(X~&Y™)&Z™ FH(XteYt) — 2~

2.2 Patterns for Definitional Variation

Figure 2 defines the syntax of propositions, along with the value and sptterpjudgements fixing their
meaning. Modulo notation, most of the connectives are standard fromzemldogic [Girard, 2001, Lau-
rent, 2002, Liang and Miller, 2007, Zeilberger, 2007]: positive fornauld™) include positive atomsX ™),
nullary and binary products and sums @' ® B*, 0, A™ @ B™), and shifted negative formulag¢ 4 ~);
negative formulae 4 ™) include negative atomsX(~), computational implication{*+ — B~), negative
nullary and binary conjunctionT( and A~ &B~), and shifted positive formulag 4*). Additionally, we
introduce positive defined atom®Y, defined by an open-ended collection of rules. Inference rut¢sake
the formP < AT « ... < A} (“concludeP given proofs ofA; throughA;'”), and are collected in the
rule context¥. Above, we tookC+ andC~ to range over polarized formulae, but in this more general
setting they range oveontextuapolarized formulag¥) A+ and(¥) A~.

Intuitively, a derivation ofA I+ () AT represents a value pattern of tyde™ using the constructors
in ¥ an arbitrary number of times, and naming the variableAilinearly. Since values of negative types
cannot be decomposed, as a base case we(lgve~ I (¥) | A~ corresponding to a variable pattern.
Likewise, spines of positive type cannot be decomposed, so that vee;Ha@) 1A I- (¥) AT as a base
case. Note that rule contexts are not associated with atomic hypotkiesesconsequencex .

The truly exotic connectives are (of positive polarity) andk (of negative polarity), which manipulate
the rule context. The meanings of these connectives are explained agsfollo build a value of type
R = AT, extend the rule context witi® and build a value of typel™. To observeR A A~, extend the
rule context withR and observed—. Note that in both cases, the new rules can eventually find their way
into contextual hypotheses or conclusions. Ignoring structural patioty the definition of= is simply the
usual implication right-rule, while the definition af is simply a conjunction left-rule. However, as we will
see in Section 3.1, in many ways these connectives behave quite diffdrentl§ordinary” implication and
conjunction.

Taken together, the pattern rule for defined atdmsvhich introducesP by application of a rule inb,
and the rules for right- and left- inversion, which universally quantiferogil such introductions, yield the
definitional reflection rule cited in Section 1. E.g., for= (P < X ; P <« YT < Z7), the following
rule is derivable:

O,Xthky T,V ZtE~
I3 (W) P oy

However, whereas the traditional definitional reflection rule performg arsingle step of unrolling a def-
inition, the focusing inversion rule unrolls definitions until they reach a jglawitch, which in some



Pos. formula
Rule
Neg. formula
Rule Context
CPF
CNF

AT
R
A
v
Cct
o

X+t ]A- |1|A*®B*|0| AT ®B* |P|R= A+
PeAT ...« A

X~ |1AT | At =B~ | T|A&B~ | R A B~
U, R

(W) A+

(W) A~

Al () AT

XTI (BY Xt (YA - (0) [A-

Apl (T AT Ay - (T) BY
()1 A, A IF (U) A @ BT

AR () AT AlF (T) B+
(norulefor0)  AIF(¥) AT @ BT Al (¥) AT @ BT

PeAT ...« Atev

AlF (¥, R)B* Ayl (BY AT L0 AL IE () AF
AlF(T)R = BT Ay, AL IF (D) P
A; (U A~ IFy

SO XTIFXT (U TAT I (D) AT

AplF (W) AT Ay (V) B~ Iy
Al,Ag; <\I/> At — B~ I+ Y

A; (WY A IF A;(U) B~ Ik~
(norule forT) A (U) A=&B™ IFy A (¥) A=&B~ Ik~

AN (U, RYB™ Ik~
A (YR A B~ Ik

Figure 2: Value and spine patterns




cases gives aw-rule. For example, for the rule contexMty defined in the introduction, a derivation of
I'; (In) nat = v has one premise for each natural number.

Example Consider the syntax of the untypgaecalculus:
e = x| Areleer

This syntax is represented in our type theory by the following definition sigea

lam : exp < (exp = exp)
app:exp < exp < exp

For clarity, we name the rules in the rule context here, foreshadowingrésemtation with proof terms in
Section 4. The\-calculus terms with free variables, ..., z, are isomorphic to derivations of the value
pattern judgementl- (U, z; : exp,..., z, : exp) exp. The fact that the rules definirgp may vary during

a derivation is essential to this representation of the new variables boartdrim. Thecomputationabrrow
then provides the means to induct over such higher-order data. E.gn aftef¥ ) exp — Texp represents
a function from\-terms in the empty context tb-terms in the empty context.

2.3 Identity and Cut

In addition to inductive types likexp, the context¥ can be used to define arbitrary recursive types. For
example, consider a base tyPalefined by one constant

d:D<«< |(D—1D)

The typeD defined by this constant is essentially the recursive fypeD — D, which can be used to write
non-terminating programs.

Because the rule context permits the definition of general recursive,tyipghould not be surprising
that the identity and cut principles are not admissible in general. Througbuirg-Howard interpretation,
however, we can still make sense of the identity and cut principles asspomding, respectively, to the
possibly infiniteprocesse®f n-expansion ang-reduction. We now state these principles, “prove” them
by operationally sound but possibly non-terminating arguments, and theusdisriteria under which these
proofs are well-founded.

Principle 1 (Identity).
1. (neg. identity) IO~ € I'thenl' - C'~.
2. (pos. identity; C* = C*
3. (identity substitution) IN C I" thenI’ - A.

Procedure. The first identity principle reduces to the second and third as follows:

ID3 ID2
A;CTIFy TVAFA Tyykxy
C~ el LA [CT )y
V(A; C™ k) | VAN Y
'=cCc-
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The second identity reduces to the third as follows:

ID3
AlFCt T,AFA

AR [CT]
V(AIFCT): ARCT
;CtrcCct

Finally, the third identity reduces to the first applied over all hypothéses A.

Principle 2 (Cut).
1. (neg. reduction) If' = C~ andl; [C~] v thenD |- ~.
2. (pos. reduction) If" = [CT] andT; C* F ~ thenT I .
3. (composition)
(@) IfTF ~pandl; vy - v thenT + ~.
(b) F 5 [C7] F vp andT'; yo F  thenD; [C7] F ~.
(c) ;v F g andl;yg E v thenl'; 1 F .
4. (substitution) For all six focusing judgememtsif I' - A andI", A = J thenI" i J.

Procedure.Consider the first cut principle. The two derivations must take the folloviong:

V(A; C  lFvyp): TVAF~g A;C vy TFA iygkoy
r-coc- L [CTEy

By pluggingA; C~ I+ v4 from the right derivation into the higher-order premise of the left deiava we
obtainI', A F ~y. ThenI' i v, by substitution withl' = A, whencel - v by composition withl™; vy - .
The case of positive reduction is analogous (but appeals only to substjtutio

In all cases of composition, ffy = X~ then the statement is trivial. Otherwise, we examine the last
rule of the left derivation. For the first composition principle, there are ¢tases: either the sequent was
derived by right-focusing on the conclusion = C*, or else by left-focusing on some hypothesis € T'.
In the former case, we immediately appeal to positive reduction. In the latter vae apply the second
composition principle, which in turn reduces to the third, which then reduaek to the first.

Likewise, to show substitution we examine the rule concluding = J. Dually to the composition
principle, the only interesting case is when the sequent was derivedtbdpdeing onC~ € A, wherein

we immediately apply a negative reduction.
]

Observe that the above procedures make no mention of particular ¢imesear rule contexts, instead
reasoning uniformly about focusing derivations. As we alluded to abuweever, in general these proce-
dures are not terminating. Here we state sufficient conditions for termindfioey are stated in terms of a
strict subformula orderinga more abstract version of the usual structural subformula ordering.

Definition 1 (Strict subformula ordering)We define an ordering; > C5 between contextual formulas as
the least relation closed under transitivity and the following properties:

11



o If A; C; IFyandCy € AthenC > Cy
o If A; C IFyandCy =y thenCy > Cf
o If AIF CfandC;, € AthenCyr > Cy
For any contextual formuld&’, we define> to be the restriction of to formulas below’.

The strict subformula ordering does not mention atakis or X —, since they only play a trivial role in
identity and cut.

Definition 2 (Well-founded formulas) We say that a contextual formué@ is well-founded if> is well-
founded.

Proposition 1. Positive and negative identity are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative identifyraved by mutual induction
using the order-, with a side induction on the length &f to show substitution identity. O

Proposition 2. Positive and negative reduction are admissible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and negative reduateoproved by mutual in-
duction using the order, with a side induction on the left derivation to show composition, and a side
induction on the right derivation to show substitution. O]

Definition 3 (Pure rules) A rule R is calledpureif it contains no shifted negative formulad — as premises
(or structural subformulas of premises). For exampley <= (exp = exp) is pure, butD < |(D — 1D) is
not.

Lemma 1. Suppos€¥) A contains only pure rules (i.e., i¥, or as structural subformulas o). Then
(V) A is well-founded.

Proof. By induction on the structure of. Every pattern typing rule (recall Figure 2) examines only struc-
tural subformulas ofi, except whem = P. But anyP defined by pure rule® « AJ[ < ... < Al infact
hasno strict subformulas, since th&; such thatd; I- (¥') A can contain only atomic formulas . O

The restriction to pure rules precludes premises involving the computatiomay.aHowever, as we
show below, it includes all inference rules definable in the LF logical fraonk, generalizing Schroeder-
Heister's [1992] proof of cut-elimination for the fragment of definitionaflection with—-free rules (since
pure rules donot exclude=-'s). Moreover, as we explained, the identity and cut principles areyswa
operationally meaningful, even in the presence of arbitrary recurspestyTechnically, as in Girard [2001],
we could adopt a coinductive reading of the rules in Figure 1, in whichk hetity is always admissible,
and cut-elimination is a partial operation that attempts to build a cut-free prdatwfnbaup. Even under a
coinductive reading, we conjecture that cut-elimination is total assumingitivpgsestriction for rules, in
the sense of Mendler [1987].

12



3 Logical Properties of=- and .

3.1 Shock therapy

In §6.2 of “Locus Solum”, Girard [2001] considers several “shockingaities’—counterintuitive prop-
erties of the universal and existential quantifiers that emerge when teayiven non-standard polarities.
For example, positive commutes unde®, while negatived commutes oveg.. In our setting=- behaves
almost like a positive universal quantifier, andalmost like a negative existentialAnd indeed, we can
reproduce analogues of Girard’s commutations.

Definition 4. For two positive contextual formulas;” andCy", we say that’;” < Gy if ;Cf = C5 . For
negativeC,” andC;, ,wesayC| < C, if Cf = Oy . We writeC, = Cy when bothCy < Cr andCy < C.
These relations are extended to (non-contextual) polarized formulasgihtiid under all rule contexts.

Proposition 3 (“Shocking” equalities)
1. R=(At®eB")~(R= A")® (R= BY)
2. (RAAT)&RAB )~ R A (A~&B7)
Proof. Immediate—indeed, in each case, both sides have an isomorphic set ef¢paie) patterns. [

Why are these equalities shocking? Well, if we ignore polarity and treat atldheectives as ordinary
implication, disjunction, and conjunction, then (2) is reasonable but (1)lysvattid in classical logic. And
if we interpret= and A asV andd, then both equations are shockingly anticlassical:

1. Va.(A® B) ~ (Vz.A) ® (Vz.B)
2. (3z.A)&(Fz.B) ~ Jz.(A&B)

On the other hand, from a computational perspective, these equalitigsitgdamiliar. For example, (1)
says that a value of typé © B with a free variable is either the left injection of anwith a free variable or
the right injection of aB with a free variable.

We can state another pair of surprising equivalermmtsveerthe connectivess and .. under polarity
shifts:

Proposition 4 (Some/any)
1. (RAA")=R= |A~
2. (R=A")~ R ATAT

Again, this coincidence under shifts is noio surprising, since it recalls the some/any quantifiler. A
of nominal logic [Pitts, 2003], as well as the self-dfalconnective of Miller and Tiu [2003]/z.A4 can
be interpreted as asserting either thiatholds for some fresh name, or fail fresh names—with both
interpretations being equivalent.

13



Type T = Pl71; D7

Canonical Form M = o (My,...,M,) | Xz. M
Signature ¥ = | ¥xT

Context o = | DT

z:71 D...DT, D PeXord

bx:mbs M:To Oty My ... PhEs Mp:iT,
Pl Az M :71 D 7o Sty (My,...,M,): P

Figure 3: Simply-typed LF

3.2 Embedding of Simply-Typed LF

The canonical forms of simply-typed LF (STLF) are summarized in Figuse8;Watkins et al. [2002] for
an introduction to canonical-forms presentations of logical framewonkghis section, we show that the
STLF terms exist as closed patterns, and therefore as values, in ouhggg. This shows that our type
theory can represent any logical system that has been represe®€tmn

Every STLF typer can be parsed both as an inference mite) and as a positive formula(7) (for
convenience, we identify LF base types with our defined at&ins

r(riD...27 DP) = P<p(rg) <...<p(m)
p(P) = P
p(r: D712) = r(11) = p(72)

The functionr(7) can be used to map STLF signatukeand context® to inference rule context® in the
obvious manner.

Theorem 1 (Embedding of STLF) Letr(X) = ¥y andr(®) = ¥g andp(r) = A*. Then there is a
bijection between canonical STLF term&such thatd s, M : 7 and derivations of |- (Uy, Ug) AT,

Proof. Map A z. M to the pattern rule for-, and mape (My, ..., M,) to the pattern rule foP. O

This theorem permits us to inherit en masse the adequacy of all systemswbdiden represented in
STLF. For example the above signaturg adequately represents the informal syntax of untyjpedrms
becausel, is the image of the usual LF encoding of this syntax. To complete the discusfsiolequacy,
we should also check that LF substitution is faithfully modelled in our calculudoteo, we must consider
substitution for rule variables.

3.3 Rule Substitution

As discussed above, there is no reason to expect the rule cdntexdatisfy substitution in general, but we
can prove a generic substitution theorem that covers the STLF fragmerabWée notation and writeto
double both for ruleg(7) and type$(7) in the image of the LF encoding.

2These would become real quantifiers in an extension to dependent types
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Value pattern  p == x| ()| (ps,pe)|inlplinrp |up;...pn| Au.p|boxp
Spine pattern k= €| p;k|fst; k|snd;k | out; k | unpack; u.k | undia; k
Value v = plo]
Value match  m = ¢|match®™(¢") |[€]]
wheregpt i={p; —e; |-+ | pn— en}
Spine s = klo);m | m
Spinematch  n == xz|match™(¢7) |[z]] flx (z.n)
where¢g™ ::= {k1 —oeg | |k oent
Expression e = wv|sex \son|mov\moc

Substitution ¢ = - |o,n/z||id]|[01,0]

Figure 4: Proof Terms

Theorem 2(Rule Substitution) For arbitrary ¥ and A, for any ruleL in the LF fragment, if I- (¥, L) AT
and- I (U) Lthen- - (¥) AT,

Proof. The proof is an adaptation of the standard hereditary substitution algorithir-f[Watkins et al.,
2002] to our pattern syntax. O

In a constructive type theory such as Agda, this theorem is witnesseddayesic function implement-
ing substitution. This function can be applied, for example, to promote asepi@ional arrow. = A
to a computational arro, — TA™. Weakening, contraction, exchange, and identity can be proved sim-
ilarly, and consequently LF-style representations enjoy all the usuaitstal properties. Representations
using more general techniques may enjoy these properties as well, bt pnegrammer wishing to use a
structural property must provide explicit justification that it holds.

It is possible to generalize the above theorem to patterns that bind variables

Theorem 3 (Rule Substitution With Pattern Variabledjor arbitrary ¥ and A™, for any ruleL in the LF
fragment, ifA I (U, L) AT and Aq IF (¥) L then there exists &’ such thatA’ I+ (¥) A*. Moreover, for
all Xt e A, Xt € Ay, A, and for all (¥") A~ € A/, there exists @ such that{¥) A~ € Ay, A.

The conclusion of this theorem is fairly weak: It is always possible totgubsone pattern into another.
However, the context®’ in the types of pattern variables i\’ may be different from the context in
A1, A, (because the substituted ruleis removed from contexts id\, and because contexts ik, are
weakened as the pattern is moved under binders). Thus, it is not aabethe case thaf\y, A - A’, so the
pattern constructed by the above theorem cannot necessarily be Useth @ value in the contexfg, A.
However, in certain circumstances it is possible to produce such substiuésmwe show in an example
below.

4 Programming with Definitional Variation

4.1 Proof Terms

In Figure 4, we present a proof term assignment to the focused secplenlus described above. There is
one proof term for each rule in the calculus. For example, the patterngulR £ A is represented by a
binding form\ u. p, where the variable represents the new pattern constructor. Additiowallyternalize
the cut and identity principless e n and v ¢ m witness reductionjn o e, m o s, andmg o m; witness
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¢ (p) defined or _—
match™(¢T) @ p[o] ~ ¢ (p) [o] (mgom;)ev~ mgo(m;ewv)

ce v — ¢y idm

¢~ (k) defined - s
(k[o]; m) e match™ (¢~) ~» mo (¢~ (k) [o]) (mos)en~mo(sen)

se f|x(;1;n) ~>sen [ﬂx(xn)/x] fix

/
o d
e € n mee

moe~>moe movwmovmev

Figure 5: Operational Semantics

composition; and:;, ¢, andid witness identity. For programming convenience (see Section 4.3), we also in-
ternalize the admissible substitution concatenation principles(;), a general recursion operatdx(z.n),
(negative) recursive typesX —.A~, and two new connectivesA™ andoA~. The latter act as modal op-
erators on the rule context: a value @F) OA™ is a value of(-) A™*; to use(¥)oA~, use(-) A~. (Like

= and A, these modal connectives are equivalent under polarity shifts.) Thggding rules are presented

in Figures 6 and 7. To make the examples below more concise, we tacitly paenaditijudgements by a
fixed initial definition context:, which acts as a prefix on each contextual formula in the judgement forms
(i.e.,(¥) A acts ag¥:, V) A did without the signature).

In Figure 5, we adapt the above cut-elimination procedure into a small-seyptamal semantics on
closed expressions. The rulesandpr correspond to the negative and positive reduction cases; these rules
use an auxiliary operatioa[s| implementing (standard, capture-avoiding) substitution, which we leave as
a meta-operation rather than internalize as a proof term. The mdeendmm handle instances of com-
position principles (b) and (c), although in a slightly different manner thave: because the operational
semantics consider only closed expressions, it suffices to reassoe@epttession to reveal a redex. Sim-
ilarly, the rulesmee andmev simply reduce the expression scrutinized by the case to a value, creating a
positive cut. Finally the ruléix unrolls the fixed point, and the ruldm reduces a cut against the internal-
ized identity principle. Type safety can then be formulated as usual, anddrites an exceptionally easy
proof since (as for the cut-elimination procedure in Section 2.3) it neetheation any connectives.

Theorem 4(Type safety)
Progress: If - - e : ythene = v or e ~ €.

Preservation: If - - e :yande ~ ¢’ then- e : vy

4.2 Implementation

Our type theory is, by design, open-ended with respect to the meta-foagtimapping patterns to expres-
sions. The focusing framework ensures that any means of presentisg theta-functions is acceptable,
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Hypothesis a = Xt|CO-
Consequence v X-|Ct
Linear context A = Az«
Unrestricted context T' == - |[A

Alrp:Ct Tho:A
'kplo] = C*

T'Em:y >y

VAIFp: CT): T,AF¢T(p):vy
FFe: X > X~ ['Fmatch®(¢1): CT >~

F'Fmyiv>v T'kEmg:iy >7
'kFe:CT>C*t 'Emgomy vy >

F}—S::C_>’y‘

AlFE:C >~ Tho:A TkEm:y>y F'EsaC™ >y TkEm:iy>ny

Lk klolym:=C™ >~ F'Emos:=C™ >x
z: Xt el VAIFEk = C™>5): T,AF¢(k):y z:0~ €l Lz:C7Fn:C™
Fkx:X* T'Fmatch—(¢7): C~ F'z:C" Ik fix(z.n) : C~

o Ct z:C~ €l ThksuC™>7x
ov:C* -sex:~

F'kn:C~ TrsuC™ >vy o= Ct TFm:CT >xy F'ke:vg ThEm:vy >y

I'Fsen:~v 'Fmev:vy I'Fmoe:y
- I'o:A Tkn:C~ ACT I'to;: A1 Thog: Ay
I'k-:- Ftonj/z:Ax:C™ F'Hid: A ko0 A1, A

identity principle# ‘cut principle# “convenient principle#

Figure 6: Focusing rules with proof terms
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Pos. formula AT = XT | |A7 |1 AT @Bt |0]|AT@ BT |P|R= A"t |DAT
Rule R =P<A] ...« A
Rule Context U u=-|%u:R
Neg. formula A = X7 |1AT |AT - B |T|A&B |[vX A" |RAB |0A™
CPF Ct n=(T) A"
CNF C™ =(U) A~
’Alkp:: <\I/>A+‘
r: XTIEg o (U) XT T (U)A™ Ik z = (U) [A™
Ay lkpy o (U) AT Ag Ik py i (U) BT
() = (P) 1 Ay, As IF (pr,p2) i (UY AT @ BT
AlFp:(U) AT AlFp (V)BT
(norulefor0)  Alrinlp:: (¥) AT @ BT Alrinrp :: (U) AT @ BT
u:P <= AT =... < Af € (%,0)
Ay lFpy o () AT Ay I pp o () Af Alkp (U, u:R) BT Alkp () AT
Ay, A lFupyoopy s (U)P Al Xu.p:: (¥)R= BT Ak boxp : (U)OAT
N
Fen (U)X > X ke (U)TAT > () AT

AplFpa(U)AT Aglb k= (U)B™ >«
A, Ak pik (UYAT — B~ >y

AlFE:(UYA™ >y AlFk:(U)B™ >~

(no rule forT) AlFfst; k= (P) A~ &B™ >~ AlFsnd;k = (U) A=&B™ >~

AlFk: (U)X A7 /XT|A™ >~
AlFout; k= (I)v X~ A~ >~

AlFEk: (U, u:R)B™ >~ ARk ()A™ >y

A IF unpack; u.k :: () RA B~ >~ Al undia; k :: (U)0A™ >~

Figure 7: Value and spine patterns
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provided only that they define total functions mapping patterns to expressione could, for example,
extend our theory with a formalism for meta-functions that are definedibyitpre recursion over patterns.
However, experience (e.g., [Harper and Morrisett, 1995]) has shioat such restricted formalisms are very
difficult to use in practice, since they amount to a commitment to a particular fotermination proof.
Instead we prefer to harness the expressive power of existing tootewe meta-functions total.

Thus, an implementation of our type theory must include an embedding of itxspiethe language
of some (perhaps more than one) proof assistant in which we are toatdrpyoofs of totality. We may use
any means of representing patterns and expressions, such as derliggs or locally nameless form, and
any method for proving such functions total. We are also free to make wymtafctic support for translating
concrete named forms into a name-free form suitable for that environmeeato€using framework ensures
that all that is required of a proof assistant is a means of computing) and ¢~ (k) for given meta-
functionsg™ and¢— and argumentg andk, respectively.

At present, we have built simple embeddings of our language in Agda agdioth using de Bruijn
index representations. In the remainder of this section, we use a convenient surface syntaxesenir
the examples; the interested reader may refer to the companion Agda caenfre precise account. It
may also be possible to embed our language into Twelf, using higher-dod&aet syntax, and relying
on the Twelf totality and coverage checkers to check that meta-functioesemted as relations between
patterns and expressions, are total functions. The logic programmingrietiztion of types in Twelf would
then provide the means of computing (p) and ¢~ (k), with termination being ensured by the totality
checker.

4.3 Examples
4.3.1 Induction over First-Order Data

In this section, we instantiate our type theory with a global definition signatuneafiiral number&y =
(Z:nat; S:nat < nat). As a most basic programming example, we define a funetéui, which simply
wraps the successor pattern construétas a function on natural numbers:

- Faddl: () nat — Tnat
addl= match™ (p;e— (S p) [id])

The body of this spine match is a meta-level function (i.e., an Agda functionridgda implementation)
that maps spine patterns to expressions. In particular, for every saitespA |- £ :: () nat — Tnat > 7,

it must give an expressioAl - e : . In this case, all spine patterns frmat — Tnat have the fornp ;e,
whereA IF p :: () nat andy = () nat. In Xy, every suclp is a numeral, so extensionally, we wish to define
the following meta-function:

wm
N N
\.('h “m
1
-
wmw On
w» N
N
g

S(SZ);e — (S(S(S2)))]id]

—

In each case, this function adds a successor to the pattern, and placeswhpattern under the identity
substitution (we abbreviateid by id) to form a value and therefore an expression. However, we cannot

SAvailable fromht t p: / / www. cs. cnu. edu/ ~dr | /
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list a case for each numeral explicitly, so in the above cpde— (S p) [id] we use ametavariablep to
treat all such patterns uniformly. The metavariable is a variable, rangieigoatterns, in the meta-language
(e.g., an Agda variable in our Agda implementation), permitting a finite reprdsmniaf the infinite set
of ordered pairs in the extension of the function. Note that, because als@nd no variables id\, we
could equivalently have used the empty substitutiomplace of the identity substitutioid; however, the
type-correctness of this modification would require the inductive prodfAhi p :: () nat impliesA = -,
whereas the identity-substitution version is type-correct forAany

Next, we define addition as follows:

- F plus: () nat — nat —Tnat
plus= match™ (p; ; p2 ;€ — plus’ p; p2))

That is, every spine pattern decompos{ngat — nat —Tnat is composed of two value patterns, which are
matched by the metavariablgs andp, and then passed to an auxiliary meta-funcipus’:

V(A IFpy <> nat, As IF pg = <> nat) : (Al,AQ Fplus' p; ps : nat)
plus® Z p2 = pelid]
plus* (Sps;) p2 — match™(n — ((n;e€)[id];€) e addl) o (plus® p; ps)

This auxiliary function maps two patterns to an expression that computes tineiusing meta-level case-
analysis and induction on the first pattern. The result of the secondtbcam be made much more readable
by employing a bit of syntactic sugar: we writese e of ¢ for match™(¢™) o e, write s @ n asn s, and
elide both the at the end of spine patterns and the identity eaedowing a spine pattern and substitution.
Then this branch is written as follows:

plus’ (Sp;s)pe +— case(plus’ p; p2)of n — addl(n[id])

The case explicitly sequences the evaluation of the expression produced by thetivedoall Elus® p; p2)
down to a value, which is matched by the metavariahleThis sequencing is necessary because spines
can be composed only of values, not arbitrary expressions. As ampdanvocationplus® (S (S Z)) (S Z)
builds the expression

case (case (S Z) [id] of n +— add1(n[id])) of n — addl(n[id])

which computes as expected under the above operational semantics.

4.3.2 Induction Over Data With Binding
Next, we illustrate recursion over data with variable binding. As a simple fkatngle, we count the
variables (leaves) of an untypedterm. We work in the signature

Yy =23n, lam:exp < (exp = exp) , app:exp < exp < exp

In general, a computational function sucheaisl1or plusdoes not necessarily remain well-typed when the
signatureX. is extended (i.e., sighatures may not necessarily be weakened): theierteould create new
cases that the function does not handle. However, in this case the hgatdidlandplusremain well-typed,
since the constantsm andapp do not change the definition aht.
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Closed Terms First, we implement a functioav that counts the variables of a closkderm (generaliza-
tions to open terms are considered below):

-Fcv: ()exp —Tnat
cv = match™(p;e+— cv' p)

V(AIFp:()exp): (AFcvp:()nat)

The body ofcvis a meta-functiorev*, which must map patterns representing closderms to expressions
of type () nat. However, when we attempt to define a meta-function with this type, we will rtovan
problem in theam-case:

cv' (lam(Au.p)) +— 777

We would like to make a recursive call to count the variables in the body dtitihetion, which is a pattern
A IF p :: (u:exp)exp. However, the meta-functioov' is stated only for closed-terms, represented by
patternsA I p’ :: () exp.

The solution is to generalize the typeaf so that it is defined simultaneously for all rule contektsof
the formu; :exp, ..., u, : exp. (In the setting of Twelf, the analogous technique is proving a metatheorem
in a regular world [Pfenning and Sétmann, 1999].)

V(Wy, AlFp: (Uy)exp):  AF (cv Wy p): () nat

cvt U wuwhereu e ¥ +— (SZ)][id]

cv' ¥ lam (Au.p) = cv* (W, uzexp)p

cv' U appp; p2 — case (cv* U py)of ny +— case (cv* U pg)of ng — plus(ny ; ng)lid]

Here, we write the contex¥ as an explicit argument to the meta-function; however, bec&uappears in
the type ofp, it should be possible to infer this argument—indeed, our Agda implementattbisdtinction
treats? as an implicit argument. Because resultdfis an expression of typeat in the empty rule context,
we may call to the previously-defined addition function, which is defined forlglosednats, plusin the
app case.

We completecv by callingcv* in the empty rule contextv = match™(p ;e — cv* - p).

Terms in a Fixed Context The above functioryv of type () exp —Tnat can only be applied to a closed
A-term. As a first generalization, we write an analogous function that cappked to any\-term in an
arbitrary, but fixed, contex¥:

-Fev:(U,)exp — Tnat

The meta-functiorcv' above was stated generally for any sukh, so we should be able to reuse it to
implementcV. However, there is a slight difference betwesfi and the meta-function required to imple-
mentcV. The type(¥,) exp — Tnat classifies functions that consumeerms in¥,, and produce numbers
in ¥,. Formally, to implement a function of typgl,)exp — Tnat it suffices to give a meta-function
V(A IF p o (Uy)exp) : AF e: (¥y)nat. In contrast,(cv* ¥,) consumes\-terms in¥, but produces
closednumbers.

To usecv* to implementcV, we have two choices. First, we may explicitly coerce the resutivof
from () nat to (V) nat. Such a coercion function is definable because weakeningexgttvariables is
admissible fomat values—essentially because the assumptiorep in ¥, do not alter the definition of
nat. Second, we may refine the typeaf to capture the invariant that the result is closed. To do so, we use

21



a connectivesA~, which classifies aml~ in the empty rule context (see Figure 7 for its spine rule). Then
we can implementV as follows:

-FcV: (¥,)exp — oTnat
cV = match™ (p;undia; €) — cv* ¥y p

Unlike cv, the functioncV can be applied to any-term constructed from variables ib,.

Regular Worlds Finally, we consider representing Twelf's regular worlds in our typdesys Regular
worlds are a kind of context polymorphism: rather than proving a theocera fixed context, you prove a
theorem for all contexts of a particular shape. Consequently, it is pebieids appeal to the theorem from
any context in the world. To recur under binders, it is often necedsaggneralize a theorem statement
about closed terms to a regular world containing variables. Our meta-farmtfois an example of this
phenomenon: to recur in them case, we wrote a function that can be called from any conigxin
the regular worldexp*, which contains contexts of the formy : exp, ..., u, : exp. We now show how to
internalize this generality as a type.
We would like a typere.p- (exp — oTnat) with the property that we can call this function on axyerm

in any context¥, in exp*. Such a type is equivalent to the conjunction of the following infinite list of
contextual types:

() exp — oTnat

(ug :exp) exp — onat

(ug :exp, ug : exp) exp — oTnat

To give a finite representation of this list, we first internalize each fixedesto®¥,, using thex connective:

() (exp — onat)
()exp A (exp — olnat)
(Yexp A (exp A (exp — oTnat))

Because of this internalization, all of these types are in the same (empty)ntlext which enables us to
conjoin them. Thus, we could prove them all at once by proving the infindamunction

() 852 5 (exp™ A (exp — oTnat))

whereexp™ A A~ iterates éxp A _) n times. While our type theory does not have infinite conjunctions as
a primitive notion, we can define them using a (negative) recursive typibis case, we use the following
type:
v X~ .(exp — oTnat)&(exp A X )

(See Figure 7 for the typing rule forX —.A~.) The typer X . A~ &(exp A X ~)isanA~ under a variable
number of new constants of typep. To extract a functior(u : exp)™) exp — Tnat, we use the spine pattern
((out; snd; unpack)™; out; fst) from this type. We abbreviate this recursive type using the regular worlds
SyntaxVeyp« (exp — oTnat).

And indeedcv* suffices to implement the type- cV’ : () Veyp+ (exp — ©Tnat). The implementation
uses an auxiliary inversion lemma:

V(A IF ko (Uy) Vexpr (exp — oTnat) > ) 3V, - Ik invert k :: (U)) exp andy = () nat

22



This lemma transforms any spine pattern of this type intexarpattern in some context’,, and is defined
defined by a simple induction over the spine patterns for the recursive TyygmcV’ is defined as follows:

-F eV’ : () Vexp+ (exp — oTnat)
¢V’ = match™ (k — cv* W/, (invert k))

Thus, our type theory provides an analogue of Twelf’s regular warkilsg A, &, andwv.

4.3.3 Using Substitution

In Theorem 2, we proved a substitution theorem for LF-like rules in clgesterns. The proof of this
theorem defines a meta-function from patterns to patterns:

V(- Ik pg:: (WY Land- Ik p = (U, u:LYyAY): -k [pg/ulp :: (¥) AT

We can exploit this theorem to give a simple definition®feduction on untyped-terms: there is
no need to define substitution explicitly for this individual object language.défine a functiomed that
reduces a term one step, if such a reduction is possible; the body of ttgdiu is the following meta-
function:

V(PyandA lFp: (Uy)exp): Abred p: (¥y)expd1

red wwhereu € ¥ —inr () []
red” lam (A w.p) — casered” pof
inr () —inr () []
inl p" — inl (lam X\ w. p’) [id]
red” app (lam (Au.p)) p2 — inl([pz/ulp)[]
red" app p; p2 — casered" p; of

inr () — casered® py of
inr () —inr () []
inl pl, — inl (app ps pj) [id]
inl pj — inl (app p; p2) [id]
In this definition, we leave the context argumehtimplicit—it can be inferred from the type of the
pattern argument. The appeal to substitution in fheedex case is type-correct because any pattern
such thatA I p :: (V)exp in fact satisfies I+ p :: (¥)exp—because there are no shifted nega-
tive formulae as hypotheses of the rules definirg. This meta-function implements the recursive type
-Fred: () Vexp (exp — 1(exp @ 1)), similarly tocv’ above.

4.3.4 Mixing Representational and Computational Functions

Next, to illustrate the combination of representational and computational siroavsingle set of rules, we
represent the syntax of a simple language of arithmetic expressionsg whereric primitives are repre-
sented by computational functions. In LF, each primitive operation wouwjdire its own constructor; here,
we represent binary primops (binops) uniformly as computational furetébtypenat — nat — Tnat. The
language includes numeric constants, binops, and let-binding, and esegped by,
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Znatu

num:ari <= nat

binop: ari < ari <= (nat — nat — Tnat) < ari
let : ari <= ari <= (ari = ari)

For example, the valuginop (num 4) f (num 5)) [plus/f] represents an addition instruction. Observe that
plusremains well-typed in this extended signature.
We can implement an evaluator for closed programs using a fixed pointeatityp= () ari — Tnat:

-Feval: A,,
eval= fix(ev.match™(p ;e — eV p))

Then the body of the spine match is defined as follows, where the varalidehe recursive reference:

V(AIFp:(yari): (ev:Ae, AF (eV p): () nat)

eV’ numn = nlid]

eV binopp; fp2 + ev (ps[id];match®(n; > ev (pelid]; match™ (ng = f (ny ; nelid])))))
ev' letpg (Au.p) — ev({po/ulplow])

In the binop case, evaluation calls the embedded computational function on the values afjtiments.
In the let case, evaluation substitutes the argument (a patsgrt- py :: () ari) into the body (a pattern
A IF p :: (u:ari)ari) and evaluates the result. The explicit fixed point is necessary betiaisecursive
call on the result of substitution is not structural. The pattern substitutioratpe{_/_} _ implements the
proof of Theorem 3, and produces a pattéxh |- {py/u}p :: () exp, whereA’ is related toA,, A as
prescribed by that theorem. To complete this case, we must give a substigtidnt o, : A’.

This substitution is constructed by the following reasoning: All rule contdxtarising in patterns
A I p : ()ari have the formu; :ari,. .., u, :ari, and all pattern variable contexts contain only as-
sumptionsz : () nat — nat — Tnat for such a context. Theorem 3 shows that for every assumption
[/ (¥') nat — nat — Tnat in A’, there is an assumptiof: (¥) nat — nat — Tnat in Ay, A, andW¥ con-
tains onlyari assumptions as well. Thus, we can shiw A + o4, : A’ if we can show how to transport a
functionf of typenat — nat — Tnat from ¥ to ¥’. Becauseri assumptions are irrelevant tat, we can
write a function transporting aat from ¥ to ¥’ (or vice versa), and then use this function to wfagur
Agda code formalizes this reasoning and uses it to construciThis reasoning is similar to Twelf’s tech-
nology for subordination-based world subsumptian future work, we plan to consider whether Twelf’s
technology can be adapted to infer these substitution transformers autdipaticartain cases.

4.4 Differences with Agda Implementation

We have manually compiled the above examples to the Agda implementation of otinégpe The Agda
versions of these examples differ from the above as follows:

e Variables, both froni® and from¥, are represented as de Bruijn indices.

e Some explicit calls to a weakening lemma foare inserted, in order to weaken some expressions
computed by meta-functions.

e The premiseA C TI' of the typing rule for the identity substitutiod is proved explicitly whenever
the identity substitution is used.
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e Alemma thatA IF p :: (U,)exp implies A = -, which justifies the call to the generic substitution
routine fromred*, is proved and used.

e The above informal description of the constructiorvgf is made formal.

We leave the formal definition of a surface syntax and elaboration algofithmeta-functions to future
work.

5 Related Work

In Section 1, we highlighted some contrasts between our work and comenglesmentations of binding,
nominal logic, and HOAS in LF. In summary: The concrete implementations anplemnentary to the
present work, in that the representational areswprovides dogical interfacefor binding and scope, while
leaving the implementation of this interface abstract. Moreover, the computiatipea-endedness of
permits programmers who are fond of a particular implementation of binding ramodirectly using that
implementation, while still ensuring compatibility with other implementations. In this sensezalculus
provides functionality similar to Ott [Sewell et al., 2007], a proof-assistagéependent tool for describing
binding structures; however, we provide a proof-assistant-indegmgraacount of computation with binding
as well. The central difference between our approach and nominalitiat all names in nominal logic
have global scope, whereas the connectizeand A intrinsically capture the notion of scope. However,
the connectives> and A share the some/any coincidence of the self-dual conneldtiitts, 2003]. The
chief difference between the representational function space andSHIOLF is that, like names in nominal
logic, our rule variables are nat priori committed to structural properties such as substitution. Instead,
representational functions are eliminated by pattern matching, which is similaetelithination form
used to reasoaboutLF terms in computational languages such as Twelf [Pfenning andr®emn, 1999],
Delphin [Poswolsky and Séinmann, 2008], and Pientka’s recent work [2008] based on cortextadal
type theory [Nanevski et al., 2007]. Whereas we generalize LF by altpaomputations in rules, all of
these approaches treat LF as a pure fragment, though Pientka dssthespetential usefulness of allowing
some form of computation within signatures.

The idea of representing variable binding by a function space is vergoldg back at least to Church
[1940]. However, integrating higher-order representations with caatjoun in a single language has proved
difficult. The essential impediment is that one cannot simultaneously repreggax as an inductive def-
inition inside a type theory and adequately represent binding as the fullwtatignal function space of
that type theory. There are two reasons for this: First, it is is not pernésgibplace a type to the left
of a computational arrow in its own inductive definition. Second, even ifanmgéd, there would be many
more computational functions of such a type than the uniform ones thataigdyjrepresent binding. This
dilemma can be resolved in various ways. LF gives up on treating syntax iaglactive definition inside
the type theory. Internally to LF, binding is represented by a “computati@radiv, in the sense that the LF
function space has the usual implication rules. However, LF functions hainteresting data to compute
with, because object-language syntax is represented by uninterpestedyipes. This necessitates a strati-
fied approach, where the terms of LF are externally treated as data iaatelanguage, such as Twelf, with
its own computational arrow (from this external perspective, the LFtfanspace serves a representational
role). In this work, we take the alternative approach: we represgatblanguage syntax by an inductive
type, but we do not represent binding by computational functions. €unesentational functions, which
reason from a fresh constant, are much less powerful than computdtiontions, which circumscribe the
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entirety of their domain. Consequently, it is not problematic to put a type to theflef representational
arrow in its inductive definition, as our cut admissibility proof in Section 2 shdworeover, as we proved
in Section 3, our representational functions adequately represendind

Several other single-language resolutions of this dilemma have been st&aikamann et al. [2001]
describe an approach based on making a type distinction between reéptEsel and computational func-
tions. In their language, a modal typ#A classifies closed terms of typkand is eliminated by primitive re-
cursion; Despeyroux and Leleu [1999] describe a generalization wiibritlent types. Unlike the LF-based
approaches described above, these languages are not syntactrediflied into separate representational
and computational parts. Instead, they reuse the same arrow foreefatsnal functions (e.g., a function
A — B where A and B do not includel], is used for representation) and computational functions (e.g.,
a functionJA — B can decomposd by primitive recursion). However, unlike the present work, these
languages do not permit computational functions sudids— B in datatype definitions.

Despeyroux et al. [1995] propose representing object-languagaxsgs an inductive type (sap) in
Coqg, where a binder is represented using a Coq computational funeatica exp. This “weak” higher-
order abstract syntax is a valid inductive definition because the domaiongbwtational functions repre-
senting binders is a separate tyae representing variables. This representation encodes object-language
a-equivalence using Cog-equivalence, but object-language substitution must be programmed explicitly
Care must still be taken to ensure adequacy. Despeyroux et al. [@9983$e the implementation of the type
var (e.g., natural numbers), which necessitates a predicate recognizirgyftimtions of typevar — exp
which adequately represent object-language terms. Another appi®acheave the typevar abstract,
though programming with such a representation requires some extra senhaiistied axioms about
variables [Bucalo et al., 2006]. Ambler et al. [2003] present a variaiioweak HOAS in which free vari-
ables are represented as projections from an infinite context (a stfeamables); this approach mitigates
Isabelle’s lack of dependent types, which could be used to characterins’ contexts more precisely.

Another solution is to give an interface based on computational functiartsiniplement it using
a concrete representation. For example, the Hybrid approach [Ambkdr, €002, Capretta and Felty,
2007, Momigliano et al., 2007], which has been implemented in Isabelle anduSeg an underlying de
Bruijn implementation of binding. This circumvents the problems with using computdtfanctions di-
rectly in an inductive definition. The challenge is then to provide a usefiidanigrder interface to this
concrete implementation. Providing higher-order constructors is notuliffifor example, a constructor
lam: (exp — exp) — exp (Whereexp is the type of the de Bruijn implementation) can be implemented by
applying the argument function to an appropriate de Bruijn index. How&veompute or reason using the
higher-order interface, it is necessary to restrict attention to those datignal functions that adequately
represent binders. In Hybrid, this is accomplished by defining a priedieaognizing those computational
functions whose application is equivalent to the de Bruijn implementation ofisutizsn—i.e., recognizing
substitution functions. While the setting and technical details are quite diffédéckey et al. [2006] also
mix de Bruijn and higher-order syntax, using the de Bruijn representatioariee out a class of representa-
tional functions and to define an induction principle for them.

All of these approaches for representing binding as computationatiéuinschave the advantage that
they can be carried out in existing proof assistants. In contrast, byimgfinnew type theory, we are able
to give a simple account of the abstraction that these constructions amg achireve. Our representational
functions provide a direct tool for adequately encoding binding, anid ¢fienination form gives structural
recursion on open terms. Moreover, as we hope to have demonstratmu]=- are really quite orthogonal
connectives, and encoding one in terms of the other ignores some ofskemt@l properties (such as, for
example, the distributivity principles in Section 3.1).
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Miller [1990] shared this stance, and proposed an extension to ML wittwatyge” a => ' b rep-
resenting a term of typéb with abstracted parametéra, as well as a restricted form of higher-order
pattern-matching. Although it came long before the proof-theoretic innavatitat made our work possi-
ble, Miller's proposal has several interesting features that can bamgaed in light of our analysis. For
example, the domaina must be not only an equality type, but also a user-defined datatype tlsesean-
ings of base types such ast or string should not be open-ended. This is related to (although less
general than) the present restriction that the domaiR ef A+ be a rule extending the meaning of a de-
fined atomP (thoughR need not beP itself). The fact that the codomairb must be an equality type in
Miller's proposal is related to (although less general than) the presstrtation that the codomaid™ be
positive (thoughA™ can contain embedded negative formulas, which are not equality typeshnitally,
we are able to go beyond Miller's proposal because we associateveeggtiotheses with a context of pa-
rameters. This idea appears in Miller's more recent work [Miller and Ti3?0as well as in contextual
modal type theory [Nanevski et al., 2007]. Indeed, Miller and Tiu'soprtheory bears many similarities
with ours, although their overall approach is based on the computatipmea$-search paradigm (i.e., logic
programming), whereas ours is based on a proofs-as-programgaitgipn of focusing [Zeilberger, 2007],
using polarity to segregate computation from data.

Fiore et al. [1999] and Hofmann [1999] give semantic accounts of Mariainding. It would be inter-
esting to see whether these semantic accounts can be extended to rule systems ours which permit
computational functions in premises.

6 Conclusion

We have presented a language that enables the free interaction of biitlirggpmputation, extracted as the
Curry-Howard interpretation of a focused sequent calculus with twmd$oof implication. We believe this
provides an appropriate logical foundation, but much work remains t@be.dNe plan to pursue a practical
implementation of our language following the plan sketched in Section 4.2. Addlitypa generalization to
dependent types (in which both and=- would become dependent function spaces) would realize the goal
of primitively supporting higher-order abstract syntax in a construdimpe theory, combining the best of
frameworks such as Twelf and Coq. Another tantalizing possibility is thatdh#mation of computational
open-endedness with higher-order abstract syntax could shed fighiegroblem of meta-programming.
In Section 4.3, we already saw how it was possible to write programs in thetdajguage using the full
power of the meta-language.

Finally, the present paper serves as a case stugylarized type theoryWe were able to construct a
simple and elegant language, solving a traditionally thorny problem, in pasuise we based our proof-
theoretic analysis on polarity and focusing, which provide a genenaldweork for analyzing the interaction
of rules independently of particular connectives. In “Locus Solum”aimproposed this framework as a
new approach to the study of logic. We believe this approach also has rotesitipl for practical program-
ming.
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