
A theory of linear typings as flows on 3-valent graphs
Noam Zeilberger

School of Computer Science
University of Birmingham, UK

Abstract
Building on recently established enumerative connections between
lambda calculus and the theory of embedded graphs (or “maps”),
this paper develops an analogy between typing (of lambda terms)
and coloring (of maps). Our starting point is the classical notion of
an abelian group-valued “flow” on an abstract graph (Tutte, 1954).
Typing a linear lambda term may be naturally seen as constructing
a flow (on an embedded 3-valent graph with boundary) valued in
a more general algebraic structure consisting of a preordered set
equipped with an “implication” operation and unit satisfying com-
position, identity, and unit laws. Interesting questions and results
from the theory of flows (such as the existence of nowhere-zero
flows) may then be re-examined from the standpoint of lambda cal-
culus and logic. For example, we give a characterization of when the
local flow relations (across vertices) may be categorically lifted to a
global flow relation (across the boundary), proving that this holds
just in case the underlying map has the orientation of a lambda
term. We also develop a basic theory of rewriting of flows that
suggests topological meanings for classical completeness results in
combinatory logic, and introduce a polarized notion of flow, which
draws connections to the theory of proof-nets in linear logic and
to bidirectional typing.

Keywords lambda calculus and combinatory logic, graph theory,
nowhere-zero flows, linear logic, skew-closed categories

1 Introduction
The study of graphs embedded on surfaces, or maps, has a long
history, much of it linked with the rich history of the Four Color
Problem (now the Four Color Theorem, or 4CT) [15, 41]. Formally,
4CT is a statement about maps, namely that every bridgeless planar
map has a proper face-4-coloring.

A mathematician who made great contributions to the study of
maps and colorings was Bill Tutte, including his observation of a
duality between chromatic polynomials and flow polynomials [44],
which turns on the very natural notion of an abelian group-valued
flow over a graph. By a well-known reduction going back to Tait
[38], 4CT is equivalent to the statement that every bridgeless planar
3-valent map has a proper edge-3-coloring,
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family of lambda terms family of rooted maps OEIS

linear 3-valent (of genus д ≥ 0) A062980
planar planar 3-valent A002005
unitless linear bridgeless 3-valent (д ≥ 0) A267827
unitless planar bridgeless planar 3-valent A000309
β -normal linear/∼ (all maps of genus д ≥ 0) A000698
β -normal planar planar A000168
β -normal unitless linear/∼ bridgeless (д ≥ 0) A000699
β -normal unitless planar bridgeless planar A000260

Table 1. Known correspondences [3, 7, 53–56] between families of
lambda terms and rooted maps, as combinatorial classes. Here “∼”
stands for an equivalence relation defined in [53], and the rest of
the terminology is explained in Sections 3 and 4.1. (Indices on the
right refer to the Online Encyclopedia of Integer Sequences [34].)

and within Tutte’s theory this may be reformulated as the statement
that every such map has a nowhere-zero V-flow, where V � Z2 ×Z2
stands for the Klein Four Group [48].

A separate line of work that Tutte began in the 1960s (also origi-
nally motivated by 4CT, see [50, Ch. 10]) was the enumerative study
of maps, establishing some remarkably simple formulas for the
number of (rooted) planar maps of a given size satisfying vary-
ing constraints. Though Tutte’s approach to 4CT was ultimately
side-stepped by the Appel-Haken proof [1], enumeration of maps
remains a very active area of combinatorics, with links to wide-
ranging domains such as algebraic geometry, knot theory, and
mathematical physics.

The ideas developed in this paper sprang from the recent dis-
covery of a host of surprising links between map enumeration and
lambda calculus: see Table 1. Bridges between lambda calculus and
graph theory trace back to the pioneering works of Statman [35]
and Girard [14], but these combinatorial connections go even fur-
ther in suggesting that very concrete objects of study are actually
shared: for example, it turns out that many of the sequences first
computed by Tutte also count natural families of lambda terms!

Although the correspondences listed in the lower half of Table 1
for the moment rest mainly at the level of enumeration, there is a
simple bijection between linear lambda terms and rooted 3-valent
maps (originally described in [3]) that may be restricted to account
for the entire upper half of the table. This was used in [54] to state
a lambda calculus reformulation of 4CT, essentially by turning the
existence of a nowhere-zero V-flow into a typing problem for a
certain family of terms. In turn, that motivated the development of
a more general theory of linear typings-as-flows on 3-valent maps,
and this paper represents a preliminary sketch of such a theory.

For example, rather than limiting types to abelian groups, flows
over linear lambda terms are naturally valued in a more general
algebraic structure consisting of a preordered set equipped with an
“implication” operation and unit element satisfying composition,
identity, and unit laws: what we call an imploid (and is otherwise
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known as a “thin skew-closed category”). Considering imploid-
valued flows over arbitrary well-oriented 3-valent maps with bound-
ary, a natural question is when can the local flow relations (across
vertices) be lifted to a global flow relation (across the boundary).
We will see that this holds just in case the map is equipped with the
canonical orientation of a lambda term, giving a new perspective
on the interplay between linear typing and compositionality.

The rest of the paper is structured as follows.1 In Section 2 we es-
tablish some elementary properties of imploids, leading up through
the construction of quotients. In Section 3, after a review of topics
in graph theory, we introduce the basic definition of imploid-valued
flows and nowhere-unit flows over well-oriented 3-valent maps.
We recall the bijection between rooted 3-valent maps and linear
lambda terms based on the topological orientation of a map with
boundary, and use it to prove the above-mentioned characteriza-
tion of the global flow condition. We also briefly explain how the
definitions may be recast algebraically in terms of a certain quo-
tient imploid we call the fundamental imploid of a well-oriented
3-valent map (analogous to the fundamental quandle of a knot). In
Section 4, we discuss rewriting of flows across operations such as
β-reduction and η-expansion, and prove a topological completeness
theorem which is closely related to classical completeness results
in combinatory logic. Finally, in Section 5 we briefly describe a
polarized notion of flow, pointing out connections with linear logic
proof-nets, as well as with bidirectional typing.

Acknowledgments. The ideas described in this paper have
been in gestation for a while and have benefited from interaction
with numerous individuals and seminar audiences, as well as from
the friendly and supportive atmosphere within the Theory Group
at Birmingham. I am especially grateful to Jason Reed for a long
series of email exchanges on map coloring and lambda calculus
that (in addition to being highly enjoyable) really brought these
ideas into focus.

2 The elementary theory of imploids
2.1 Preliminary definitions and examples
We recall some standard terminology and conventions. A preorder
on a set P is a binary relation which is reflexive and transitive,
typically indicated ≤ or ≤P . We write ≡ for the induced equivalence
relation a ≡ b := (a ≤ b) ∧ (b ≤ a), and say that the preorder is
a partial order when a ≡ b implies a = b. A preordered set is a
set equipped with a preorder (P , ≤), and we may also sometimes
write P to stand for the preordered set with ≤ left implicit. To
any preordered set P is associated an opposite Pop with the same
underlying set of elements but the opposite preorder, a ≤op b iff
b ≤ a. To any pair of preordered sets P andQ is associated a product
P×Q with underlying set of elements given by the cartesian product
and with the componentwise ordering (a1,b1) ≤P×Q (a2,b2) iff
a1 ≤P a2 and b1 ≤Q b2. Finally, we write f : P → Q to indicate
that f is an order-preserving (a.k.a. monotonic) function from P to
Q (i.e., that a ≤P b implies f (a) ≤Q f (b) for all a,b ∈ P ), and we
say that f is left adjoint to д : Q → P (or д is right adjoint to f ) just
in case f (a) ≤Q b iff a ≤P д(b) for all a ∈ P , b ∈ Q .

Definition 2.1. An imploid is a preordered set P equipped with
an operation ⊸ (called implication) which is contravariant in its

1Due to conference page limits all proofs are omitted, but may be found in Appendix A
of the online version of the paper: http://noamz.org/papers/imploid-flows.pdf.

left argument and covariant in its right argument,

a2 ≤ a1 b1 ≤ b2
a1 ⊸ b1 ≤ a2 ⊸ b2 (imp)

together with a distinguished element I ∈ P , satisfying composition,
identity, and unit laws:

b ⊸ c ≤ (a ⊸ b) ⊸ (a ⊸ c) (comp)
I ≤ a ⊸ a (id)

I ⊸ a ≤ a (unit)

A non-unital imploid is given by the same except that we do not
require the element I and omit axioms (id) and (unit).

It is worth emphasizing that what we call an imploid is simply the
preorder restriction of what Street has recently referred to as a
skew-closed category [36], corresponding to a slight relaxation of
Eilenberg and Kelly’s original definition of a (non-monoidal) closed
category [12]. Although the development we give here is limited
to preordered sets (which include our motivating examples), it is
likely that many of these constructions could be lifted with care to
the more general context of skew-closed categories.

Definition 2.2 (cf. [36]). In any imploid P we have that a ≤ b
entails I ≤ a ⊸ b, by (id) and (imp). We say that P is left normal
if this entailment is reversible, that is, if I ≤ a ⊸ b entails a ≤ b.

Example 2.3. Any Heyting algebra defines a left normal imploid
with a ⊸ b := a ⊃ b and I := ⊤. More generally, any (unital)
quantale [52] gives an example of a (left normal, unital) imploid.

Example 2.4. Any group can be seen as a left normal imploid
under the discrete order (a ≤ b iff a = b), where I is the unit
element of the group and implication can be defined by either right
division a ⊸ b := b · a−1 or left division a ⊸ b := a−1 · b.

Definition 2.5 (cf. [4, 12]). We say that a (unital or non-unital)
imploid is symmetric if it satisfies the law of exchange:

a ⊸ (b ⊸ c) ≤ b ⊸ (a ⊸ c) (exch)

Proposition 2.6. The law of double-negation introduction

a ≤ (a ⊸ b) ⊸ b (dni)

implies the law of exchange. Conversely, (exch) implies (dni) under
assumption of left normality.

Example 2.7. In the above examples, the imploid associated to a
group/quantale is symmetric whenever the underlying multiplica-
tion operation is commutative.

2.2 Skew monoids, upsets and downsets
One of the motivations for the recent study of skew-closed cate-
gories (the category-theoretic version of imploids) is their close
connection to skew-monoidal categories [37]. We will refer to the
order-theoretic versions of the latter as skew monoids.

Definition 2.8. A (left) skewmonoid is a preordered setM equipped
with an operation • which is covariant in both arguments,

a1 ≤ a2 b1 ≤ b2
a1 • b1 ≤ a2 • b2 (mul)
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aswell as a distinguished element I ∈ M , satisfying semi-associativity,
left unit, and right unit laws:

(a • b) • c ≤ a • (b • c) (assocr)
I • a ≤ a (lunit)

a ≤ a • I (runit)

A non-unital skew monoid is given by the same except that we
do not require I and omit (lunit) and (runit).

One simple relationship between imploids and skew monoids is via
adjunction: any family of right adjoints to the partially instantiated
multiplication operations − • b : M → M of a skew monoidM can
be extended to a an operation ⊸: Mop ×M → M satisfying the
imploid laws, and dually, any family of left adjoints to the partially
instantiated implication operations b ⊸ − : P → P of an imploid
P can be extended to an operation • : P × P → P satisfying the
skew monoid laws.2 We will make use of a related duality between
the downsets of a skew-monoid and the upsets of an imploid.

Definition 2.9. A subset R of a preordered set A is said to be
downwards closed (or a downset), written R ⊏↓ A, if b ∈ R and
a ≤ b implies a ∈ R. Dually, it is said to be upwards closed (or
an upset), written R ⊏↑ A, if a ∈ R and a ≤ b implies b ∈ R. (We
sometimes use mirror notation “R ∋ a” to denote the elementhood
relation in an upset. Also, we sometimes write R ⊏ A to indicate
that R is a subset but emphasize that it is not necessarily closed
with respect to the order on A.)

Recall that every element x ∈ A of a preordered set induces both
a principal downset x ↓ := { a | a ≤ x } and a principal upset x ↑ :=
{ a | x ≤ a }, and that these define a pair of faithful embeddings
(−)↓ : A → Â and (−)↑ : A → Ǎ, where Â denotes the set of
downsets ofA partially ordered by inclusion, and Ǎ the set of upsets
partially ordered by reverse inclusion (an order-preserving function
f : P → Q is said to be faithful when f (a) ≤Q f (b) implies a ≤P b).
The following constructions amount to a “skew” variation of the
well-known Day construction (cf. [8, 36]).

Proposition 2.10. If P = (P , ≤,⊸, I ) is an imploid, then P̌ can be
given the structure of a skew monoid as follows (for all R, S ⊏↑ P ):

R • S ∋ p ⇐⇒ ∃q. R ∋ q ⊸ p ∧ S ∋ q

I := I ↑ ∋ p ⇐⇒ I ≤ p

Observation 2.11 (cf. [4]). Let P be an imploid. Then

1. a ≤ (a ⊸ b) ⊸ b for all a,b ∈ P iff R • S ⊇ S • R for all
R, S ⊏↑ P ; and

2. a ⊸ (b ⊸ c) ≤ b ⊸ (a ⊸ c) for alla,b, c ∈ P iff (R•S)•T ⊇

(R •T ) • S for all R, S,T ⊏↑ P .

Proposition 2.12. IfM = (M, ≤, •, I ) is a skew monoid, then M̂ can
be given the structure of an imploid as follows (for all K ,L ⊏↓ M):

m ∈ K ⊸ L ⇐⇒ ∀n. n ∈ K ⇒ m • n ∈ L

m ∈ I := I ↓ ⇐⇒ m ≤ I

2A categorical version of this fact is proved by Street [36], whomentions that it resolves
a nagging asymmetry in the traditional setting (cf. [8]), where the existence of left
adjoints is not enough to ensure that an Eilenberg-Kelly closed category can be given
the structure of an ordinary monoidal category.

Definition 2.13. An order-preserving function f : P → Q be-
tween two imploids is said to be a (lax) homomorphism if it
weakly preserves the imploid structure in the sense that I ≤Q f (I )
and f (a ⊸ b) ≤Q f (a) ⊸ f (b) for all a,b ∈ P . It is said to be
strong if it preserves this structure up to equivalence, I ≡Q f (I )
and f (a ⊸ b) ≡Q f (a) ⊸ f (b).

Proposition 2.14. The composite (−)↑↓ : P →
ˆ̌P is a strong homo-

morphism of imploids.

2.3 Deductive closure, dni and imploid quotients
Given that any group can be seen as an imploid (Example 2.4), it
is natural to wonder what is the imploid analogue for subgroups.
In fact, there are at least two different natural substructures of an
imploid that could be considered as generalizations of the group-
theoretic concept, one starting from the view of a subgroup as the
image of an injective homomorphism, the other from the view of a
(normal!) subgroup as the kernel of a surjective homomorphism.

Definition 2.15. A subset R ⊏ P of an imploid P is said to be a
subimploid if 1) I ∈ R, and 2) a ∈ R and b ∈ R implies a ⊸ b ∈ R.

Definition 2.16. An upset R ⊏↑ P of an imploid P is said to be
deductively closed (or a dedupset) if 1) I ∈ R, and 2) a ∈ R and
a ⊸ b ∈ R implies b ∈ R.

It is easy to check that for any groupG viewed as a discrete imploid,
a subsetH ⊆ G is a subimploid iff it is a dedupset iff it is a subgroup.
However, in general these two notions are quite different. Since
imploid quotients will play an important role in this paper, we
spend the rest of the section on elaborating the second definition,
beginning with the following simple observation.

Observation 2.17. A dedupset of P is the same thing as a comonoid
in P̌ (relative to the skew monoid structure defined in Prop. 2.10), i.e.,
an upset R ⊏↑ P such that R ⊇ I and R ⊇ R • R.

Corollary 2.18. The deductive closure !R of an upset R is given
by the formula !R :=

∧
n≥0 R

•n , where
∧

denotes the meet in P̌
(corresponding to union of subsets), and where R•n denotes the left-
associated product R•0 = I , R•n+1 = R•n • R.

Definition 2.19. The induced relation of an upset R ⊏↑ P is a
binary relation #R on the elements of P defined by a #R b iff
a ⊸ b ∈ R.

Proposition 2.20. If R is a dedupset, #R is a preorder extending ≤.

Given an imploid P and a dedupset R ⊏↑ P , a natural candidate
for the quotient imploid is given by P/R = (P , #R ,⊸, I ) (i.e., by
the same underlying set and operations considered relative to a
coarser order). . . but the problem is that this does not necessarily
define an imploid. Although the three imploid axioms obviously
remain valid (since #R is an extension of ≤), and one can even
verify that the implication a ⊸ b is monotone in b relative to
#R , nothing guarantees that it is also antitone in a. To ensure that
implication restricts to an operation of type (P/R)op × P/R → P/R
we impose a further condition on dedupsets, which is the precise
analogue of the restriction to normal subgroups in the construction
of group-theoretic quotients.

Definition 2.21. We say that an upset R ⊏↑ P is dni-closed if
a ∈ R implies (a ⊸ b) ⊸ b ∈ R for all b ∈ P .

3
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Proposition 2.22. Any upset R has a dni-closure (i.e., a dni-closed
upset containing R and maximal with respect to ⊇).

Proposition 2.23. Let R ⊏↑ P . The following are equivalent:
1. R is dni-closed.
2. R • S ⊇ S • R for all S ⊏↑ P .
3. R satisfies the following closure conditions:

a. a ∈ R ⇒ I ⊸ a ∈ R
b. a ⊸ b ∈ R ⇒ ∀c ∈ P , (b ⊸ c) ⊸ (a ⊸ c) ∈ R

4. The induced relation #R satisfies the following rules:

a ∈ R
I #R a

a2 #R a1 b1 #R b2
a1 ⊸ b1 #R a2 ⊸ b2

Corollary 2.24. 1) If R and S are dni-closed then so is R • S ; 2) if R
is dni-closed then so is !R.

Proposition 2.25. If R ⊏↑ P is deductively closed and dni-closed,
then P/R := (P , #R ,⊸, I ) is a left normal imploid.

Proposition 2.26. Let f : P → Q be any order-preserving function,
and S ⊏↑ Q any upset.

1. The inverse image of S along f is an upset f −1(S) ⊏↑ P .
2. If f is a homomorphism of imploids and S is deductively closed,

then f −1(S) is deductively closed.
3. If f is a strong homomorphism and S is dni-closed, then f −1(S)

is dni-closed.

Proposition 2.27. The upset I ↑ is deductively and dni-closed.

Definition 2.28. Let f : P → Q be a homomorphism of imploids.
The kernel of f is the upset ker f ⊏↑ P given by the inverse image
of the unit, ker f := f −1(IQ ).

Proposition 2.29. Let f : P → Q be a homomorphism. Then
ker f ⊏↑ P is deductively closed, and dni-closed if f is strong.

Proposition 2.30. Let f : P → Q be a strong homomorphism of
left normal imploids. Then f is faithful iff ker f = I .

Proposition 2.31 (Universal property of the quotient). For any
imploid P and dni-closed dedupset R ⊏↑ P , the function acting as
the identity on elements defines a strong homomorphism of imploids
[−] : P → P/R whose kernel is R. Moreover, for any other left normal
imploid Q and lax (respectively, strong) homomorphism f : P → Q
such that R ⊆ ker f , there exists a unique lax (respectively, strong)
imploid homomorphism f̄ : P/R → Q such that f = f̄ ◦ [−].

Corollary 2.32. For any collection C of ordered pairs of elements of
an imploid P , we can define the quotient of P modulo the relat-
ions [a ≤ b](a,b)∈C as P/R̃C , where R̃C is the deductive closure of the
dni-closure of the upwards closure of the set { a ⊸ b | (a,b) ∈ C }.

Note that although our construction of the imploid quotient only
defines a coarser preorder on the existing elements of P , we can
always obtain a partially ordered set by considering the image of
P/R under the (−)↑↓ embedding (Prop. 2.14). In the case of a group
G seen as a discrete imploid, quotienting by a dni-closed dedupset (=
normal subgroup)H ◁G corresponds to introducing an equivalence
relation on the elements of G, namely a ≡H b iff b · a−1 ∈ H .
Applying (−)↑↓ then corresponds to taking equivalence classes, and
what results is just the usual construction of the group-theoretic
quotient as the group of cosets of a normal subgroup.

3 Imploid-valued flows on 3-valent maps
3.1 Background: graphs, orientations, flows, maps
In this paper we take graph to mean finite, undirected graph with
loops and/or parallel edges [33, 49]. Formally, such a graph can be

considered as a diagram A Ve
s

t
where e is a fixpoint-free

involution such that t = s◦e . Elements of the setV are called vertices
and elements ofA are called arcs, while the functions s and t return
the source and target vertex of an arc. The involution e matches
each arc x with an opposite arc −x := e(x), and the unordered pair
orbit(e,x) = { x ,−x } is called an edge. We write E := orbits(e) for
the set of edges. The degree of a vertex v is the cardinality of the
set { x | s(x) = v }, or equivalently of the set { x | t(x) = v }. A
graph is said to be trivalent (or 3-valent or cubic) if every vertex
has degree three. A graph is connected if it is neither empty nor
the sum of two smaller graphs. A bridge in a connected graph is
an edge whose removal disconnects the graph. More generally,
given a non-empty subset of vertices V + ⊆ V , the set of edges
C(V +) = { orbit(e,x) | s(x) ∈ V + ∧ t(x) < V + } with one end inV +
and the other outside is called a cut (a bridge is a cut containing a
single edge). A connected graph is bridgeless (or 2-edge-connected)
if it has no bridges; contrarily, it is a tree if every edge is a bridge.

An orientation of a graph corresponds to the selection of one
arc from every edge, or in other words to the choice of a subset
A+ ⊆ A of arcs such that A = A+ ⊎ −A+. Given an orientation A+,
we define the inputs of a vertex as the set in(v) := t−1(v) ∩A+ and
the outputs as the set out(v) := s−1(v) ∩A+. We say that a trivalent
graph is well-oriented (cf. [28]) if it is oriented so that every vertex
either has two inputs and one output (we refer to this as a negative
vertex), or one input and two outputs (we refer to this as a positive
vertex). Note that a connected trivalent graph can always be well-
oriented by considering any spanning tree (we describe this more
systematically in Section 3.3).

Let Γ = (V ,A, s, t , e) be a connected graph equipped with an
orientation A+ ⊆ A, and let G be any abelian group. A group-
valued flow (orG-flow) [22, 44] on Γ (relative to A+) is a function
ϕ : E → G satisfying the equation∑

x ∈inv
ϕ(x) =

∑
x ∈outv

ϕ(x) (Kirchhoff’s law)

at every vertex v . (Observe that the commutativity condition on G
is necessary for the equation to be well-defined.) A nowhere-zero
flow is a flow ϕ such that ϕ(x) , 0 for all x ∈ E. For example,
below on the left we show an orientation of the complete graph K4
with a nowhere-zero Z-flow, and on the right another graph with a
Z3-flow which is not nowhere-zero:

3

2
1

2
5

3

2

1 1

2
2 0

2

2
2

11

Although the notion of flow is defined relative to a given orientation,
a (nowhere-zero) flow for one orientation can be transformed into
a (nowhere-zero) flow for any other simply by negating the values
assigned to some edges. Also, it is easy to prove that a graph cannot
admit a nowhere-zero flow unless it is bridgeless, as a corollary of
the more general fact that the net flow across any cut is always
zero. Finally, it is worth mentioning that many questions about
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Figure 1. Some small examples of rooted 3-valent maps.

flows on general graphs can be reduced to questions about flows
on trivalent graphs (cf. [22]).

In this paper we take map to mean cellular embedding of a
connected graph Γ into a connected, compact oriented surface [13,
27]. Formally, such an embedding is determined up to orientation-
preserving homeomorphism of the underlying surface by the purely
combinatorial data of an additional permutation v : A → A on the
arcs of Γ, assuming that V � orbits(v), and that s factors via the
function x 7→ orbit(v,x) sending an arc to itsv-orbit. The faces of a
map are then defined as the orbits of the permutation f := (e ◦v)−1,
and the genus д of the underlying surface can be determined from its
Euler characteristic χ := |orbits(v)|−|orbits(e)|+|orbits(f )| = 2−2д.
(A planar map is a map of genus д = 0.) The triple of permutations
(v, e, f ) (or equivalently the pair (v, e)), which up to isomorphism
determines the graph, the surface, and the embedding, is sometimes
referred to as a “combinatorial” map. Every combinatorial map
also has a dual map (v, e, f )∗ := (f −1, e,v−1) in which the role
of vertices and faces is reversed. For example, any trivalent map
(i.e., a map whose underlying graph is trivalent) on a given surface
induces a dual triangulation of the same surface, and vice versa.
One of the reasons trivalent maps in particular arise as natural
objects of study is that they have close connections to the modular
group PSL(2,Z) � ⟨v, e | v3 = e2 = I ⟩ (cf. [24, 33, 51]).

A rooted map is a map equipped with a distinguished root arc
x0 ∈ A, considered up to root-preserving isomorphism. The study
of rooted maps was initiated by Tutte in a series of papers on the
combinatorics of planar maps [45–47], taking advantage of the fact
that rooted maps have no symmetries and so are easier to count.
A rooted map can also be seen as a map with marked boundary.
While the classical theory of combinatorial maps [23, 49] is formu-
lated in terms of surfaces without boundary (such as the sphere or
torus), it is possible to consider boundaries as distinguished faces
representing “holes” in the surface [13]. After removing these faces
what is left is an open graph in the sense that some edges have
only one end attached to a vertex and the other attached to the
boundary: see Figure 1 for such depictions of rooted trivalent
maps as trivalent maps with a marked boundary. Observe that the
first two diagrams in Figure 1 represent two different embeddings
of the same underlying graph: the first into a surface of genus 0
(the open disc), the second into a surface of genus 1 (the open disc
with a handle attached – the crossing in the diagram should be
thought of as “virtual”, arising from the projection of this higher
genus surface down to the page). In contrast, the second pair of
diagrams represent two different rootings of the same underlying
map: if we forget the marking of the root, then a 180◦ rotation of
the disc witnesses an isomorphism between the two diagrams.

It’s not unreasonable to think of the boundary of a rooted triva-
lent map as a single “external vertex” of arbitrary positive degree3,
3This is dual to Tutte’s original treatment of rooted planar triangulations [46], which
included an external face of unbounded degree.

a ⊸ b ≤ c

ab c ≤ a ⊸ b

b a

Figure 2. Defining relations for imploid-valued flows on well-
oriented 3-valent maps.

or at least as a cut across which values can flow between its interior
and its exterior. In fact, the extra structure of the vertex permu-
tation that comes with a combinatorial map naturally enables a
more general notion of flow valued in arbitrary (not necessarily
abelian) groups, but one important point of divergence with the
theory of flows on abstract graphs (see [16] for a discussion) is that
in the case of a non-planar map, the local condition on vertices does
not automatically extend to arbitrary cuts. After formulating the
appropriate definitions, our main results in this section characterize
when an imploid-valued flow is guaranteed to have such a global
extension property, relating the flow at each trivalent vertex to the
flow across the boundary.

3.2 Imploid-valued flows
Notation. Suppose given a well-oriented 3-valent map T . We write
[x ,y, z]+ ∈ T to indicate thatT contains a positive vertex with output
x , input y, and output z as listed in counterclockwise order. Dually,
we write [x ,y, z]− ∈ T to indicate that T contains a negative vertex
with input x , output y, and input z as listed in clockwise order.

Definition 3.1. An imploid-valued flow on a well-oriented 3-
valent map T is a function ϕ : E → P assigning each edge a value
in some left normal imploid P , such that the relation

ϕ(x) ⊸ ϕ(y) ≤ ϕ(z) (3-flow+)

holds at every positive vertex [x ,y, z]+ ∈ T , and the relation

ϕ(z) ≤ ϕ(x) ⊸ ϕ(y) (3-flow−)

holds at every every negative vertex [x ,y, z]− ∈ T . (These relations
are summarized visually in Figure 2.)

Notice that in Figure 2 we have used colors to help visually distin-
guish positive vertices (red) from negative vertices (blue), as we
will continue doing throughout the paper.

Definition 3.2. A flow ϕ : E → P is said to be nowhere-unit if
I ̸≤ ϕ(x) for all x ∈ E, where I is the unit of P .

Proposition 3.3. A (nowhere-unit) flow ϕ : E → P may be pushed
forward along any (faithful) strong homomorphism f : P → Q to ob-
tain a (nowhere-unit) flow f ϕ : E → Q defined by post-composition.

Example 3.4. The oriented “bubble” admits a nowhere-

unit P-flow just in case P contains a pair of elements a and b such
that I ̸≤ a and I ̸≤ b and a ̸≤ b.

Definition 3.5. Let T be a 3-valent map with boundary ∂T . We
say that an arc is an input of T (respectively, output of T ) if its
source (resp., target) lies in ∂T (otherwise, the arc is internal to T ).

Definition 3.6. Let T be a well-oriented rooted 3-valent map. We
say that T is globally well-oriented if its orientation contains
exactly one output of T , whose target is the root.
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For example, here are two different global well-orientations of the
third rooted map in Figure 1:

Notation. We write ∂T = [x0;x1, . . . ,xn ] to indicate that x0 is the
unique output of a globally well-oriented map T , followed by inputs
x1, . . . ,xn in clockwise order around the boundary.

Notation. Let P be any imploid, ®a = a1, . . . ,an ∈ P a list of el-
ements, and b ∈ P a distinguished element. We write ®a � b for
the right-associated implication defined inductively by · � b := b,
(®a,a) � b := ®a � (a ⊸ b).

Definition 3.7. Let T be a globally well-oriented 3-valent map,
with ∂T = [x0;x1, . . . ,xn ]. We say that a flow ϕ on T satisfies the
global flow condition if the following relation holds:

I ≤ (ϕ(x1), . . . ,ϕ(xn )) � ϕ(x0) (global flow)

Before we move on to study the notion of imploid-valued flow,
let’s record the following easy observation, which relates it to the
classical notion.

Proposition 3.8. Let T be a globally well-oriented 3-valent map,
and letG be an abelian group, seen as a discrete symmetric imploid.
Then a (nowhere-unit) flow ϕ : E → G on T is the same thing as a
group-valued (nowhere-zero) flow on the underlying graph of T . As a
consequence, any flow ϕ : E → G necessarily satisfies the global flow
condition.

Remark 3.9. Since deciding the existence of a proper edge-3-coloring
for an abstract cubic graph is NP-complete [20], the problem of decid-
ing for an arbitrary well-oriented 3-valent map T and finite imploid
P whether T admits a nowhere-unit P-flow is likewise NP-complete,
taking P = V. (Of course the problem might be easier in the case of
particular imploids or classes of maps. For example, every bridgeless
planar 3-valent map admits a nowhere-zero V-flow [1].)

3.3 Topological orientations as linear lambda terms
As mentioned in Section 3.1, every connected trivalent graph can
be well-oriented. Indeed, given the extra data of an embedding
and a rooting, there is a canonical way of reconstructing such an
orientation, which we refer to as the topological orientation of a
rooted 3-valent map. The definition rests on the fact that any rooted
3-valent map T must have one of the following three schematic
forms:

1) T1 T2 ; or 2) T1 ; or 3) .

In other words, if we remove the vertex incident to the root, ei-
ther 1) the map becomes disconnected; or 2) it stays connected; or
3) there was no such vertex in the first place.

Definition-Proposition 3.10. Every rooted 3-valent map may be
globally well-oriented by its topological orientation, defined as
follows by induction on the number of vertices:

1) T1 T2 ; 2) T1 ; 3) .

As some examples, here are the topological orientations of the four
rooted 3-valent maps displayed in Figure 1:

To be a bit more formal, let Θ(n) denote the set of isomorphism
classes of rooted 3-valent maps with n non-root arcs incident to
the boundary. One way of constructing a rooted 3-valent map is to
glue a pair of maps T1 and T2 by their roots onto a fresh trivalent
vertex (case 1), corresponding to a natural family of operations
@ : Θ(n1) × Θ(n2) → Θ(n1 + n2). Another way is to pick one of
the non-root arcs on the boundary of T1 and glue it together with
T1’s root onto a fresh trivalent vertex (case 2), corresponding to
a natural family of operations λi : Θ(n + 1) → Θ(n) for every
1 ≤ i ≤ n + 1. Together, these two operations generate all rooted 3-
valent maps starting from the trivial rooted map (case 3), and since
they naturally extend to operations on globally well-oriented maps
(where @ introduces a negative vertex and λi a positive vertex)
this explains the definition of the topological orientation.

Now, we can also observe that Θ(n) has the structure of a sym-
metric operad [30], meaning that there is a natural family of compo-
sition operations ◦i : Θ(m + 1) × Θ(n) → Θ(m + n) (1 ≤ i ≤ m + 1)
together with an action of the symmetric group Sn on Θ(n), satisfy-
ing appropriate axioms of associativity, unitality, and equivariance.
Composition corresponds to grafting the root of one map onto a
boundary arc of another, while the (free) action of the symmetric
group corresponds to permuting the boundary arcs.

At this point, the reader with a background in lambda calculus
may recognize that our description of Θ(n) as a symmetric operad
exactly mirrors the syntactic structure of linear lambda terms
with n free variables, reading @ as application T1(T2) and λi as
abstraction in the ith variable λxi .T1, and interpreting grafting by
substitution and the symmetric action by variable exchange. Indeed,
this operadic perspective (cf. [21]) is one way of understanding
the one-to-one correspondence between (isomorphism classes of)
rooted 3-valent maps and (α-equivalence classes of) linear lambda
terms: the latter may be understood as complete invariants of rooted
3-valent maps, corresponding to their topological orientations [3,
54]. For instance, under this correspondence, the first two of the
four examples above (the topological orientations of the rooted
planar tetrahedron and rooted toric tetrahedron) correspond to
the B combinator λx .λy.λz.x(yz) and C combinator λx .λy.λz.(xz)y,
respectively, in the sense of classical combinatory logic [19] (see
[54, Example 1]).

Finally, let us draw attention to the fact that Θ(n) also has sev-
eral significant suboperads, corresponding to natural subfamilies of
maps and subsystems of lambda calculus. By restricting to maps
constructed using @ and the operation λn+1 we obtain the (non-
symmetric) operad Θ0(n) of planar (i.e., genus 0) rooted 3-valent
maps. Note this corresponds to the restriction on linear lambda
terms that variables are used in the order they are abstracted
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(i.e., the forbidding of exchange). By restricting the domain and
codomain of the operations @ and λi to maps with at least one
non-root boundary arc, we obtain the operad Θ2(n) of bridgeless
(i.e., 2-edge-connected) rooted 3-valent maps. This corresponds to
the restriction on linear lambda terms that they have no closed
subterms, which we refer to as being unitless.4

3.4 Topological flows are global
The connection to lambda calculus suggests another way of un-
derstanding the global flow condition. In the case of a topological
orientation, the problem of building a flow on a rooted 3-valent map
may be recast as one of constructing a linear typing derivation for
the corresponding lambda term. From this the global flow condition
follows by an easy proof theory-style argument (we also give a
more conceptual explanation in Section 4).

Proposition 3.11. Let T be a topologically oriented rooted 3-valent
map, and let ∂T = [x0;x1, . . . ,xn ]. Then T has a flow ϕ such that
ϕ(x1) = a1, . . . ,ϕ(xn ) = an and ϕ(x0) = b iff the judgment x1 :
a1, . . . ,xn : an ⊢ T : b is derivable in the following type system,
where the boxed rule is only needed in the non-planar case:

Γ ⊢ T1 : c ∆ ⊢ T2 : a
Γ, ∆ ⊢ T1(T2) : b

(c ≤ a ⊸ b)
Γ, x : a ⊢ T1 : b
Γ ⊢ λx .T1 : c

(a ⊸ b ≤ c)

x : a ⊢ x : a
Γ, y : b, x : a, ∆ ⊢ T : c
Γ, x : a, y : b, ∆ ⊢ T : c

Lemma 3.12. LetT be a (non-planar) rooted 3-valent map equipped
with its topological orientation. Then any flow ϕ on T valued in an
arbitrary (symmetric) imploid P satisfies the global flow condition.

Corollary 3.13. LetT be a (non-planar) rooted 3-valentmap equipped
with its topological orientation. IfT has a nowhere-unit flow ϕ valued
in a (symmetric) imploid P , then T is bridgeless.

3.5 Non-topological orientations can violate global flow
Conversely, there is no such guarantee for non-topological orienta-
tions of rooted 3-valent maps, and indeed, for any such orientation
we can always exhibit an explicit counterexample in the form of an
assignment ϕ : E → P valued in a specific (symmetric left normal)
imploid P , such that ϕ satisfies the local relations (3-flow+) and
(3-flow−) but violates the global flow condition. For this purpose,
consider the imploid P = 2̂ consisting of three linearly ordered
elements 0 < 1 < 2 with the implication a ⊸ b defined as follows:

a b 0 1 2
0 2 2 2
1 0 1 2
2 0 0 2

Observe that 2̂ is isomorphic to the imploid of downsets associated
to the unique idempotent skew monoid with two elements 2 =
({1, 2}, ≤,max, 1).

Lemma 3.14. Let T be a rooted 3-valent map equipped with a well-
orientationA+ containing the root x0 as an output, and the remaining
boundary edges x1, . . . ,xn as either inputs or outputs. If A+ is non-
topological then there is a 2̂-flow ϕ such that ϕ(x0) = 0, and ϕ(xi ) = 1
or 2 for all 1 ≤ i ≤ n.
4 In other words, a unitless term is one that can be constructed in the absence of the
empty (unit) context. This property (with a very minor technical variation) was called
being “indecomposable” in [54].

As a corollary, we obtain the following characterization:

Theorem 3.15. Let T be a globally well-oriented 3-valent map. The
following are equivalent:

1. T is topologically oriented, i.e., has the orientation of a linear
lambda term.

2. Every 2̂-flow on T satisfies the global flow condition.
3. Every P-flow on T satisfies the global flow condition, for any

symmetric imploid P .

Example 3.16. A pair of non-global 2̂-flows on non-lambda terms:

1

1

0
2

0

1

2 0

0

02

02 2

2

0 2

Theorem 3.15 says in a sense that the global flow condition acts
as a “correctness criterion” in the terminology of linear logic [14].
(Indeed it has similarities with de Groote’s algebraic criterion for
intuitionistic proof-nets [9]. We elaborate on the relationship with
proof-nets a bit more in Section 5.) It may be surprising that such a
small imploid is powerful enough to distinguish topological orien-
tations from non-topological ones, although this is consistent with
the fact that the topological orientation of a rooted 3-valent map
can be computed efficiently, in a single depth-first traversal [3].

3.6 Fundamental imploids and universal flows
Following a familiar pattern of abstract nonsense, it is possible
to bundle the notion of an imploid-valued flow into that of the
fundamental imploid of a well-oriented 3-valent map.

Definition 3.17. The fundamental imploid of a well-oriented
3-valent map T is the left normal imploid P[T ] freely generated
from the edges of T modulo the relations in Figure 2.

The function [−] : E → P[T ] sending each edge to the correspond-
ing generator of the fundamental imploid tautologically defines a
flow, and by the universal property of the quotient, any other flow
ϕ : E → P uniquely extends to a strong homomorphism of imploids
ϕ̄ : P[T ] → P such that ϕ = ϕ̄[−]. Moreover, ϕ is nowhere-unit
just in case ker ϕ̄ does not contain a generator. The fundamental
symmetric imploid P̃[T ] can be defined similarly, with analogous
properties for flows valued in symmetric left normal imploids.

Although this abstract definition of the fundamental imploid
(reminiscent of the fundamental quandle of a knot [25]) allows us
to express flow concepts in a more uniform language, it doesn’t
immediately provide us much help in understanding the space of
possible flows over a given 3-valent map. To get a more concrete
handle on this space, in the rest of the paper we develop a compu-
tational perspective on imploids and flows that is inspired by their
connections to combinatory logic and type theory.

4 Rewriting and pullback of flows
4.1 Background: beta reduction and eta expansion
All of the computational power of the lambda calculus lies in the
rule of β-reduction (λx .T1)(T2) → T1[T2/x], and as Church orig-
inally showed, the problem of determining if a general lambda
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I ≤ a
a ≤ I

(a ≤ b)

a

b

Figure 3. Flow relations for 1-valent and 2-valent vertices.

term has a β-normal form is undecidable [6]. On the other hand,
if one imposes linearity the rule becomes much more tractable:
every linear lambda term has a β-normal form, and the problem
of computing it is complete for polynomial time [29]. Graphically,
β-reduction corresponds to the operation of “unzipping” a pair of

trivalent vertices of opposite polarity:
β
=⇒ ; we refer to

the matching pair of vertices as a β-redex. This rule can in principle
be appliedwhenever such a configuration appears in awell-oriented
3-valent map, but the fact that it corresponds to β-reduction of
lambda terms means that it preserves topological orientation. The
graphical rule also manifestly preserves planarity, and β-reduction
correspondingly restricts to an operation on planar terms.5 Finally,
that β-reduction restricts to an operation on unitless terms implies
it preserves 2-edge-connectedness when restricted to topological
orientations (although it can lead to disconnected maps when ap-
plied to non-topological orientations). Dual to β-reduction is the
less computationally interesting (but still logically important) rule
of η-expansion T → λx .T (x). Graphically, this rule corresponds

to “bubbling” an oriented edge,
η
=⇒ , an operation which

manifestly preserves both planarity and 2-edge-connectedness.

4.2 Pullback of flows
It is not hard to check that an imploid-valued flow can always be
pulled back along a β-reduction or an η-expansion, in a suitable
sense. To make this statement more precise, it is useful to first
liberalize the notion of flow on a trivalent map to allow for arbitrary
subdivision of edges by 2-valent vertices: we assume these to be
well-oriented (one input, one output) and to satisfy the natural flow
relation shown at the right in Figure 3. Edge subdivision provides us
an additional degree of flexibility when relating one flow to another,
but it is always possible to recover a flow on a strictly 3-valent map
by choosing any of the component values along a subdivided edge.

Consider again the rule of β-reduction, now written in reverse:

b1 a1

a1 ⊸ b1

a2 ⊸ b2

b2 a2

pull[β ]
⇐=

b1

b2 a2

a1

Herewe have annotated the rule as it acts in the backwards direction
on flows, as a β-expansion taking a pair of subdivided edges and
“rezipping” them into a β-redex. That this is awell-defined operation
on flows reduces to the totality of the implication a ⊸ b and its

5The precise computational complexity of β -normalization for planar terms is a natural
question, which is open as far as I am aware. (Mairson’s proof of PTIME-hardness
for linear lambda calculus [29] is based on an encoding of boolean circuits that uses
non-planarity in an essential way.)

monotonicity properties (imp). Dually, pullback along η-expansion

c1

c2

pull[η]
⇐=

c1

b1

b2 a2

a1

c2

may be justified by (imp) and uniqueness of implication.
Formally, these pullback operations on flows may be analyzed in

terms of fundamental imploids as follows. The rules of β-reduction
and η-expansion both lift to strong homomorphisms P[TL] → P[TR ]
from the fundamental imploid of the map on the left-hand side to
that of the right-hand side. By the universal properties of P[TL]
and P[TR ], pulling a flow ϕ : ER → P back along these operations
reduces to pre-composing ϕ̄ : P[TR ] → P with the corresponding
homomorphism P[TL] → P[TR ]. Moreover, these homomorphisms
are boundary-preserving in the sense that they fix all of the gener-
ators in ∂TL = ∂TR , which implies that the corresponding trans-
formations can be applied locally anywhere inside a larger flow.
On the other hand, observe that nothing guarantees we can push
a flow ϕ : EL → P forward along P[TL] → P[TR ], and it is easy to
come up with counterexamples to such a principle for β-reduction
(e.g., taking P = Z2, a1 = b2 = 1, b1 = a2 = 0 in the first diagram
above).

4.3 Imploid moves and topological completeness
All this suggests a more powerful theory of rewriting for well-
oriented maps, where each ruleTL ⇒ TR corresponds to a principle
for pulling back flows onTR to flows onTL . To gain the full benefits
of such a theory, it is natural to further generalize the notion of flow
to allow for 1-valent vertices, with the relations shown in Figure 3;
we refer to maps containing only vertices of positive degree ≤ 3 as
essentially trivalent maps.

Definition 4.1. A transformation TL ⇒ TR between a pair of
well-oriented essentially 3-valent maps with the same boundary
∂ := ∂TL = ∂TR is called a (symmetric) imploid move if it is
realizable by a strong homomorphism P[TL] → P[TR ] (respectively,
P̃[TL] → P̃[TR ]) fixing every element in ∂.

Proposition 4.2. The following are imploid moves:

=⇒ =⇒ =⇒ =⇒

β
=⇒

η
=⇒

τ
=⇒

ι
⇐⇒

δ
=⇒

τ̄
=⇒

B
=⇒

I
=⇒

IH
=⇒

ρ
=⇒

HI
=⇒

Proposition 4.3. The following are symmetric imploid moves:

χ
=⇒

C
=⇒

γ
=⇒
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The rules above (many interderivable) do not give a complete set
of generators for imploid moves. However, they are topologically
complete in the following sense.

Proposition 4.4. All of the moves listed in Propositions 4.2 and 4.3
preserve topological orientation.

Theorem 4.5. LetVn be the n-spine defined inductively byV0 := ,

Vn+1 :=
Vn

, and let V ′
n :=

Vn

. Starting from the V ′
n , the imploid

moves in (the first three rows of) Prop. 4.2 generate all rooted essen-
tially 3-valent planar maps with their topological orientation. With
the addition of (any of) the symmetric imploid moves in Prop. 4.3,
they generate all rooted essentially 3-valent maps of arbitrary genus.

As an immediate corollary of Theorem 4.5 we get another proof of
Lemma 3.12: any flow on a topologically oriented mapT (with n+ 1
boundary arcs counting the root) can be pulled back to a flow on
V ′
n while preserving the boundary, and so the global flow condition
on T may be read off directly from the local flow conditions on V ′

n .
Although the link may seem astonishing at first, this topological

completeness theorem is closely related to the classical result in
combinatory logic that the combinators B, C, and I form a complete
basis for linear lambda terms [19, §9F], as well as its planar restric-
tion stating that B and I form a complete basis for planar lambda
terms. It may be further refined by restricting to non-unital imploid
moves (that is, moves not involving 1-valent vertices), which gener-
ate all bridgeless essentially 3-valent maps with their topological
orientation (i.e., unitless linear lambda terms).

Tantalizingly, these completeness results also appear connected
to a basic but motivating result in the theory of knotted trivalent
graphs (KTGs), which in one formulation states that any KTG (and
hence any knot) can be generated from the planar tetrahedron
and crossed tetrahedron using unzip, bubbling, connect sum,
and the unknot. (See [42, Theorem 1] and [2, Appendix]. Indeed,
Thurston’s article inspires our terminology of “unzipping” and
“bubbling” for β and η, backing an analogy made by Buliga [5].)
This strong formal similarity suggests it could be worthwhile to
develop a more refined treatment of the exchange law as a braiding
on linear lambda terms (cf. [31]), moving up a dimension from
3-valent maps to KTGs. For example, it may be interesting to relate
imploid flows to qualgebra colorings of KTGs [28].

Late in the development of the theory of imploid-valued flows
described here (and motivated by the parallel connections discussed
in [55]), I discovered with excitement that it has much in common
with the “graphic theory of associativity” proposed by Tamari in a
relatively obscure conference publication [40], which built on seeds
planted thirty years earlier in his thesis [39]. Tamari’s approach can
be seen as slanted towards monoids rather than imploids, but is in a
sense more foundational, beginning with the minimalistic algebraic
structure of a partial binary operation (or “bin”) and considering how
to match different principles of associativity with different well-
oriented bridgeless planar 3-valent maps. (Since bins are partial,
even the unzip move isn’t available, and the result is an infinite
hierarchy of independent, higher associative laws.)

5 Polarized flows and bidirectional typing
We close by briefly sketching another perspective on imploid-valued
flows that makes explicit their connection to linear logic proof-nets
[14], while also being implicitly tied to the important type-theoretic

(a ≤ b)

a

b

a

b a ⊸ b

ab a ⊸ b

b a

Figure 4. Defining relations for polarized flows.

concept of bidirectional typing [11, 32] (and related ideas such as
polarized subtyping [10]).

One reason the notion of imploid-valued flow is more subtle than
the classical notion of abelian group-valued flow is that the defining
relations (Figure 2) intertwine the preorder with the implication
operation. In the corresponding type system for linear lambda terms
(Prop. 3.11), subtyping is built into the rules for typing application
and abstraction, so that typing a term reduces to checking a big
collection of constraints of the form a ⊸ b ≤ c or c ≤ a ⊸ b.

In contrast, the definition of a polarized flow (see Figure 4) em-
ploys a more rigid separation between ⊸ and ≤, relying on the
presence of both 3-valent and 2-valent vertices (for simplicity, we
leave out 1-valent vertices from this discussion: they can be dealt
with similarly to 3-valent vertices). Formally, now we are working
with maps which are not merely oriented but also signed (cf. [26]),
that is, equipped with a function π : E → { +1,−1 } assigning each
edge a positive (red) or negative (blue) polarity. We assume that π is
proper in the sense that the sum of polarities around each 3-valent
vertex is either +1 or -1, and the sum around each 2-valent vertex is
0. We likewise assume that π is compatible with the underlying ori-
entation in the sense that the right half of Figure 4 can be overlaid
onto Figure 2. (This means that the orientation markers are for the
most part redundant, although it is still necessary to distinguish
vertices with one negative input and one positive output, which
we color in white, from vertices with one positive input and one
negative output, which we color in black.)

Definition 5.1. Let T be a well-oriented 3-valent map, and let π
be a well-polarized, well-oriented essentially 3-valent map. We say
that π is a polarization of T , written π ⊏ T , if the underlying
oriented map of π is an edge subdivision of T .

Definition-Proposition 5.2. Any well-oriented 3-valent map T
has a minimal polarization πT ⊏ T , which can be constructed by
applying the two fixed patterns of polarization for 3-valent vertices,
and then subdividing any edge whose ends have opposite polarity by
a 2-valent vertex (either white or black).

Proposition 5.3. Black vertices of πT correspond to β-redices of T .

Clearly, any polarized flow is a flow, by forgetting polarities. Con-
versely, any flow on a 3-valent map can be turned into a polarized
flow after sufficient edge subdivision, although the resulting polar-
ization may not necessarily be the minimal one.

Our interest in polarization is that it gives another way of de-
composing flows inductively, different from and complementary to
the inductive definition of the topological orientation.

Definition 5.4. Let π be a well-polarized, well-oriented essentially
3-valent map. The w–b orientation of π is given by reversing the
orientation of negative edges (hence white vertices become sources,
black vertices become sinks).

Proposition 5.5. If the underlying orientation of π is topological
then its w–b orientation is acyclic.
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By Prop. 5.5, any topological π can be decomposed into a forest
of rooted trees, with their leaves glued together by white vertices
and their roots glued together by black vertices. (In the literature
on proof-nets, these trees are called formulas, white vertices are
called axioms, and black vertices are called cuts.) This makes it
possible to reduce the problem of building a polarized flow on π to
the following recipe:

1. At each white vertexw , assign its negative and positive ends
some valuesw− andw+ such thatw− ≤ w+.

2. Apply the rules on the right side of Figure 4 to propagate
values to the remaining edges.

3. At each black vertex β whose ends have now been assigned
values a+ and b−, check that a+ ≤ b−.

In more abstract terms following the discussion of Section 3.6, any
topological π has a universal polarized flow valued in the im-
ploid freely generated from its white vertices modulo the relations
induced on its black vertices.

The universal polarized flow on (the minimal polarization of) a
linear lambda term is analogous to its principal type-scheme [17, 18],
but with the difference that it includes explicit subtyping constraints
corresponding to β-redices. A consequence is that the universal po-
larized flow can be computed very efficiently in a single traversal of
the term, without performing any β-normalization either explicitly
or implicitly (getting around Mairson’s P-completeness result [29]).
Of course, complexity may come back into the picture if we want to
instantiate the universal polarized flow to obtain (say) a flow valued
in a free imploid (or a nowhere-unit flow valued in a finite imploid),
since this involves the discharging of these subtyping constraints.

An extended example (paying tribute to one of Tutte’s earliest
contributions to map coloring [43]) may be found in Appendix B
of the online version of the paper.
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A Proofs of results
Section 2
Proof of Prop. 2.6. To derive (exch) from (dni), we first derive an
alternate form of the composition law:

a ⊸ b ≤ (b ⊸ c) ⊸ (a ⊸ c) (comp’)

Derivation of (comp’) from (dni):

a ⊸ b ≤ ((a ⊸ b) ⊸ (a ⊸ c)) ⊸ (a ⊸ c) (dni)
≤ (b ⊸ c) ⊸ (a ⊸ c) (comp in negative pos.)

Derivation of (exch) from (comp’) and (dni):

a ⊸ (b ⊸ c) ≤ ((b ⊸ c) ⊸ c) ⊸ (a ⊸ c) (comp’)
≤ b ⊸ (a ⊸ c) (dni in negative pos.)

In the other direction, we derive (dni) from (exch) under assumption
of left normality:

I ≤ (a ⊸ b) ⊸ (a ⊸ b) (id)
≤ a ⊸ ((a ⊸ b) ⊸ b) (exch)

a ≤ (a ⊸ b) ⊸ b (left normality)

□

Proof of Prop. 2.10. Unwinding definitions, it is easy (but instruc-
tive) to check that the reverse inclusions

(R • S) •T ⊇ R • (S •T )

I • R ⊇ R

R ⊇ R • I

follow from the axioms (comp), (id), and (unit), respectively, for any
upsets R, S,T ⊏↑ P of an imploid. (We leave this as a fun warmup
exercise for the reader!)

□

Proof of Observation 2.11. 1. Suppose P satisfies (dni), and let
p ∈ S • R. By definition, there exists r such that r ⊸ p ∈ S
and r ∈ R. But then (r ⊸ p) ⊸ p ∈ R by (dni) and upwards
closure, hencep ∈ R•S . Conversely, suppose thatR•S ⊇ S•R

for all R, S ⊏↑ P , and consider R = a↑, S = (a ⊸ b)↑ where
a,b ∈ P are arbitrary. It is easy to check that b ∈ S • R, but
then if b ∈ R • S there must exist p such that a ≤ p ⊸ b and
a ⊸ b ≤ p, implying a ≤ (a ⊸ b) ⊸ b.

2. Suppose P satisfies (exch), and letp ∈ (R•T )•S . By definition,
there exists s such that s ⊸ p ∈ R •T and s ∈ S , and t such
that t ⊸ (s ⊸ p) ∈ R and t ∈ T . But then s ⊸ (t ⊸ p) ∈ R
by (exch) and upwards closure, from which p ∈ (R • S) •T .
Conversely, suppose that (R • S) • T ⊇ (R • T ) • S for all
R, S,T ⊏↑ P , and consider R = a ⊸ (b ⊸ c)↑, T = b↑, S =
a↑ where a,b, c ∈ P are arbitrary. It is easy to check that
c ∈ (R •T ) • S , but then if c ∈ (R • S) •T there must exist
p and q such that a ⊸ (b ⊸ c) ≤ p ⊸ (q ⊸ c) and b ≤ p
and a ≤ q, implying a ⊸ (b ⊸ c) ≤ b ⊸ (a ⊸ c).

□

Proof of Prop. 2.12. Again, it is easy to check that for any downsets
J ,K ,L ⊏↓ M of a skew monoid, the inclusions

K ⊸ L ⊆ (J ⊸ K) ⊸ (J ⊸ L)

I ⊆ K ⊸ K

I ⊸ K ⊆ K

follow from axioms (assocr), (lunit), and (runit), respectively. □

Proof of Prop. 2.14. We just have to check (a ⊸ b)↑↓ ≡ a↑↓ ⊸ b↑↓,
which reduces to showing that

R ∋ a ⊸ b ⇐⇒ ∀S . S ∋ a ⇒ ∃c . R ∋ c ⊸ b ∧ S ∋ c .

The implication from left to right is immediate taking c = a, while
the implication from right to left is immediate taking S = a↑. □

Proof of Corollary 2.18. This is just an adaptation of the standard
free monoid construction (appropriately dualized) to the skew
monoidal setting: by mechanically unrolling the definition of !R
and applying the skew monoid laws, we can show that !R is the
greatest comonoid in P̌ under R. □

Proof of Prop. 2.20. That a ≤ b entails I ≤ a ⊸ b immediately
implies #R is an extension of ≤ (and reflexive), since R ⊇ I ↑. For
transitivity, suppose that a ⊸ b ∈ R and b ⊸ c ∈ R. Applying
(comp) and upwards closure to the latter assumption we obtain
(a ⊸ b) ⊸ (a ⊸ c) ∈ R, and hence a ⊸ c ∈ R by deductive
closure. □

Proof of Prop. 2.22. The operation

DNI = S 7→ S ∧ {c | a ∈ S, (a ⊸ b) ⊸ b ≤ c}

defines a monotone operator DNI : P̌ → P̌ on the complete lattice
P̌ , and so by the Knaster-Tarski theorem we can compute the dni-
closure of R as the greatest fixed point of DNI containing R. (NB:
since the ordering in P̌ is reverse inclusion, ∧ = ∪, and “greatest”
= “is contained in any other fixed point containing R”.) □

Proof of Prop. 2.23. The equivalence (1) ⇔ (2) is similar to the proof
of Observation 2.11(1). For (1) ⇒ (3): (3a) Let a ∈ R. Then (a ⊸
a) ⊸ a ∈ R by dni-closure, hence I ⊸ a ∈ R by (id) in negative
position and upwards closure. (3b) Let a ⊸ b ∈ R, and c ∈ P . Then
((a ⊸ b) ⊸ (a ⊸ c)) ⊸ (a ⊸ c) ∈ R by dni-closure, hence
(b ⊸ c) ⊸ (a ⊸ c) ∈ R by (comp) in negative position and
upwards closure.

For (3) ⇒ (1): Let a ∈ R and b ∈ P . Then I ⊸ a ∈ R by (3a), and
(a ⊸ b) ⊸ (I ⊸ b) ∈ R by (3b). But then (a ⊸ b) ⊸ b ∈ R by
(unit) and upwards closure.

Finally, the equivalence (3) ⇔ (4) is immediate after noting that
the closure condition [b ⊸ c ∈ R ⇒ (a ⊸ b) ⊸ (a ⊸ c) ∈ R] is
always valid for any upset R. □

Proof of Corollary 2.24. The first part follows easily from case (2)
of Prop. 2.23 and some applications of (assocr), while the second
follows from the first and the formula for the deductive closure !R
in Corollary 2.18. □

Proof of Prop. 2.25. We’ve already verified that P/R is an imploid
by Prop. 2.20 and Prop. 2.23(4), while left normality (I #R a ⊸ b ⇒

a #R b) follows from the (unit) axiom and upwards closure. □

Proofs of Propositions 2.26, 2.27, 2.29 and 2.30. Immediate. □

Proof of Prop. 2.31. The function [−] is automatically a strong ho-
momorphism, and the claim that R = ker[−] amounts to a ∈ R
iff I #R a, which follows from Prop. 2.23(4). Now suppose that
f : P → Q is a (potentially lax) homomorphism into some left
normal imploid, and that R ⊆ ker f . We define f̄ : P/R → Q to
be identical to f on elements of P , and just have to check a #R b
implies f (a) ≤Q f (b). Well, if a ⊸ b ∈ R then IQ ≤ f (a ⊸ b)
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by assumption that R ⊆ ker f . But then f (a) ≤Q f (b) follows
from the assumptions that f is a homomorphism and that Q is left
normal. □

Section 3
Proof of Prop. 3.11. This is immediate from the definition of flow
and our operadic description of topological orientations in Sec-
tion 3.3, although a small amount of care should be taken in in-
terpreting the rule of variable exchange. Formally, a 3-valent map-
with-boundary corresponds to a linear term-in-context, that is, a
lambda term T equipped with a specific ordering x1, . . . ,xn of its
free variables. So even though the variable exchange rule is written
(in the traditional way) with the same termT appearing in both the
premise and the conclusion, in fact these correspond to different
maps-with-boundary when interpreted as terms-in-context. See
[54] for a more detailed discussion. □

Proof of Lemma 3.12. By Prop. 3.11, to prove that every topological
flow is global we have to show that

x1 : a1, . . . ,xn : an ⊢ T : b implies I ≤ (a1, . . . ,an ) � b.

WhenT is planar, this follows by induction on exchange-free deriva-
tions, appealing in the application case

Γ ⊢ T1 : c ∆ ⊢ T2 : a
Γ,∆ ⊢ T1(T2) : b

(c ≤ a ⊸ b)

to the following lemma, proved by induction on ∆ (here we take Γ
and ∆ to range over lists of elements of P ):

Lemma A.1. If I ≤ Γ � (a ⊸ b) and I ≤ ∆ � a then I ≤

(Γ,∆) � b.

In the non-planar case we also have to deal with the exchange rule,
but then we simply appeal to (exch). □

Proof of Corollary 3.13. By Lemma 3.12 and the characterization of
bridgeless maps as unitless terms [54, Proposition 7.3]. □

Proof of Lemma 3.14. We first note that any well-oriented 3-valent
map admits two different constant 2̂-flows in which either every
edge is assigned the value 1 or every edge is assigned the value
2 (these are trivially flows since 1 ⊸ 1 = 1 and 2 ⊸ 2 = 2). We
now proceed by case analysis of the possible orientations of T , and
induction on the number of vertices:

Case T = T1 T2

By assumption, either T1 or T2 must be non-topologically
oriented. In the first case, by the induction hypothesisT1 has
a flow in which all its non-root boundary arcs are assigned 1
or 2 and its root is assigned 0. Then after taking the constant-
2 (or constant-1) flow onT2, we assign 0 toT ’s root to obtain

our desired flow (using that 0 = y ⊸ 0 for all y > 0):

T1 T2

0

0 y

1 ∨ 2

1 ∨ 2 y

y

Symmetrically, in the second case we apply the induction
hypothesis toT2 and take the constant-2 (or constant-1) flow
on T1 (using that y ≤ 0 ⊸ 0 = 2):

T1 T2

0

y 0

y

y 1 ∨ 2

1 ∨ 2

Case T = T1 T2 or T1 T2

In the first case we take the constant-1 flow on T1 and the
constant-2 flow on T2 (using that 2 ⊸ 1 = 0), and in the
second we take the constant-2 flow on T1 and either the
constant-2 or constant-1 flow on T2 (using that 0 ⊸ x = 2
for all x ):

T1 T2

0

1 2

1

1 2

2

or T1 T2

0

1 ∨ 22

2

2 1 ∨ 2

1 ∨ 2

Case T = T1 or T1

In the first case, by assumption,T1 must be non-topologically
oriented. We apply the induction hypothesis (again using
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that y ⊸ 0 = 0 for all y > 0):

T1

0

0

1 ∨ 2

1 ∨ 2

1 ∨ 2

In the second case we simply take the constant-2 flow on T2
and assign 0 to the root (using that 0 ⊸ 2 = 2):

T1

0

2

2

2

2

Case T = T1

Since T1 has two outputs, it is not topological. We apply
the induction hypothesis taking the root of T1 to be the
arc counterclockwise from the root of T (again using that
y ≤ 0 ⊸ 0 = 2):

T1

0

1 ∨ 2

1 ∨ 2

0

1 ∨ 2

(Notice this case accounts for why we can’t restrict to glob-
ally well-oriented maps in the induction.)

Case T =

Impossible by assumption that T is equipped with a non-
topological orientation.

□

Proof of Theorem 3.15. Implied by Lemmas 3.12 and 3.14. □

Section 4
Proof of Prop. 4.2. The existence of boundary-preserving homomor-
phisms corresponding to the first four moves reduces to the defini-
tion of a preorder (i.e., reflexivity + transitivity) and of the local flow
relations for 3-valent vertices (Figure 2) combined with monotonic-
ity of implication (imp). As already mentioned, the justification of
β and η amounts to totality and uniqueness, respectively, of the

implication operation, combined with (imp). Similarly, the τ , ι, and
δ transformations may be justified by appeal to the imploid axioms
(comp), (id), and (unit), respectively, with the right-to-left direction
of ι corresponding to left normality. Finally, all of the remaining
moves may be derived from the above. (For example, ρ can be de-
rived using β and τ̄ , which can in turn be derived from τ using β
and η.) We leave the details as an exercise for the reader. □

Proof of Prop. 4.3. The χ move reduces directly to the (exch) ax-
iom, while C can be easily derived from χ in combination with ι
and η. The γ move reduces directly to (dni), which is valid in any
symmetric left normal imploid (Prop. 2.6). □

Proof of Prop. 4.4. To be completely unambiguous, we should first
clarify that the definition of topological orientation (Def.-Prop. 3.10)
extends to rooted maps with vertices of degree 2 or 1 by the addition
of the following cases:

4)
T

; 5) .

Since the moves listed in Propositions 4.2 and 4.3 only include
vertices of degree < 3 with their unique possible topological ori-
entation, all that needs to be checked is the treatment of trivalent
vertices. We already explained in Section 4.1 that the graphical β
and η moves preserve topological orientation, precisely because
they restrict to the standard rewriting rules from lambda calculus
when interpreted on linear terms. One way of seeing that τ pre-
serves topological orientation is to verify that it corresponds to the
following transformation, which takes linear terms to linear terms:

λx .T
τ
=⇒ λx .λy.T [x(y)/x].

Similarly, γ and χ correspond to transformations

T1(T2)
γ
=⇒ T2(T1) and (T1T2)T3

χ
=⇒ (T1T3)T2.

The remaining moves can be considered analogously, or by deriving
them from the above. □

Proof of Theorem 4.5. We give a graphical proof by induction on
topological orientations, exhibiting a sequence of moves V ′

n ⇒ T
to realize any possible rooted essentially 3-valent map T with n
non-root boundary arcs. (It is important to note that most maps can
be constructed in multiple different ways, and the proof we give
here only corresponds to one particular encoding.) For simplicity
we ignore the presence of 2-valent vertices (i.e., work modulo edge
subdivision), which otherwise only requires a bit of extra book-
keeping.
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Case T = T1 T2

T1 T2
⇐=

ρ∗

⇐=

δ
⇐=

To be explicit, the first (= rightmost) step of the derivation is
a δ move, the second corresponds to a sequence of ρ moves,
and the last to two parallel applications of the induction
hypothesis.

Case T = T1

T1
⇐=

χ ∗

⇐=
η

⇐=

Case T =

ι
⇐=

Case T =

Immediate since T = V0.
□

Section 5
Proof of Prop. 5.3. By inspection of Figure 4, black vertices can only
arise in the minimal polarization in configurations of the form

which correspond to β-redices of the unpolarized map. □

Proof of Prop. 5.5. Immediate by induction on topological orienta-
tions. (The converse is easily seen to be false: for instance consider
the minimal polarizations of the non-topological maps in Exam-
ple 3.16, which do not have cycles in their w–b orientations.) □

14
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B An extended example
A bridgeless planar 3-valent map (the “Tutte graph”)

(From W. T. Tutte, “On Hamiltonian Circuits”, Journal of the London Mathematical Society 21 (1946), 98–101.)

A rooting of the above together with its topological orientation

15
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The corresponding linear lambda term (with variables and unique β-redex indicated)

a
b

c

d

e

f
g

h

i

j

kl

m

n

o

p

q
r

s
t

u

v

w x

λaλbλcλdλeλ f λдλhλi .a(λjλk .((λlλmλn.b(λo.c(λp.d(l(m((no)p))))))(λqλrλs .e(λt . f (λu .д(q(r ((st)u)))))))(λvλw .h(λx .i(j((kv)(wx))))))

The minimal polarization of the above
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The corresponding universal polarized flow

a

b

c

d

ef

g
h

i

j

k l

m

n

o

pq

rs

t

u
v

w
x

y

β

The universal polarized flow is valued in the imploid freely generated over the intervals a− ≤ a+, . . . ,y− ≤ y+ modulo the following
relation (writing [στ ] for σ ⊸ τ ):

β : [[v+u−][[w+v−][[y+[x+w−]]r+]]] ≤ [[[n+m−][[o+n−][[q+[p+o−]]j+]]][[i−[[h+д−]c+]]b−]]

The type assigned to the root is:

[[[[f +e−][[i+[д+ f −]]b+]]a−][[[y−s+]r−][[[x−t+]s−][[u+t−][[[q−k+]j−][[[p−l+]k−][[m+l−][[[h−d+]c−][[e+d−]a+]]]]]]]]]

A V-flow realized as an instance of the universal polarized flow

a

b

c

d

ef

g
h

i

j

k l

m

n

o

pq

rs

t

u
v

w
x

y

β

a = d = д =m = o = r = u = w = y = R

b = f = i = j = k = l = s = t = v = G

c = e = h = n = p = q = x = B

β : G = G
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