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Abstract
Focusing is a proof-search strategy, originating in linear logic,
that elegantly eliminates inessential nondeterminism, with one
byproduct being a correspondence between focusing proofs and
programs with explicit evaluation order. Higher-order abstract syn-
tax (HOAS) is a technique for representing higher-order program-
ming language constructs (e.g., λ’s) by higher-order terms at the
“meta-level”, thereby avoiding some of the bureaucratic headaches
of first-order representations (e.g., capture-avoiding substitution).

This paper begins with a fresh, judgmental analysis of focus-
ing for intuitionistic logic (with a full suite of propositional con-
nectives), recasting the “derived rules” of focusing as iterated in-
ductive definitions. This leads to a uniform presentation, allowing
concise, modular proofs of the identity and cut principles. Then we
show how this formulation of focusing induces, through the Curry-
Howard isomorphism, a new kind of higher-order encoding of ab-
stract syntax: functions are encoded by maps from patterns to ex-
pressions. Dually, values are encoded as patterns together with ex-
plicit substitutions. This gives us pattern-matching “for free”, and
lets us reason about a rich type system with minimal syntactic over-
head. We describe how to translate the language and proof of type
safety almost directly into Coq using HOAS, and finally, show how
the system’s modular design pays off in enabling a very simple ex-
tension with recursion and recursive types.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.4.1 [Theory of Com-
putation]: Mathematical Logic—Lambda calculus and related sys-
tems

General Terms Languages

1. Introduction
The end result of this paper will be to show how so-called focus-
ing proofs produce—through a careful judgmental analysis and the
Curry-Howard isomorphism—an exceptionally compact presenta-
tion of a call-by-value language with a full suite of types. In the
process, we hope to convince the reader of an aphorism: abstract
syntax should be even more abstract.

The technique of focusing was originally invented by Andreoli
(1992) as a refinement of bottom-up proof search in linear logic, to
reduce an otherwise intractable amount of nondeterminism. Soon
afterwards, it was promoted by Girard (1993) as a conceptual tool
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for finding unity in logic, as it turned out that also the classical
and intuitionistic connectives could be classified by their focus-
ing behavior, or polarity. Recently, focusing and polarity have seen
a surge in interest as more and more surprising properties of fo-
cusing proofs are discovered, including one important example: it
is slowly becoming clear that focusing proofs correspond to pro-
grams with explicit evaluation order (Herbelin 1995; Curien and
Herbelin 2000; Selinger 2001; Laurent 2002; Wadler 2003; Lau-
rent 2005; Dyckhoff and Lengrand 2006). In this paper we will
demonstrate an additional fascinating fact about focusing proofs:
they correspond to programs with pattern-matching. Moreover, it
turns out that focusing can be given a uniform, higher-order formu-
lation as an iterated inductive definition, and that this representation
can be encoded naturally in Coq (Martin-Löf 1971; Coquand and
Paulin-Mohring 1989). Combining these facts, we obtain the above
aphorism: a new kind of higher-order abstract syntax that encodes
“pattern-matching for free”.

2. Focusing intuitionistic logic
2.1 Background
Before diving into the compact presentation of focusing and its
Curry-Howard interpretation à la HOAS, let us start on more famil-
iar ground with a standard intuitionistic sequent calculus, and de-
scribe how to obtain a “small-step” focusing system. Figure 1 gives
the sequent calculus for intuitionistic logic in a slight variation of
Kleene’s G3i formulation (Kleene 1952; Troelstra and Schwicht-
enberg 1996). Formulas (P, Q, R) are built out of conjunction (×)
and disjunction (+) and their respective units (1 and 0), implication
(→), and logical atoms (X, Y, Z). Every logical connective has a
pair of a left rule and right rule(s) (we omit the rules for the units
to save space). The identity rule is restricted to atoms and there is
no explicit cut rule, though both cut (from Γ ` P and Γ, P ` Q
conclude Γ ` Q) and the general identity principle (P ∈ Γ implies
Γ ` P ) are admissible.

Now, one way to conceive of the sequent calculus, as Gentzen
(1935) originally suggested, is as a proof search procedure. Each
rule can be read bottom-up as a prescription, “To prove the con-
clusion, try proving the premises”. Starting from a goal sequent
Γ ` P , one attempts to build a proof by invoking left- and right-
rules provisionally to obtain a new set of goals until, hopefully, all
goals can be discharged using rules with no premises (i.e., id, 1R
or 0L). Since there are only finitely many rules and each satisfies
the subformula property (Troelstra and Schwichtenberg 1996), it is
not hard to see that (so long as one checks saturation conditions to
avoid repeatedly applying left rules) the sequent calculus gives a
naive decision procedure for propositional intuitionistic logic.

The reason this decision procedure is naive, though, is because
the order of application of rules is left entirely unspecified. For
example, the following are two equally legitimate derivations of
X × Y ` X × Y , that differ only in the order of ×L and ×R:



Context Γ ::= · | Γ, P

X ∈ Γ

Γ ` X
id

Γ, P ` Q

Γ ` P → Q
→R

Γ ` P Γ ` Q

Γ ` P ×Q
×R

Γ ` P
Γ ` P + Q

Γ ` Q

Γ ` P + Q
+R

P ×Q ∈ Γ Γ, P, Q ` R

Γ ` R
×L

P + Q ∈ Γ Γ, P ` R Γ, Q ` R

Γ ` R
+L

P → Q ∈ Γ Γ ` P Γ, Q ` R

Γ ` R
→L

Figure 1. Intuitionistic sequent calculus

X × Y, X, Y ` X
id

X × Y, X, Y ` Y
id

X × Y, X, Y ` X × Y
×R

X × Y ` X × Y
×L

X × Y, X, Y ` X
id

X × Y ` X
×L

X × Y, X, Y ` Y
id

X × Y ` Y
×L

X × Y ` X × Y
×R

However, it is not the case that order of application is arbitrary. For
example, to prove X +Y ` X +Y , one must apply +L first (from
the bottom):

X + Y, X ` X
id

X + Y, X ` X + Y
+R

X + Y, Y ` Y
id

X + Y, Y ` X + Y
+R

X + Y ` X + Y
+L

Applying either right-rule first will yield a failed proof attempt.
In these terms, focusing can be seen as exploiting properties

about the connectives to implement a smarter bottom-up proof
search. Figure 2 presents a focusing system for intuitionistic logic
that implements the following strategy:

1. Decompose conjunctions and disjunctions greedily on the left,
until the context contains only atoms and implications.

2. Given a stable sequent (i.e., one with no undecomposed hy-
potheses), “focus” on some proposition (Γ ` [P ]), either the
right side of the sequent or the antecedent of a hypothesis
P → Q.

3. A proposition in focus remains in focus (forcing us to keep
applying right-rules) until either there are no more premises,
or else we reach an implication, which “blurs” the sequent (and
we go back to step 1).

Note that this is not the only possible focusing strategy for propo-
sitional intuitionistic logic. Most of the intuitionistic connectives
have ambiguous polarity, in Girard’s sense (Girard 1993). This is in
contrast with the connectives of linear logic, which have fixed po-
larity. So whereas there is essentially only one way to focus linear
logic, there are different possible strategies for intuitionistic logic,
corresponding to different polarizations. Our strategy treats con-
junction and disjunction as both positive, implication as negative,
which turns out to correspond, via Curry-Howard, to the strict, call-
by-value interpretation (Curien and Herbelin 2000; Selinger 2001;
Laurent 2005). To emphasize this fact, we adopt linear logic no-
tation for positive conjunction and disjunction (⊗, ⊕, 1, 0), and

Stable context Γ ::= · | Γ, X | Γ, P →v Q
Active context Ω ::= · | P, Ω

Γ ` [P ]

X ∈ Γ

Γ ` [X]

Γ; P ` Q

Γ ` [P →v Q]

Γ ` [P ] Γ ` [Q]

Γ ` [P ⊗Q]

Γ ` [P ]

Γ ` [P ⊕Q]

Γ ` [Q]

Γ ` [P ⊕Q]

Γ; Ω ` R

Γ, X; Ω ` R

Γ; X, Ω ` R

Γ, P →v Q; Ω ` R

Γ; P →v Q, Ω ` R

Γ; P, Q, Ω ` R

Γ; P ⊗Q, Ω ` R

Γ; P, Ω ` R Γ; Q, Ω ` R

Γ; P ⊕Q, Ω ` R

Γ ` R
Γ; · ` R

Γ ` R

Γ ` [P ]

Γ ` P

P →v Q ∈ Γ Γ ` [P ] Γ; Q ` R

Γ ` R

Figure 2. Focused intuitionistic sequent calculus

write →v for implication.1 Very similar focusing systems based on
the same polarizations are presented in (Girard 2001, §9.2.3) and
(Dyckhoff and Lengrand 2006). Some examples of focusing sys-
tems derived from alternative (lazy, call-by-name) polarizations of
intuitionistic logic are in (Herbelin 1995; Howe 1998; Miller and
Liang 2007).

Of course, from the point of view of proof-search, it is crucial
that any focusing strategy be complete, i.e., if a sequent is provable
in the ordinary sequent calculus, then the focusing strategy will
succeed in finding some derivation. We will not give a completeness
proof for this system here (the reader could refer to (Dyckhoff and
Lengrand 2006)), and instead move on to describe an alternative
presentation of focusing.

2.2 A higher-order formulation
Let us begin with some observations about derived rules in the
focused system. These observations are not new (Andreoli 2001;
Girard 2001)—but the system we obtain from these observations
will be.

Consider proving the proposition X⊗ (Y ⊕ (P →v Q)) in focus.
The derivation must begin in one of the following two ways, before
losing focus:

Γ ` [X]

Γ ` [Y ]

Γ ` [Y ⊕ (Q→v P )]

Γ ` [X ⊗ (Y ⊕ (Q→v P ))]

Γ ` [X]

Γ ` [P →v Q]

Γ ` [Y ⊕ (P →v Q)]

Γ ` [X ⊗ (Y ⊕ (P →v Q))]

Once in focus, atomic propositions can only be proven by assump-
tion, while implications initiate a decomposition phase. The set of
derived rules

X ∈ Γ Y ∈ Γ

Γ ` [X ⊗ (Y ⊕ (P →v Q))]

X ∈ Γ Γ; P ` Q

Γ ` [X ⊗ (Y ⊕ (P →v Q)))]

1 Describing the polarity of call-by-value implication is actually a bit more
subtle. Technically, one can identify an underlying negative implication
P −◦N which takes positive antecedent and negative consequent, and then
analyze P →v Q with implicit polarity “shifts” (Girard 2001, §3.3.2), i.e.,
either as P −◦ ↑Q (as a negative hypothesis) or ↓(P −◦ ↑Q) (as a positive
conclusion).



is therefore complete, in the sense that it covers all possible deriva-
tions of the formula in right-focus.

Similarly, consider decomposing X ⊗ (Y ⊕ (P →v Q)) on the
left of the sequent:

Γ, X, Y ` R

Γ, X, Y ; · ` R

Γ, X; Y ` R

Γ, X, P →v Q ` R

Γ, X, P →v Q; · ` R

Γ, X; P →v Q ` R

Γ, X; Y ⊕ (P →v Q) ` R

Γ; X, Y ⊕ (P →v Q) ` R

Γ; X ⊗ (Y ⊕ (P →v Q)) ` R

Again, the following derived rule is complete:

Γ, X, Y ` R Γ, X, P →v Q ` R

Γ; X ⊗ (Y ⊕ (P →v Q)) ` R

In general for a proposition P , we can give a complete set
(possibly empty) of derived rules for establishing Γ ` [P ], each
containing a set (possibly empty) of premises of the form X ∈ Γ
or Γ; Q ` R. Likewise, we can give a single, complete derived rule
for establishing Γ; P ` R, with a set (possibly empty) of premises
of the form Γ, Γ′ ` R.

Both kinds of derived rules for a formula P can be generated
from a single description, which we can gloss as the possible
“recipes” for a focused proof. To derive Γ ` [P ], we must provide
(using Γ) all of the “ingredients” for some recipe. To derive Γ; P `
R, we must show how to derive R given (Γ and) the ingredients for
any of the recipes. As we are trying to suggest by using culinary
language (Wadler 1993), the method for constructing both kinds of
derived rules can be expressed in terms of linear entailment.

More precisely, a “list of ingredients” ∆ is a linear context of
atoms and implications, and we write ∆ ⇒ P when ∆ exactly
describes the focused premises in a possible focused proof of P .
The rules for ∆ ⇒ P (top of Figure 3) are just the usual right-rules
for the positive connectives of linear logic together with axioms
X ⇒ X and P →v Q ⇒ P →v Q. By way of example, we have
X, Y ⇒ X⊗(Y⊕(P→v Q)) and X, P→v Q ⇒ X⊗(Y⊕(P→v Q)).
Note that the judgment ∆ ⇒ P obeys a subformula property.

Proposition (Subformula property). If ∆ ⇒ P , then ∆ contains
only subformulas of P .

The generic instructions for proving a proposition in focus,
which we described informally above, can now be written formally:

∆ ⇒ P Γ ` ∆
Γ ` [P ]

The judgment Γ ` ∆ is interpreted conjunctively:2 from the hy-
potheses in Γ we must prove everything in ∆. Thus the rule asks
for some choice of recipe (i.e., ∆ ⇒ P ), and a proof that we have
all the ingredients (i.e., Γ ` ∆). Note that although this rule leaves
∆ unspecified, it still obeys the usual subformula property, by the
subformula property for ∆ ⇒ P .

Likewise, we can write the generic rule for decomposing a
proposition on the left:

∀(∆ ⇒ P ) : Γ, ∆ ` Q

Γ; P ` Q

Here the rule quantifies over all ∆ such that ∆ ⇒ P , showing
that from any such ∆ (together with Γ), Q is derivable. This sort
of quantification over derivations might seem like a risky form of
definition, but it is simply an iterated inductive definition (Martin-
Löf 1971)—since we already established what ∆ ⇒ P means,

2 And so is not like a “multiple conclusion sequent” in Gentzen’s LK.

Linear context ∆ ::= · | X, ∆ | P →v Q, ∆

∆ ⇒ P

X ⇒ X P →v Q ⇒ P →v Q

· ⇒ 1

∆1 ⇒ P ∆2 ⇒ Q

∆1, ∆2 ⇒ P ⊗Q

(no rule for 0)
∆ ⇒ P

∆ ⇒ P ⊕Q

∆ ⇒ Q

∆ ⇒ P ⊕Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stable context Γ ::= · | Γ, ∆

Γ ` [P ]

∆ ⇒ P Γ ` ∆

Γ ` [P ]

Γ; P ` Q

∀(∆ ⇒ P ) : Γ, ∆ ` Q

Γ; P ` Q

Γ ` ∆

Γ ` ·
X ∈ Γ Γ ` ∆

Γ ` X, ∆

Γ; P ` Q Γ ` ∆

Γ ` P →v Q, ∆

Γ ` R

Γ ` [P ]

Γ ` P

P →v Q ∈ Γ Γ ` [P ] Γ; Q ` R

Γ ` R

Figure 3. Large-step focusing

there is no circularity in treating it as an assumption here. Indeed,
for any particular P built out of the connectives we have consid-
ered, there will only ever be finitely many derivations ∆ ⇒ P , so
this rule will just have a finite list of premises (as in the example
above). However, we hope to make the case that this higher-order
formulation should be taken at face value—interpreted construc-
tively, it demands a mapping from derivations of ∆ ⇒ P to unfo-
cused sequents Γ, ∆ ` Q. This idea will play a central role in our
Curry-Howard interpretation.

The entire “large-step” focusing system is given in Figure 3,
with all of the rules for all of the connectives (including the units 1
and 0). Observe that the only rules that explicitly mention the pos-
itive connectives are those for the ∆ ⇒ P judgment, and we can
take the latter as literally defining the positive connectives. While
the system is relatively sparse in rules, it is “rich in judgments”.
The idea of the judgmental method (Martin-Löf 1996; Pfenning and
Davies 2001) in general is that by distinguishing between differ-
ent kinds of reasoning as different judgments (and not merely be-
tween different logical connectives or type constructors), one can
clarify the structure of proofs. This becomes very vivid under a
Curry-Howard interpretation, as the proofs of different judgments
are internalized by different syntactic categories of a programming
language. We will find that the five judgments of large-step focus-
ing all correspond to very natural programming constructs. First,
though, let us see how the identity and cut principles work in this
new logical setting. Because of the additional judgmental machin-
ery, identity is refined into three different principles.

Principle (Identity). Γ; P ` P

Principle (Context identity). If Γ ⊇ ∆ then Γ ` ∆

Principle (Arrow identity). If P →v Q ∈ Γ then Γ; P ` Q



Proof. These three principles are proven simultaneously—we give
the proof first, and then explain its inductive structure.

• (Identity) The following derivation reduces identity to context
identity:

∀(∆ ⇒ P ) :

∆ ⇒ P Γ, ∆ ` ∆

Γ, ∆ ` [P ]

Γ, ∆ ` P

Γ; P ` P

Note the first premise can be discharged since the derivation
quantifies over ∆ such that ∆ ⇒ P .

• (Context Identity) We apply a side-induction on the length of
∆. The interesting case is ∆ = P →v Q, ∆′. By arrow identity
we have Γ; P ` Q, and by the side-induction we have Γ ` ∆′,
letting us build the derivation:

Γ; P ` Q Γ ` ∆′

Γ ` P →v Q, ∆′

• (Arrow Identity) Consider the following derivation:

∀(∆ ⇒ P ) :

P →v Q ∈ Γ Γ, ∆ ` [P ] Γ, ∆; Q ` Q

Γ, ∆ ` Q

Γ; P ` Q

The first premise P →v Q ∈ Γ is by assumption. The second
premise reduces (as in the proof of identity above) to context
identity. The third premise is by identity.

The above argument can be seen to be well-founded so long as
the relationship of being a proper subformula is well-founded.
We reason as follows: The proof of identity appealed to context
identity, which in turn appealed to arrow identity, and which finally
appealed back to both context identity and identity. The first cycle
(id on P  context id on ∆ ⇒ P  arrow id on P1 →v P2 ∈ ∆
 id on P2), takes P to a proper subformula P2. The second cycle
(context id on ∆  arrow id on P1 →v P2 ∈ ∆  context id on
∆′ ⇒ P1), takes ∆ to a proper subcontext ∆′ (i.e., ∆′ contains
only proper subformulas of formulas in ∆). Both cycles cannot
continue indefinitely if the proper subformula relationship is well-
founded—as indeed it is for the propositional connectives.

We can also distinguish between three different kinds of principles
that would ordinarily be called “cuts”. The first is where we have
a derivation of Γ, ∆ ` J (in which J stands for an arbitrary
concluding judgment, i.e., Γ, ∆ ` [P ] or Γ, ∆; P ` Q or Γ, ∆ ` R
or Γ, ∆ ` ∆′), and we want to substitute another derivation
Γ ` ∆ for the hypotheses ∆. The second is where we have a
coincidence between a right-focused derivation Γ ` [P ], and a
derivation Γ; P ` Q, which we can transform into an unfocused
derivation Γ ` Q. In the third, we combine an unfocused derivation
Γ ` P together with Γ; P ` Q to obtain Γ ` Q. We call
the first cut principle substitution, the second reduction, and the
third composition. In the usual proof-theoretic terminology, these
correspond to right-commutative, principal, and left-commutative
cuts, respectively.

Principle (Substitution). If Γ, Γ′ ` ∆ and Γ, ∆, Γ′ ` J then
Γ, Γ′ ` J

Principle (Reduction). If Γ ` [P ] and Γ; P ` Q then Γ ` Q

Principle (Composition). If Γ ` P and Γ; P ` Q then Γ ` Q

To prove these we need a weakening lemma, which is immediate.

Proposition (Weakening). If Γ ` J , then Γ, ∆ ` J .

Proof of substitution, reduction and composition. Again, the proof
is simultaneous.

• (Substitution) We examine the derivation of Γ, ∆, Γ′ ` J .
Almost all cases (there are seven total) are immediate, simply
applying substitution (and possibly weakening) to the premises
and reconstructing the derivation. The one interesting case is
the following:

P →v Q ∈ ∆ Γ, ∆, Γ′ ` [P ] Γ, ∆, Γ′; Q ` R

Γ, ∆, Γ′ ` R

By substitution on the premises we have Γ, Γ′ ` [P ] and
Γ, Γ′; Q ` R. Moreover Γ, Γ′ ` ∆ and P →v Q ∈ ∆ imply
(by inversion) that Γ, Γ′; P ` Q. We cut Γ, Γ′ ` [P ] and
Γ, Γ′; P ` Q using reduction to obtain Γ, Γ′ ` Q, and the latter
with Γ, Γ′; Q ` R using composition to obtain Γ, Γ′ ` R.

• (Reduction) By inversion on Γ ` [P ], there exists some ∆ ⇒ P
such that Γ ` ∆, and by inversion on Γ; P ` Q we have
Γ, ∆ ` Q. Hence Γ ` Q by substitution.

• (Composition) We examine the derivation of Γ ` P . If it
was derived from Γ ` [P ], we immediately apply reduction.
Otherwise the derivation must look like so:

P1 →v P2 ∈ Γ Γ ` [P1]

∀(∆ ⇒ P2) : Γ, ∆ ` P

Γ; P2 ` P

Γ ` P

For any ∆ ⇒ P2, we can weaken the derivation Γ; P ` Q to
Γ, ∆; P ` Q, and then apply composition to obtain Γ, ∆ `
Q. Thus Γ; P2 ` Q, and we can reconstruct the derivation
concluding Γ ` Q.

The above defines a cut-elimination procedure, which we can eas-
ily see is terminating by a nested induction. First on the cut for-
mula/context, then on the second derivation for substitution, and
on the first derivation for composition. Again, this uses the fact that
the proper subformula relationship is well-founded.

We gave the proofs of identity and cut in such explicit detail in
part to emphasize that there actually isn’t very much detail. For
example, we did not have to give the case of one “typical” positive
connective and sweep the others under the rug, because both proofs
do not even mention particular positive connectives—instead they
reason modularly about derivations of ∆ ⇒ P . And modularity is
a powerful tool: it gives us license to introduce new types almost
arbitrarily, so long as we define them purely through the ∆ ⇒ P
judgment.

3. Focusing the λ-calculus
In the previous section, we saw how combining the technique of
focusing with a judgmental and higher-order analysis of derived
rules led to a sequent calculus “rich in judgments”. Now, we will
show how these different judgments correspond precisely, through
the Curry-Howard isomorphism, to natural programming language
constructs. We start with a type system containing all the propo-
sitional connectives described above, though for simplicity leav-
ing out atomic types—so the language will have strict products
and sums, and call-by-value function spaces. After giving it an op-
erational semantics corresponding to cut-elimination and proving
type safety, we will show how our informal use of higher-order
abstract syntax can be formalized in Coq. Finally, we will try to
give a demonstration of the aforementioned modularity principle,
by showing the ease with which recursion and recursive types can
be added to the language.



Focusing Typing Syntactic category
∆ ⇒ P ∆ ⇒ p : P patterns
Γ ` [P ] Γ ` V : [P ] values
Γ; P ` Q Γ ` F : P > Q (CBV) functions
Γ ` R Γ ` E : R expressions
Γ ` ∆ Γ ` σ : ∆ substitutions

Figure 4. The Curry-Howard isomorphism

3.1 Type system
Let us begin by examining the ∆ ⇒ P judgment, which lies at
the heart of our formulation of focusing. Previously we described
∆ ⇒ P as holding when the context ∆ is an exact list of focused
premises needed for a focused proof of P . For a particular P , there
need not be a unique ∆ such that ∆ ⇒ P , and indeed there might
not be any such ∆ (e.g., when P = 0). What then do derivations
of ∆ ⇒ P look like? Abstractly, they describe the different shapes
a focused proof of P can have, up to the point where either the
derivation ends or focus is lost. Thus for example we only have the
axiomatic derivation P →v Q ⇒ P →v Q, because the first step in a
focused proof of P →v Q is to immediately lose focus. On the other
hand, there are two rules for disjunction:

∆ ⇒ P
∆ ⇒ P ⊕Q

∆ ⇒ Q

∆ ⇒ P ⊕Q

because a focused proof of P ⊕ Q can continue by focusing on
either P or Q.

Now, let us label the hypotheses in ∆ with variables—since we
are ignoring atomic hypotheses, there are only function variable
hypotheses f : P→v Q. Then we can annotate ∆ ⇒ P as a pattern-
typing judgment:

f : P →v Q ⇒ f : P →v Q

· ⇒ () : 1

∆1 ⇒ p1 : P ∆2 ⇒ p2 : Q

∆1, ∆2 ⇒ (p1, p2) : P ⊗Q

(no rule for 0)
∆ ⇒ p : P

∆ ⇒ inl p : P ⊕Q

∆ ⇒ p : Q

∆ ⇒ inr p : P ⊕Q

A programmer might now get an intuition for why the context ∆
must be linear: it corresponds to the usual restriction that patterns
cannot bind a variable more than once. Likewise why P →v Q ⇒
P →v Q is an axiom: it corresponds to a primitive pattern.

If ∆ ⇒ P represents pattern-typing, what can we conclude
about the other judgments of the focusing system? As we will de-
scribe, these correspond to typing judgments for values, functions,
expressions, and substitutions (see Figure 4). Since these judgments
are defined by mutual recursion, we will have to work our way
through the system to convince ourselves that these names for the
different syntactic categories were not chosen arbitrarily. We begin
with Γ ` [P ], which will be annotated with a value V . Recall that
the judgment is defined by a single rule:

∆ ⇒ P Γ ` ∆
Γ ` [P ]

The first premise is now annotated ∆ ⇒ p : P , giving us a
pattern p binding some function variables with types given by ∆.
The second premise is annotated with a simultaneous substitution
σ = (F1/f1, . . . , Fn/fn), where f1, . . . , fn are the variables in ∆
and F1, . . . , Fn are functions. Thus the annotated rule becomes:

∆ ⇒ p : P Γ ` σ : ∆

Γ ` [σ]p : [P ]

What exactly is this curious value [σ]p, which combines a pattern
together with an explicit substitution? We can think of this notation

as simply internalizing a trivial factorization lemma about values in
the ordinary sense. For example the ML value

(fn x => x*x, fn x => x-3)

can be factored as the pattern (f,g) composed with a substitu-
tion [(fn x => x*x)/f, (fn x => x-3)/g]. As we shall see, the
utility of this factorization is that values are given a uniform repre-
sentation.

What about functions? Again, let us look at the unannotated rule
for Γ; P ` Q:

∀(∆ ⇒ P ) : Γ, ∆ ` Q

Γ; P ` Q

Recall this is a higher-order rule, which can be interpreted con-
structively as demanding a map from derivations of ∆ ⇒ P to
derivations of unfocused sequents Γ, ∆ ` Q. The former, we know,
correspond to patterns with types for their free variables. The latter
correspond to “expressions” (the precise sense of which will be ex-
plained below). Therefore, a function is a map from patterns to ex-
pressions. In other words, functions are defined using higher-order
abstract syntax (Pfenning and Elliott 1988).

Formally, we will assume the existence of partial maps φ, de-
fined inductively over patterns. Thus for any pattern p, φ(p) is ei-
ther undefined or denotes a unique expression, possibly mentioning
variables bound by p, and moreover this mapping respects renam-
ing of pattern variables. Concretely, partial maps may be specified
by a finite list of branches:

φ ::= (p1 7→ E1 | . . . | pn 7→ En)

with the proviso that the pi do not overlap. In Section 3.3 we will
describe how to encode the HOAS representation explicitly in Coq,
using the function space pat → exp.

Now to build a function, we simply wrap a φ with a λ. The
annotated rule for function-typing becomes:

∀(∆ ⇒ p : P ) : Γ, ∆ ` φ(p) : Q

Γ ` (λφ) : P > Q

We should emphasize that we are still only defining the abstract
syntax of functions, not their evaluation semantics—although the
two aspects are indeed closely related. For instance, the syntax
forces a call-by-value interpretation, since functions are defined by
pattern-matching over fully-expanded patterns.3 Moreover, a well-
typed function (λφ) : P > Q is necessarily exhaustive (since the
typing rule forces φ(p) to be defined for all p and ∆ such that
∆ ⇒ p : P ) and non-redundant (since φ is defined as a map),
in the usual sense of pattern-matching.

Finally, the two rules for deriving unfocused sequents are now
annotated as typing expressions:

Γ ` V : [P ]

Γ ` V : P

g : P →v Q ∈ Γ Γ ` V : [P ] Γ ` F : Q; R

Γ ` F (g(V )) : R

The first rule creates an expression directly from a value, the second
by feeding a value to a named function variable, and composing the
result with another function. From these two rules, we can intuit
that “expressions” really do correspond closely to expressions in
the ML sense—that is to computations (Moggi 1991). However, our
expressions have a more rigid syntax, with an explicit sequencing
of evaluation that resembles A-normal form (Flanagan et al. 1993).

3 Of course, Haskell has pattern-matching too, so the emphasis is on “fully-
expanded”. In Haskell, there is a semantic difference between a function
defined using wildcard/variable patterns, and the one obtained by replacing
the wildcards/variables with expanded patterns. For example \x -> () and
\() -> () both can be given type () -> (), but the latter is strict. This
difference does not exist in ML since all functions are strict.



Indeed, as with A-normal form, we seem to encounter the problem
that substitution requires a “re-normalization” step: for how do we
express the result of substituting G/g into F (g(V ))?

Another way of looking at this is that the expression F (g(V ))
corresponds to the “one interesting case” in the proof of the substi-
tution principle from Section 2.2, wherein we appealed back to the
reduction and composition principles. Consequently, to make the
language closed under ordinary substitution, we internalize these
principles as additional rules for forming expressions:

Γ ` V : [P ] Γ ` F : P > Q

Γ ` F (V ) : Q

Γ ` E : P Γ ` F : P > Q

Γ ` F (E) : Q

We can likewise internalize identity principles to let us take short-
cuts when building terms:

Γ ` id : P > P

f : P →v Q ∈ Γ

Γ ` f : P > Q

id is the polymorphic identity function, while arrow identity allows
us to treat a function variable directly as a function.

The complete type system is summarized in Figure 5, defining
this Curry-Howard interpretation for large-step focusing, which we
call focused λ-calculus. The figure visually quarantines identity
and cut principles, to highlight their special status. The reader may
wonder why we have not also internalized the substitution and
context identity principles. Such steps are possible—for example,
internalizing substitution would give us a calculus in which explicit
substitutions are evaluated incrementally (Abadi et al. 1991)—but
we forgo them here, choosing instead to define these as meta-
theoretic operations. Substitution is defined in Section 3.2; we state
context identity here:

Principle (Context identity). Suppose Γ ⊇ ∆, and that f1, . . . , fn

are the variables in ∆. Then Γ ` (f1/f1, . . . , fn/fn) : ∆.

Proof. Trivial (now that we can directly appeal to arrow identity).

Let us consider some examples—but to make these more palat-
able, we first develop some syntactic sugar. Without danger of am-
biguity, we can write values in “unfactorized” form:

V ::= F | () | (V1, V2) | inl(V ) | inr(V )

It is always possible to recover a unique factorization, i.e., σ and
p such that V = [σ]p. As a special case, every pattern p can also
be seen as the value [(f1/f1, . . . , fn/fn)]p, where f1, . . . , fn are
the variables bound by p. Because the syntax is higher-order, we
can use meta-variables to build maps by quantifying over (all or
some subset of) patterns. So for example p 7→ () is a constant
map which sends any pattern to (), while the map f 7→ () is only
defined on function variable patterns. When a function is defined
by a single pattern-branch, we use the more conventional notation
λp.E instead of λ(p 7→ E). Finally, we let 2 = 1 ⊕ 1 be the type
of booleans, write t = inl(), f = inr() for boolean patterns, and
use b as a meta-variable quantifying over these two patterns.

EXAMPLE 1. We define boolean functions and and not:

and = λ((t, t) 7→ t | (t, f) 7→ f | (f, t) 7→ f | (f, f) 7→ f)

not = λ(t 7→ f | f 7→ t)

It is easy to check that and : 2 ⊗ 2 > 2 and not : 2 > 2.
In this simple case there is a bijective correspondence between
patterns and values, and so the syntax basically mimics the standard
mathematical definitions. �

Linear context ∆ ::= · | f : P →v Q, ∆
Pattern p ::= f | () | (p1, p2) | inl p | inr p

∆ ⇒ p : P

f : P →v Q ⇒ f : P →v Q

· ⇒ () : 1

∆1 ⇒ p1 : P ∆2 ⇒ p2 : Q

∆1, ∆2 ⇒ (p1, p2) : P ⊗Q

(no rule for 0)
∆ ⇒ p : P

∆ ⇒ inl p : P ⊕Q

∆ ⇒ p : Q

∆ ⇒ inr p : P ⊕Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stable context Γ ::= · | Γ, ∆
Value V ::= [σ]p
Function F ::= λφ | id | f

where φ ::= (p1 7→ E1 | . . . | pn 7→ En)
Substitution σ ::= · | (F/f, σ)
Expression E ::= V | F (g(V )) | F (V ) | F (E)

Γ ` V : [P ]

∆ ⇒ p : P Γ ` σ : ∆

Γ ` [σ]p : [P ]

Γ ` F : P > Q

∀(∆ ⇒ p : P ) : Γ, ∆ ` φ(p) : Q

Γ ` (λφ) : P > Q Γ ` id : P > P

f : P →v Q ∈ Γ

Γ ` f : P > Q

Γ ` σ : ∆

Γ ` · : ·
Γ ` F : P > Q Γ ` σ : ∆

Γ ` (F/f, σ) : (f : P →v Q, ∆)

Γ ` E : R

Γ ` V : [P ]

Γ ` V : P

g : P →v Q ∈ Γ Γ ` V : [P ] Γ ` F : Q; R

Γ ` F (g(V )) : R

Γ ` V : [P ] Γ ` F : P > Q

Γ ` F (V ) : Q

Γ ` E : P Γ ` F : P > Q

Γ ` F (E) : Q

identity principles cut principles

Figure 5. Focused λ-calculus (type system)

EXAMPLE 2. We define table1 : 2→v 2 > 2⊗ 2, a higher-order
function taking a unary boolean operator as input, and returning its
truth table as output:

table1 = λf.(λb1.(λb2.(b1, b2))(f f))(f t)

Here f is a function variable, while b1 and b2 are meta-variables
quantifying over boolean patterns. Observe that the syntax forces
us to choose a sequential order for the calls to f (we evaluate f(t)
first, then f(f)). �

3.2 Operational semantics
The substitution principle of Section 2.2, translated to the language
of proof terms, says that for any substitution Γ, Γ′ ` σ : ∆ and
arbitrary term Γ, ∆, Γ′ ` t : J (i.e., a value V : [P ], function F :
P > Q, substitution σ′ : ∆′, or expression E : R), there should be
a term [σ]t such that Γ, Γ′ ` [σ]t : J . Rather than internalizing this
principle in the syntax, we define [σ]t as an operation, namely the
usual simultaneous, capture-avoiding substitution. The definition



E  E′

φ(p) defined

(λφ)([σ]p) [σ]φ(p) id(V ) V

E  E′

F (E) F (E′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[σ]t

[σ]f =

(
F (F/f) ∈ σ

f f /∈ dom(σ)

[σ]([σ′]p) = [[σ]σ′]p [σ](λφ) = λp.[σ]φ(p) [σ]id = id

[σ]· = · [σ](F/f, σ′) = ([σ]F/f, [σ]σ′)

[σ](F (g(V ))) = [σ]F ([σ]g([σ]V ))
[σ](F (V )) = [σ]F ([σ]V ) [σ](F (E)) = [σ]F ([σ]E)

Figure 6. Focused λ-calculus (operational semantics)

of [σ]t (given in Figure 6) is completely unsurprising, but a couple
cases worth mention. Applying [σ] to a function λφ defines a new
function by composing φ with the substitution:

[σ](λφ) = λp.[σ]φ(p)

Moreover, as we observed above, if σ maps G/g, then applying σ
to the irreducible expression F (g(V )) converts it into two cuts: the
expression G([σ]V ) composed with [σ]F .

The annotated version of the substitution principle is proven
easily by induction, as in Section 2.2.

Lemma (Substitution). If Γ, Γ′ ` σ : ∆ and Γ, ∆, Γ′ ` t : J and
then Γ, Γ′ ` [σ]t : J .

The operational semantics is then given by a transition relation
E  E′ on closed expressions, with three rules:

φ(p) defined
(λφ)([σ]p) [σ]φ(p) id(V ) V

E  E′

F (E) F (E′)

All of the complexity of pattern-matching is implemented by the
one rule on the left, so let’s unpack it: a function F = λφ is defined
(syntactically) as a partial map from patterns to open expressions;
a value V = [σ]p is a pattern together with an explicit substitution
for its variables; thus to apply F to V , we find the expression φ(p)
corresponding to p (assuming one exists), and apply the substitu-
tion σ.

Preservation and progress are stated in the usual way.

Theorem (Preservation). If Γ ` E : P and E  E′, then
Γ ` E′ : P .

Proof. Immediate by induction on (the derivation of) E  E′, us-
ing the substitution lemma in the case of a reduction (λφ)([σ]p) 
[σ]φ(p) (like in the proof of reduction from Section 2.2).

Theorem (Progress). If ` E : P , then either E = V or else there
exists E′ such that E  E′.

Proof. Immediate by induction on ` E : P , using the fact that
well-typed functions are exhaustive.

EXAMPLE 3. Recall the functions and, not, and table1 from Ex-
amples 1 and 2. The reader can verify the following calculation:

and(table1(not))
 and((λb1.(λb2.(b1, b2))(not f))(not t))
 and((λb1.(λb2.(b1, b2))(not f)) f)
 and((λb2.(f, b2))(not f))

 and((λb2.(f, b2)) t)
 and(f, t)
 f

�

3.3 Representation in Coq
Yet the reader may still have lurking suspicions about our language
definition. Aren’t we overlooking Reynolds’ lesson about the pit-
falls of higher-order definitions of higher-order programming lan-
guages (Reynolds 1972)? Isn’t there a circularity in our appeal to
a “meta-level” notion of maps while defining functions? Here, we
will attempt to rest these concerns by giving an encoding of fo-
cused λ-calculus in Coq, a proof assistant based on the Calculus
of Inductive Constructions (Coquand and Huet 1988; Coquand and
Paulin-Mohring 1989; Coq Development Team 2006).

But our first step will be to try to explain how in a paper with
“higher-order abstract syntax” in the title, we will have the chutz-
pah to use de Bruijn indexes in this encoding (de Bruijn 1972).
To be clear, we are proposing a new kind of higher-order ab-
stract syntax. In its usual application, HOAS refers to represent-
ing object-language variables by meta-language variables (Pfen-
ning and Elliott 1988). This allows object-language binding con-
structs to be encoded by corresponding meta-language constructs,
and thereby eliminates the need for dealing explicitly with tricky
notions such as variable-renaming, parametric quantification and
capture-avoiding substitution. The logical framework Twelf is
very well-suited for this kind of representation technique (Twelf
2007). In contrast, the novelty of our approach is encoding object-
language induction by meta-level induction. The Coq proof assis-
tant, it turns out, is well-suited for this kind of representation tech-
nique. Ideally, we would be able to combine both forms of HOAS,
as we did above at a pre-formal level. But although there have been
some attempts at encoding standard HOAS in Coq (Despeyroux
et al. 1995), and some work on incorporating induction principles
into LF (Schürmann et al. 2001), these are still at experimental
stages. We therefore use Coq to highlight the novel aspects of our
higher-order encoding, but accept the limitations of a first-order
representation of variables.

With that apology out of the way, let us move on to the formal-
ization.4 As we did throughout the above discussion, we will define
the focused λ-calculus in “Curry-style”, that is, with typing rules
for type-free terms, and a type-free operational semantics. An al-
ternative “Church-style” approach would be to directly encode the
logical rules of Section 2.2, and then simply extract the language,
with typed terms being derivations of the logical judgments.5

We begin by defining tp : Set as a standard algebraic datatype
with constructors 0, 1 : tp and ⊗,⊕,→v : tp → tp → tp (we will
use infix notation for the latter). For convenience, we also add 2 : tp
to directly represent booleans. The type of hypotheses hyp : Set is
defined by one constructor of type tp → tp → hyp, but we will
simply write P →v Q : hyp, overloading the tp constructor (it will
always be clear from context which constructor we really mean).

Now, linear contexts ∆ : linctx are lists of hyps, while stable
contexts Γ : ctx are lists of linctxs. We write [] for the empty list,
[a] for a singleton, a :: l for the “cons” operation, and l1 ++ l2 for
concatenation. Since contexts are lists of lists, de Bruijn indexes
are given by pairs of natural numbers, written i.j : index. It is
quite reasonable to think of these using machine intuitions: if Γ
represents a stack of frames ∆, then a de Bruijn index i.j specifies
a “frame pointer” i plus an “offset” j. We write #j(∆) for the

4 The full Coq source code for the encoding described here is available at:
http://www.cs.cmu.edu/∼noam/research/focusing.tar
5 See http://www.cs.cmu.edu/∼noam/research/focus-church.v.



jth element of ∆, and #i.j(Γ) for the jth element of the ith linear
context in Γ. These are both partial operations, returning options in
Coq, but we will abuse notation and write #i.j(Γ) = H meaning
#i.j(Γ) = Some H , and similarly with #j(∆). In general, we
will stray slightly from concrete Coq syntax so as to improve
readability.

We define pat as another algebraic datatype, built using con-
structors (), t, f : pat and (−,−) : pat → pat → pat, inl, inr :
pat → pat, and fvar : pat. The latter stands for a pattern binding a
function variable—since we are using a de Bruijn representation,
patterns do not actually name any variables. The pattern-typing
judgment ∆ ⇒ p : P is encoded by an inductive type family
pat tp : linctx → pat → tp → Prop. We omit the names of
the constructors for pat tp, but give their types below (also leaving
implicit the ∀-quantification over all free variables):

: pat tp [P →v Q] fvar P →v Q
: pat tp [] () 1
: pat tp ∆1 p1 P → pat tp ∆2 p2 Q →

pat tp (∆1 ++ ∆2) (p1, p2) P ⊗Q
: pat tp ∆ p P → pat tp ∆ (inl p) P ⊕Q
: pat tp ∆ p Q → pat tp ∆ (inr p) P ⊕Q

: pat tp [] t 2
: pat tp [] f 2

Now, the syntax of the language is defined through four mutually
inductive types val, fnc, sub, and exp, with the following construc-
tors:

Value : pat → sub → val

Lam : (pat → exp) → fnc
Id : fnc
IdVar : index → fnc

Subst : list fnc → sub

Return : val → exp
Comp : fnc → index → val → exp
AppV : fnc → val → exp
AppE : fnc → exp → exp
Fail : exp

As promised, fnc contains maps from patterns to expressions, em-
bedded through the constructor Lam : (pat → exp) → fnc. Note
that this is a positive definition (and thus acceptable in Coq) be-
cause the type pat was already defined—as opposed to, say, the
definition Lam′ : (val → exp) → fnc (which would be illegal in
Coq). On the other hand, Coq requires maps pat → exp to be total,
so to simulate partial maps we add an expression Fail : exp, which
can be read as “undefined” or “stuck”.

Following the representation of linear contexts as unlabelled
lists of hypotheses, a substitution is just an unlabelled list of func-
tions, while the expression Return V makes explicit the implicit in-
clusion of values into expressions. Otherwise, the constructors are
all straightforward transcriptions of terms of focused λ-calculus.

In the following examples, we abbreviate Value p (Subst []) by
ppq, and Return (ppq) by dpe.

EXAMPLE 4. The Coq encodings of and, not : fnc are:

and = Lam

0BBB@
(t, t) 7→ dte
(t, f) 7→ dfe
(f, t) 7→ dfe
(f, f) 7→ dfe

7→ Fail

1CCCA
not = Lam(t 7→ dfe | f 7→ dte | 7→ Fail)

These definitions make use of Coq’s built-in pattern-matching fa-
cilities to in order to pattern-match on pats. �

EXAMPLE 5. The encoding of table1 : fnc makes careful use of
de Bruijn indexes:

table1 = Lam

0B@fvar 7→ Comp (Lam(b1 7→
Comp (Lam(b2 7→ d(b1, b2)e))
1.0 pfq)) 0.0 ptq

7→ Fail

1CA
In the first call (with value t), the function argument is (the first
and only entry) on the top of the stack, so we reference it by 0.0. In
the second call, a frame (coincidentally empty) has been pushed in
front of the function, so we reference it by 1.0. �

Now we build the four typing-judgments as mutually inductive
type-families, defined as follows (again omitting constructors for
the typing rules, and outermost ∀-quantifiers):

val tp : ctx → tp → Prop
: pat tp ∆ p P → sub tp Γ σ ∆ → val tp Γ (Value p σ) P

fnc tp : ctx → tp → tp → Prop
: (∀p∀∆.pat tp ∆ p P → exp tp (∆ :: Γ) φ(p) Q)

→ fnc tp Γ (Lam φ) P Q
: fnc tp Id P P
: (#i.j(Γ) = (P →v Q)) → fnc tp Γ (IdVar i.j) P Q

sub tp : ctx → linctx → Prop
: sub tp Γ (Subst []) []
: fnc tp Γ F P Q → sub tp Γ (Subst σ) ∆

→ sub tp Γ (Subst (F :: σ)) (P →v Q :: ∆)

exp tp : ctx → tp → Prop
: val tp Γ V P → exp tp Γ (Return V ) P
: (#i.j(Γ) = (P →v Q)) → val tp Γ V P → fnc tp Γ F Q R

→ exp tp Γ (Comp F i.j V ) R
: val tp Γ V P → fnc tp Γ F P Q → exp tp Γ (AppV F V ) Q
: exp tp Γ E P → fnc tp Γ F P Q → exp tp Γ (AppE F E) Q

Again, these definitions are a direct transcription of the typing rules
in Figure 5, including the higher-order rule for function-typing.

Finally, to encode the operational semantics, we first define the
different substitution operations:

sub val : nat → sub → val → val
sub fnc : nat → sub → fnc → fnc
sub sub : nat → sub → sub → sub
sub exp : nat → sub → exp → exp

These are defined by (mutual) structural induction on the term
being substituted into, essentially as in Figure 6, but with a bit of
extra reasoning about de Bruijn indices. The extra nat argument is
a frame pointer to the linear context ∆ being substituted for, and
is used as follows in the IdVar case (and analogously in the Comp
case):

sub fnc i σ (IdVar i′.j) =

8><>:
#j(σ) i = i′

IdVar i′.j i > i′

IdVar (i′ − 1).j i < i′

We can then define the transition relation as an inductive family
step : exp → exp → Prop, with the following rules:

: step (AppV (Lam φ) (Value p σ)) (sub exp 0 σ φ(p))
: step (AppV Id V ) (Return V )
: step E E′ → step (AppE F E) (AppE F E′)
: step (AppE F (Return V )) (AppV F V )



These mirror the rules in Figure 6, with one additional rule for the
(formerly implicit) transition from composition to reduction after
the expression argument has been reduced to a value.

Finally, we define a predicate terminal : exp → Prop and assert
: terminal (Return V ). Given these definitions, we can state the

preservation and progress theorems:

preservation : exp tp Γ E P → step E E′ → exp tp Γ E′ P
progress : exp tp [] E P → (terminal E ∨ ∃E′.step E E′)

Both theorems have short proofs in Coq, constructed using the tac-
tic language. As in the paper proof, the preservation theorem relies
on the substitution principle, which in turn relies on weakening.
Both substitution and weakening require establishing a few trivial
facts about arithmetic, lists, and de Bruijn indices. This (about 140
lines to prove the trivial lemmas, followed by about 230 lines to
prove weakening and substitution, much of it dealing simply with
the coding of mutual induction principles in Coq) is the main source
of bureaucracy in the Coq formalization, which otherwise follows
our informal presentation very closely.

3.4 Recursion and recursive types
We have seen how focusing the λ-calculus gives logical explana-
tions for notions such as pattern-matching and evaluation order,
which are typically seen as extra-logical. Once we have this analy-
sis, we can extend the language in a fairly open-ended way without
modifying the logical core. In this section, we will consider two
particularly easy extensions: recursion and recursive types. For re-
cursive functions, we add one typing rule and one evaluation rule:

Γ, f : P →v Q ` F : P > Q

Γ ` fix f.F : P > Q (fix f.F )(V ) ([fix f.F/f ]F )(V )

These rules can be transcribed directly (modulo de Bruijn indices)
into Coq:

: fnc tp (Γ, [P →v Q]) F P Q → fnc tp Γ (fix F ) P Q
: step (AppV (fix F ) V )

(AppV (sub fnc 0 (Subst [fix F ]) F ) V )

To verify the safety of this extension, we need only localized
checks: one extra case each in the proofs of weakening, substitu-
tion, preservation, and progress.

EXAMPLE 6. We define loop : 1 > 1 = fix f.λ().f(). Then
loop() (λ().loop())() loop() . . . . �

For recursive types, we add a single pattern-typing rule:

∆ ⇒ p : [µX.P/X]P

∆ ⇒ fold(p) : µX.P

To add general µ-types to our Coq formalization, we would have
to introduce the additional bureaucracy of type substitution. On the
other hand, for particular recursive types (such as those considered
below) we can directly transcribe their pattern-typing rules. And
these rules suffice: we do not have to extend or modify any other
aspect of the type system or operational semantics. The machinery
of focusing and higher-order abstract syntax gives us the value-
forming rules and pattern-matching on recursive types “for free”.
In particular, our proof of type safety (both on paper and in the Coq
formalization) needs absolutely no modification, since it references
the pattern-typing judgment uniformly.

EXAMPLE 7. In this example, we consider natural numbers Nat =
µX.1⊕X , defined by two pattern-typing rules:

· ⇒ Z : Nat

· ⇒ p : Nat

· ⇒ S p : Nat

We can encode the plus function like so:

plus = fix f.λ

„
(m, Z) 7→ m

(m, S n) 7→ (λn′.S n′)f(m, n)

«

For instance, plus (S(S Z), S Z)  ∗ S(S(S Z)). To verify that
plus : Nat ⊗ Nat > Nat, we must check that for any Nat ⊗ Nat
pattern, there is a corresponding Nat-typed branch of the function.
This is easily seen to be true, since all Nat⊗Nat patterns have the
form (m, Z) or (m, S n). �

EXAMPLE 8. Consider a domain D = µX.1⊕ Nat⊕ (X →v X):

· ⇒ U : D

· ⇒ p : Nat

· ⇒ N p : D f : D→v D ⇒ F f : D

We define a function app : D ⊗ D > D, which tries to apply the
first argument to the second (and returns U if the first argument is
not a function):

app = λ

„
(F f, d) 7→ id(f(d))
( , d) 7→ U

«

For instance, app (F id, V ) id(id(V )) id(V ) V . �

While these examples illustrate the simplicity of higher-order
syntax for pattern-matching on recursive types, they also raise some
subtle theoretical questions. A careful reader might have noticed
that there is another way of defining the plus function in Coq: rather
than explicitly using the fix operator, we could use Coq’s built-in
Fixpoint mechanism to define a map plus pat : pat → pat → pat
computing the sum of two Nat patterns, and then define

plus∗ : fnc = Lam((m, n) 7→ dplus pat m ne | 7→ Fail)

Strictly speaking, plus∗ is an “exotic term”, i.e., does not represent
a term of concrete syntax (Despeyroux et al. 1995), since it corre-
sponds to a function defined by infinitely many pattern-branches.
Operationally, it computes the sum of two numbers in a single step
of evaluation, whereas plus computes it in multiple steps (linear in
n). Nonetheless, plus and plus∗ are observationally equivalent. We
conjecture that this is always the case, and that any term definable
in the Coq encoding of focused λ-calculus with recursive types is
observationally equivalent to a term of concrete syntax using ex-
plicit recursion. Yet, even if this conjecture holds, it is an interest-
ing question whether there is a principled way to adapt the HOAS
encoding to eliminate terms such as plus∗ altogether.

Proof-theoretically speaking, we can put it this way: for some
recursive types P , establishing Γ; P ` Q requires an infinitely
wide derivation in the focusing system.6 Conversely, for other re-
cursive types, the identity principle Γ; P ` P requires a deriva-
tion that is infinitely deep. In particular, the subformula relation-
ship may not be well-founded (e.g., D→v D is a subformula of D).
This is not really an issue for our programming language: rather
than attempting an infinite derivation, we can simply invoke the in-
ternalized identity principle. More fundamentally, though, we can
give these derivations a coinductive reading—this becomes partic-
ularly significant if we want to extend the language and incorporate
subtyping through an identity-coercion interpretation, as explored
by Brandt and Henglein (1998).

6 E.g., for Nat we essentially have the ω-rule (Buchholz et al. 1981).



4. Related work
This paper is by no means the first to propose a logical explanation
for pattern-matching or explicit substitutions. Recently, Nanevski
et al. (2007) and Pientka (2008) offer a judgmental explanation
for explicit substitutions in a modal type theory. Methodologically
their work is close to ours, but their development is rather differ-
ent since they seek to understand the connection between explicit
substitutions and meta-variables (as used, e.g., in logical frame-
works and staged computation), rather than pattern-matching. Cer-
rito and Kesner (2004) give an interpretation for both nested pat-
terns and explicit substitutions in sequent calculus. It seems the
difficulty with taking the unfocused sequent calculus as a start-
ing point, though, is that it suffers from a “lack of judgments”—
to explain pattern-matching Cerrito and Kesner must introduce ad-
ditional scaffolding beyond the Curry-Howard isomorphism. For
example, to obtain a well-behaved language with substitution and
subject reduction, they must annotate the single cut rule of sequent
calculus as three different typing rules, and add another typing rule
(app) with little proof-theoretic motivation. In contrast, every typ-
ing rule we gave in Section 3.1 was either a direct annotation of
a logical rule in Section 2.2, or else internalized one of the cut or
identity principles.

An additional byproduct of our use of focusing as a logical
foundation is that the extracted language has explicit evaluation
order. As mentioned in the Introduction, this connection has been
explored before by various people, at first with only a loose tie
to linear logic (Curien and Herbelin 2000; Selinger 2001; Wadler
2003), but later with an explicit appeal to polarity and focusing
(Laurent 2005; Dyckhoff and Lengrand 2006). From this line of
work, our main technical innovation is the uniform treatment of the
positive connectives through pattern-matching, which considerably
simplifies previous formalisms while allowing us to consider a rich
set of connectives. Our approach is loosely inspired by that of
Girard (2001).

In a short but prescient paper, Coquand (1992) examines
pattern-matching as an alternative to the usual elimination rules in
the framework of Martin-Löf’s type theory, and concludes with an
offhand remark, “From a proof-theoretic viewpoint, our treatment
can be characterized as fixing the meaning of a logical constant by
its introduction rules”. We have seen how this interpretation arises
naturally out of focusing for the positive connectives, although how
to extend our approach to the dependently-typed case remains an
important open question. Elsewhere, we explore the dual interpre-
tation for the negative connectives (and lazy evaluation), tying the
unified analysis to Michael Dummett’s examination of the justifi-
cation of logical laws (Dummett 1991; Zeilberger 2007).
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