Balanced polymorphism and linear lambda calculus
Noam Zeilberger (MSR-Inria Joint Centre)

Abstract

A “pearl theorem” of lambda calculus says that every linear lambda term is simply
typable, and moreover that its fn-normal form is uniquely determined by its principal type.
Mints (1977) gave a proof-theoretic demonstration of this result, by showing that 1) every
linear lambda term has a balanced principal typing sequent (where a sequent I' — A is said
to be balanced if each atomic formula occurring in it has exactly two occurrences, once in
positive position and once in negative position), and 2) any balanced sequent is inhabited by
at most one fn-normal form. We give a new more conceptual proof of Mints’ pearl theorem,
describing it first as a simple bijection between string diagrams for linear normal forms and
provable balanced sequents, and second as a simple bidirectional type inference algorithm
for linear lambda terms (that is exactly dual to standard bidirectional type checking).

Linear lambda calculus represents an extremal case of parametricity, in the sense that every
linear lambda term is typable, and its normal form is uniquely identified by its principal type.
For example, the normal forms on the left are uniquely identified by the types on the right, and
vice versa:

Ax.x(Ay.y) : (@ —oa)~p)—~p
Ax.Ay.xy : (@ — ) —(a—p)
Ax Ay y(x(Az.z)) @ ((@—a)—op)—o((B—-y)—oY))

One consequence of this observation is that type inference is essentially equivalent to normal-
ization, and it is in that context that I first saw this property asserted as a “pearl theorem” by
Mairson [1]. The result should probably be attributed to Mints [2], who proved a version of it
in the context of the so-called coherence problem for monoidal closed categories (also studied
notably by Lambek, and by Kelly and Mac Lane). Mints’ proof can be divided into the following
pair of observations:

1. The principal type of a linear lambda term is balanced, in the sense that every type variable
occurring in it occurs exactly twice, once positively and once negatively. For example,
here I have colored in red and blue the positive and negative occurrences of the three type
variables in the principal type of Ax.Ay.y(x(Az.2)): (a—oa)—op)—o(p—oy) —y

2. Any balanced type (and more generally, any balanced typing sequent) has at most one
inhabitant up to fn-equivalence.

Both (1) and (2) are established by relatively straightforward proof-theoretic arguments (apply-
ing an induction on the length of terms).

Although the proof in [2] is not very complicated, a pearl theorem deserves a pearl proof.!
Our starting point will be a simple string diagram representation of normal linear lambda terms
that was introduced in [4] as a refinement of so-called lambda-graphs, and which is derived
from the refinement type signature [3] encoding the well-known characterization of normal
lambda terms in mutual induction with “neutral” terms. In this representation, normal and
neutral terms correspond to certain diagrams constructed using three basic combinators which
we call a-, s-, and {-nodes (standing for application, the switch from neutral to normal, and
fambda abstraction) on colored, oriented wires:

k

LThere are other reasons why I think that the “balanced polymorphism” exhibited in linear lambda calculus is
worth being studied on its own terms. For example, it corresponds closely to the notion of “end” in category theory.




Balanced polymorphism and linear lambda calculus Noam Zeilberger

These components may be annotated like so (note that blue wires carry neutral terms and red
wires carry normal terms):

t

t

From the string diagram of a normal lambda term, you obtain a balanced typing sequent by the
following procedure:

t

x t

t(u) u

Azt

1. reverse the orientation of blue (neutral) wires

2. turn each a-node into a negative-polarity implication (i.e., an implication occurring in
negative position), and each {-node into a positive-polarity implication

3. replace each s-node by a distinct type variable (with two outgoing wires, standing for its
positive and negative occurrences)

4. read off a balanced principal typing sequent for the original term by starting at the type
variables and pushing information along the direction of the wires

For example, here is the transformation applied on the diagram of the closed normal term
Ax.Ay.y(x(Az.z)) (with its outermost Ax removed to view it as a term with one free variable):

(@—ea)—p

Ay.y(z(Nz.2)) (B—oy)—ey

Moreover, this transformation is clearly reversible (since the choice of type variable names is
irrelevant). Finally, we can turn this into a traditional type inference algorithm (much simpler
than Hindley-Milner inference on this very special case), described in the following rules:

TetceA—oB Acu=>A T<tea afresh x:AT<t=B
XaExEa I'AN&=tHu)<B Tret=a IT'Axt=>A—oB

Here the two judgment forms are I' & t < A (“checking against A, t synthesizes context I'"”) and
I' =t = A (“t synthesizes contextI'and type A”). The reader familiar with standard bidirectional
type checking (where neutral terms synthesize and normal terms check) will remark that this
system is exactly dual (suggesting that we might call it “bidirectional type inference”).

References

[1] Harry G. Mairson. Linear lambda calculus and PTIME-completeness. JFP, 14:6 (2004).

[2] Grigorii E. Mints. Closed categories and the theory of proofs. Zapiski Nauchnykh Seminarov LOMI
im. V.A. Steklova AN SSSR, 68 (1977). Translation in Journal of Soviet Mathematics, 15 (1981), republished
in Mints, Selected Papers in Proof Theory, Bibliopolis (1992).

[3] Frank Pfenning. Refinement Types for Logical Frameworks. TYPES 1993.

[4] Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and normal
planar lambda terms. To appear in Logical Methods in Computer Science.



