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Abstract
Combining insights from the study of type refinement systems and
of monoidal closed chiralities, we show how to reconstruct Law-
vere’s hyperdoctrine of presheaves using a full and faithful embed-
ding into a monoidal closed bifibration living now over the com-
pact closed category of small categories and distributors. Besides
revealing dualities which are not immediately apparent in the tradi-
tional presentation of the presheaf hyperdoctrine, this reconstruc-
tion leads us to an axiomatic treatment of directed equality pred-
icates (modelled by hom presheaves), realizing a vision initially
set out by Lawvere (1970). It also leads to a simple calculus of
string diagrams (representing presheaves) that is highly reminis-
cent of C. S. Peirce’s existential graphs for predicate logic, refining
an earlier interpretation of existential graphs in terms of Boolean
hyperdoctrines by Brady and Trimble. Finally, we illustrate how
this work extends to a bifibrational setting a number of fundamen-
tal ideas of linear logic.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

Keywords Lawvere’s presheaf hyperdoctrine, monoidal closed
bifibrations, type refinement systems, monoidal closed chiralities,
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1. Introduction
An intriguing discrepancy. There is an intriguing and longrun-
ning discrepancy in categorical logic between the way conjunction
is coupled to implication in cartesian closed categories, and the way
existential quantification is coupled to universal quantification in
hyperdoctrines. In a cartesian closed category C , every object A
induces an adjunction

A×− a A⇒ − (1)

where the implication functor

B 7→ A⇒ B : C −→ C

is right adjoint to the conjunction functor

B 7→ A×B : C −→ C .
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This categorical situation should be compared with the way quan-
tification is handled in a hyperdoctrine. Recall that a hyperdoctrine
in the sense of Lawvere is first of all a (pseudo) functor

P : B op −→ Cat

from a base category B to the category Cat of small categories and
functors. The intuition behind this definition is that every object A
of the category B is assigned a “category of predicates” noted PA,
and every morphism f : A→ B of B induces a functor

Pf : PB −→ PA

called “substitution” along f . The leading example of a hyperdoc-
trine is the “subset hyperdoctrine” with basis the category B =
Set of sets and functions, equipped with the powerset functor P
which transports every set A to the set (PA,⊆) of subsets of A
ordered by inclusion. Note that the ordered set PA is seen here as
the ordered category where two subsets R,S ⊆ A are related by a
morphismR→ S precisely whenR ⊆ S. The substitution functor
along a function f : A→ B is defined by transporting every subset
S ⊆ B to its inverse image

Pf = S 7→ { a ∈ A | fa ∈ S }.
The definition of a hyperdoctrine then additionally asks for a pair
of functors

Σf , Πf : PA −→ PB

called “existential quantification” and “universal quantification”
along f , which are respectively left and right adjoint to the sub-
stitution functor:

Σf a Pf a Πf (2)

In the case of the subset hyperdoctrine, the functors Σf and Πf

transport a subset R ⊆ A to the following subsets of B:

Σf R = { b ∈ B | ∃a ∈ A, fa = b ∧ a ∈ R }
Πf R = { b ∈ B | ∀a ∈ A, fa = b ⇒ a ∈ R }

The difference between (1) and (2) is especially notable if one
thinks of dependent type theory, where existential quantification
provides a dependent form of conjunction, and universal quantifica-
tion a dependent form of implication. It is thus puzzling to see con-
junction and implication directly coupled by an adjunction in (1)
while they form in (2) a “ménage à trois” with the substitution func-
tor Pf as intermediate.

In the present introduction, we explain how to reconcile the two
points of view in the specific subset hyperdoctrine on B = Set.
The choice of this hyperdoctrine is mainly pedagogical: we find
clarifying to explain some of our ideas in this familiar example.
However, as we will see, the ideas developed in this introduction
lift very smoothly to the more sophisticated situation when one re-
places B = Set by the cartesian closed category B = Cat of



small categories and functors, and where the “category of predi-
cates” PA over a small category A is defined as the contravariant
presheaf category

PA := Â
def
= [A op,Set].

Lawvere introduced this example in his original article on hyper-
doctrines [11], and also considered its restriction to presheaves
over groupoids (B = Gpd) in his article describing a treatment
of equality in hyperdoctrines, which relied on a “Frobenius Reci-
procity” condition and certain Beck-Chevalley conditions [12]. The
presheaf hyperdoctrine is an important example despite the fact that
it does not in general satisfy these conditions, and indeed, Lawvere
even writes that this fact « should not be taken as indicative of a lack
of vitality [...] or even of a lack of a satisfactory theory of equality »
for the presheaf hyperdoctrine, but rather « that we have probably
been too naive in defining equality in a manner too closely sug-
gested by the classical conception » [12, p.11]. We will come back
to this important point later in the introduction.

From functions to relations. Our procedure to reconcile (1) and
(2) is inspired by linear logic and the shift from the cartesian
closed category Set to the symmetric monoidal closed (and in fact,
compact closed) category Rel which underlies its discovery by
Girard [8]. In particular, we will make a great usage of the two
“embedding” functors

emb⊕ : Set→ Rel emb	 : Set op → Rel

which transport a set A to itself, and a function f : A → B to the
binary relations

f⊕ : A9 B f	 : B 9 A

where
f⊕ = { (a, b) ∈ A×B | fa = b }
f	 = { (b, a) ∈ B ×A | b = fa }

Notation: we write M : A9 B for a binary relation M ⊆ A×B
which defines a morphism A → B in the category Rel. These
two faithful (but not full) functors emb⊕ and emb	 transport
the category Set and its opposite category Set op in the same
category Rel.

Bifibrations. Another important ingredient and source of inspira-
tion for our work is the notion of bifibration which we like to see as
a particular instance of type refinement system in the terminology
of [15, 16]. A bifibration may be defined as a functor

p : E −→ B

which is at the same time a fibration and an opfibration. Following
the principles and notations of type refinement systems, an object
R of E is said to “refine” an object A of B (written R @ A) if
p(R) = A, while a “derivation” of a typing judgment

R =⇒
f

S

(where f : A→ B, R @ A, and S @ B) is defined as a morphism
α : R → S in the category E whose image by the functor p is
the morphism f . The definition of a bifibration then asserts that the
functor (or “refinement system”) p is equipped with operations for
pushing or pulling an object of E along a morphism of B

R @ A f : A→ B

pushfR @ B

f : A→ B S @ B

pullfS @ A

such that there is a one-to-one correspondence of derivations,

R =⇒
f ;g

R′

pushfR =⇒
g
R′

S′ =⇒
e;f

S

S′ =⇒
e

pullfS

written here as invertible inference rules in the proof-theoretic
style of refinement systems (see [15, 16] for details). Notably, this
structure is sufficient to derive inference rules

R1 =⇒
idA

R2

pushfR1 =⇒
idB

pushfR2

S1 =⇒
idB

S2

pullfS1 =⇒
idA

pullfS2

as well as isomorphisms

pull(f ;g)S ≡ pullfpullgS pullidS ≡ S

push(g◦f)R ≡ pushgpushfR pushidR ≡ R
and a three-way correspondence of derivations:

pushf (R) =⇒
idB

S

R =⇒
f

S

R =⇒
idA

pullf (S)

This argument establishes that any (cloven) bifibration p : E → B
determines a pair of (pseudo) functors

push : B −→ Cat pull : B op −→ Cat

as well as a family of adjunctions

EA

pushf

))

pullf

ii ⊥ EB

relating the corresponding functors between the “fibre” categories
EA and EB (defined as subcategories of E containing only those
morphisms that project by p to identity morphisms in B).

A subset bifibration over sets and relations. Putting these two
sources of inspiration together: linear logic and bifibrations, we
construct a “subset bifibration”

p : Rel• −→ Rel

where the category Rel• has objects the pairs (A,R) consisting of
a set A together with a subset R ⊆ A ; and morphisms

M : (A,R)→ (B,S)

defined as the binary relations M : A9 B satisfying the property

∀a ∈ A,∀b ∈ B, (M(a, b) ∧ Ra ) ⇒ Sb.

The functor p transports every object (A,R) to the first compo-
nent A, and every morphism M : (A,R) → (B,S) to the under-
lying relation M : A 9 B. The category Rel• may be seen as a
category of “pointed objects” in Rel, since an object (A,R) is the
same thing as a relation R : 1 9 A, with morphisms defined using
the 2-categorical structure of Rel provided by inclusion of binary
relations. The fiber or category of predicates PA = p−1(A) as-
sociated to a set A by the functor p is simply the set (PA,⊆) of
subsets of A ordered by inclusion. An important point is that the
functor p just defined is a bifibration. Given a binary relation

M : A 9 B

the two functors
∃M = pushM : PA −→ PB

∀M = pullM : PB −→ PA

are defined in the following way:

∃M R = { b ∈ B | ∃a ∈ A, M(a, b) ∧Ra }
∀M S = { a ∈ A | ∀b ∈ B, M(a, b)⇒ Sb }



for all subsets R ⊆ A and S ⊆ B. An easy computation shows
that ∃M and ∀M define a pair of adjoint functors

∃M a ∀M (3)

because ∃MR ⊆ S is equivalent to R ⊆ ∀MS for every R ⊆ A
and S ⊆ B. From this, we conclude that

Theorem 1.1. The functor p : Rel• → Rel is a bifibration.

The associated fibre functor

R : Rel op −→ Cat (4)

transports every set A to the set (PA,⊆) of subsets of A ordered
by inclusion.

One hyperdoctrine decomposed into two bifibrations. The con-
struction of the subset bifibration p : Rel• → Rel on sets and
relations leads us to a new way to think about existential and uni-
versal quantification in the subset hyperdoctrine P on the category
B = Set. Indeed, given a hyperdoctrine

P : B op −→ Cat

it is always possible to “decorrelate” the pair of adjunctions (2) by
defining a pair of (pseudo) functors

P⊕ : B op −→ Cat P	 : B −→ Cat

where P⊕ = P and where P	 transports every object A ∈ B
to the category PA and every morphism f : A→ B to the functor

P	f := Πf : P	A −→ P	B .

The key observation here is that the left-hand side adjunction

Σf a Pf

of the hyperdoctrine p ensures that P⊕ determines a bifibration
with basis the category B, while the right-hand side adjunction

Pf a Πf

ensures that P	 determines a bifibration with basis the opposite
category B op. In the case of the subset hyperdoctrine on B =
Set, one obtains in this way two (pseudo) functors

P⊕ : Set op −→ Cat P	 : Set −→ Cat

which provide an alternative and equivalent formulation of the
original subset hyperdoctrine P on the category Set. In particular,
P⊕ and P	 determine a pair of bifibrations

p⊕ : SubSet⊕ → Set p	 : SubSet	 → Set op

where the categories SubSet⊕ and SubSet	 have the same
objects defined as pairs (A,R) consisting of a set A and of a
subset R ⊆ A, while the morphisms

f : (A,R) −→ (B,S)

are defined as the functions f : A→ B satisfying the property

∀a ∈ A, Ra ⇒ S(fa)

in the case of SubSet⊕ and as the functions f : B → A satisfying
the property

∀b ∈ B, R(fb) ⇒ Sb

in the case of SubSet	. Note the change of orientation in the def-
inition of the morphisms of SubSet⊕ and of SubSet	. As ex-
pected, the functors p⊕ and p	 transport every such morphism f :
(A,R) → (B,S) to the underlying morphism f : A → B in the
category Set for the functor p⊕ and in the category Set op for the
functor p	.

Putting everything back together. A quite extraordinary and in-
structive phenomenon appears at this point: the two bifibrations p⊕

and p	 and thus the hyperdoctrine P on Set may be recovered
from the bifibration p : Rel• → Rel and the two embedding
functors:

emb⊕ : Set→ Rel emb	 : Set op → Rel.

The reason is that, for every function f : A → B, the following
equations hold:

∃f⊕ R = { b ∈ B | ∃a ∈ A, f⊕(a, b) ∧Ra }
∀f	 R = { b ∈ B | ∀a ∈ A, f	(a, b)⇒ Ra }

for all R ⊆ A. From this follows that

Σf = ∃f⊕ Πf = ∀f	
By uniqueness of a left or of a right adjoint, these two equations
together with (2) and (3) imply the series of equalities:

∀f⊕ = Pf = ∃f	 .
The resulting picture reconciles (1) and (2) since the original series
of adjunctions of a hyperdoctrine (2) is replaced by a pair of
adjunctions

∃f⊕ a ∀f⊕ = ∃f	 a ∀f	

living in two different bifibrations p⊕ and p	, together with an
equality between the two functors ∀f⊕ and ∃f	 . An interesting
outcome of our decomposition of the subset hyperdoctrine P over
Set is that the existential quantification is entirely handled by the
bifibration p⊕ while the universal quantification is entirely handled
by the bifibration p	. The decomposition reveals moreover that
the substitution functor Pf of the subset hyperdoctrine is not
primitive, since it is the “superposition” of the two equal functors
∀f⊕ and ∃f	 .

Formally speaking, recall that every bifibration p : E → B may
be “pulled back” along a functor F : C → B in order to define a
bifibration q : F → C on the category C :

F //

q

��
pullback

E

p

��
C

F // B

whose fibre functor Q is simply obtained by precomposing the
fibre functor P of the bifibration p with the functor F op:

Q = P ◦ F op : C op F op

−→ B op −→ Cat.

In other words, the category of predicates QA associated to an
object A of the category C coincides with the category of predi-
cates PFA of its image by the functor F . In the discussion above,
we have just established that

Theorem 1.2. The two bifibrations

p⊕ : SubSet⊕ −→ Set p	 : SubSet	 −→ Set op

are equal to the bifibration

p : Rel• −→ Rel

pulled back along the embedding functors emb⊕ : Set → Rel
and emb	 : Set op → Rel.

This means that there exists a pair of pullback diagrams

SubSet⊕ //

p⊕

��
pullback

Rel•

pullbackp

��

SubSet	oo

p	

��
Set

emb⊕ // Rel Set op
emb	oo



which enable us to derive the two bifibrations p⊕ and p	 and
thus the subset hyperdoctrine P on the category Set of sets and
functions, from the subset bifibration p on the category Rel of sets
and relations.

A monoidal closed refinement system. Now that we have given
theoretical precedence to the subset bifibration p : Rel• → Rel
over the hyperdoctrine P on Set, there remains to study the prop-
erties of this bifibration p more closely. In our work on refinement
systems, we have advocated the fundamental role played by the in-
teraction between the adjunctions of a monoidal closed refinement
system which would be a bifibration at the same time:

R⊗− a R( − pushf a pullf

where R is a refinement and f : A → B a morphism of the basis
category. Recall that by “(symmetric) monoidal closed refinement
system”, we simply mean a functor p : E → B where the
categories E and B are (symmetric) monoidal closed and where
the functor p preserves the (symmetric) monoidal closed structure
of E up to coherent isomorphisms. A primary observation is that

Theorem 1.3. The refinement system p : Rel• −→ Rel is
symmetric monoidal closed with tensor product and implication of
the category Rel• defined as

(A,R)⊗ (B,S)
def
= (A×B,R⊗ S)

(A,R) ( (B,S)
def
= (A×B,R ( S)

where the subsets R⊗ S and R( S of A×B are defined as

R⊗ S = { (a, b) ∈ A×B | Ra ∧ Sb }
R( S = { (a, b) ∈ A×B | Ra⇒ Sb }

Note that the implication (A,R) ( (B,S) in Rel• is transported
by the functor p to the set A⊗B = A×B which plays the role of
internal hom A ( B in the compact closed category (Rel,×, 1).
It is very instructive to study how the adjunctions

R⊗− a R( − ∃M a ∀M
coming from the bifibrational and monoidal closed structure of p
interact, for R = (A,R) an object of Rel• and M a morphism
of Rel. For instance, one has the equality

∃M⊗N (R⊗ S) = ∃MR⊗ ∃NS (5)

for all subsets R ⊆ A and S ⊆ B and relations M : A 9 C,
N : B 9 D. On the other hand, the canonical inclusion

∀MR⊗ ∀NS ⊆ ∀M⊗N (R⊗ S) (6)

is not an equality in general, for subsets R ⊆ C and S ⊆ D and
relationsM : A9 C,N : B 9 D. Consider for instance the case
where C = D = 1, where the two subsets

∀MR⊗ ∀NS = { (a, b) | (Ma⇒ R) ∧ (Nb⇒ S) }
∀M⊗N (R⊗ S) = { (a, b) | (Ma ∧Nb) ⇒ (R ∧ S) }

are not equal for general subsets M ⊆ A, N ⊆ B and R,S ⊆ 1.

Monoidal closed categories as chiralities. The observation that
Rel• is a symmetric monoidal closed category leads us to the idea
of reformulating it as a “symmetric monoidal closed chirality” in
the sense of [14]. Recall that:

Definition 1.4. A symmetric monoidal closed chirality (A ,B) is
a pair of symmetric monoidal categories

(A ,7, true) (B,6, false)

equipped with a symmetric monoidal equivalence

(A ,7, true)
(−)∗ //
∗(−)

oo (B,6, false) op(0,1)

where the exponent op(0, 1) means that the orientation of the tensor
product 6 (of dimension 0) and of the morphisms (of dimension 1)
have been reversed ; together with two (pseudo)actions

6 : B ×A −→ A
7 : A ×B −→ B

together with two natural bijections:

A (m 7 a1 , a2 ) ∼= A ( a1 , m
∗ 6 a2 )

B ( ∗n 7 b1 , b2 ) ∼= B ( b1 , n 6 b2 )

for m,a1, a2 ∈ A and n, b1, b2 ∈ B, satisfying moreover two
coherence diagram, see [14] for details.

Every symmetric monoidal closed category (C ,⊗, I) may be
equivalently formulated as the symmetric monoidal closed chirality
defined by the pair of opposite categories:

(A ,7, true) = (C ,⊗, I) (B,6, false) = (C ,⊗, I) op(0,1).

The advantage of this formulation is that the intuitionistic impli-
cation of the monoidal closed category A = C may be “decom-
posed” in just the same way as in classical logic or in linear logic:

a1 ( a2 := a∗1 6 a2 (7)

where the operation (−)∗ implements an involutive negation, and
where the notation 6 reflects the fact that the tensor product of B
should be understood as a disjunction.

Bifibrations as chiralities. One main contribution of the paper
is to observe that the notion of “chirality” may be very elegantly
adapted to the notion of bifibration.

Definition 1.5. A bifibration chirality (p, q) is a pair of opfibra-
tions p and q

p : E → B q : F → C

together with a pair of equivalences

E
(−)∗ //
∗(−)

oo F op B
(−)∗ //
∗(−)

oo C op

inducing an equivalence of refinement systems:

E

p

��

(−)∗ // F op

∗(−)

oo

q op

��
B

(−)∗ // C op

∗(−)

oo

In a bifibration chirality (p, q), the opfibration p is automatically a
fibration, where the pullback pullf can be computed as

pullfS ≡
∗(pushf∗S

∗) (8)

Equation (8) follows from the fact that the pushforward pushf∗
in the opfibration q is a pullback in the fibration q op, and that
equivalences of refinement systems preserve pullbacks. We can
also derive it more explicitly in proof-theoretic style, from the
invertible inferences

R =⇒
g;f

S

S∗ =⇒
f∗;g∗

R∗

pushf∗S
∗ =⇒

g∗
R∗

R =⇒
g

∗(pushf∗S
∗)



The subset bifibration p : Rel• → Rel can be formulated as
a bifibration chirality (p, q) as follows. Define Rel◦ to be the
category whose objects are subsets R ⊆ A, S ⊆ B and whose
morphisms R→ S are binary relations M : A9 B satisfying the
property

∀(a, b) ∈ A×B, M(a, b) ∧ Sb ⇒ Ra.

The category Rel◦ comes equipped with an evident forgetful func-
tor q : Rel◦ → Rel which defines an opfibration. We obtain in
this way the bifibration chirality:

Rel•

p

��

(−)∗ // Rel op◦
∗(−)

oo

q op

��
Rel

(−)∗ // Rel op
∗(−)

oo

where the functor (−)∗ transports a set A and a subset R ⊆ A
to themselves, and reverses a binary relation M : A 9 B in the
expected way:

M∗
def
= { (b, a) ∈ B ×A |M(a, b) } : B 9 A

and similarly for ∗(−). One obtains the equations

∀M S ≡ ∗( ∃M∗ S∗) (a)

∀M S ≡ ( ∃∗M ∗S )∗ (b)

where M : A 9 B in both equations and S @ B in p for
equation (a), while S @ B in q for equation (b). Note that the
universal quantifier ∀M of equation (a) is computed in p while the
universal quantifier ∀M of equation (b) is computed in q.

Not only that, the category Rel◦ defines together with Rel• a
symmetric monoidal chirality

A = (Rel•,7, true) B = (Rel◦,6, false).

Putting together the bifibration chirality (p, q) with the symmetric
monoidal closed chirality (A ,B), we may for instance rewrite
equation (5) as the following pair of dual equations:

∃MR 7 ∃NS ≡ ∃M7N (R7 S) (c)

∀MR 6 ∀NS ≡ ∀M6N (R6 S) (d)

where M : A 9 C, N : B 9 D and R @ A, S @ B in p for
equation (c) while M : C 9 A, N : D 9 B and R @ A, S @ B
in q for equation (d). This pair of dual formulas is fundamental: in
particular, it has the remarkable property of unifying equation (5)
with the other equation

( ∃MR ) ( ( ∀N S ) ≡ ∀M(N (R( S) (9)

valid in p : Rel• → Rel and more generally in any bifibration
p : E → B which is at the same time a symmetric monoidal closed
refinement system (see Prop 2.4 in [16]). To that purpose, one needs
to replace the tensor product 6 : q × q → q in formula (d) by
the action of q on p written (on purpose) with the same notation
6 : q× p→ p. Understood in this alternative way, the formula (d)
is not equivalent anymore to equation (5) but to equation (9) where
the refinement R( S and change-of-basis morphism M ( N

R( S @ A( B M ( N : C ( D 9 A( B

are decomposed in the same way as we did in (7) for the implication
formula, using the formalism of monoidal closed chiralities:

R∗ 6 S @ A∗ 6B M∗ 6N : C∗ 6D 9 A∗ 6B

where M : A9 C and N : D 9 B and R @ A in q, S @ B in p.
On the other hand, we have seen in (6) that we have two canonical
morphisms which are not invertible in general:

∀MR 7 ∀NS → ∀M7N (R7 S) (e)

∃M6N (R6 S) → ∃MR 6 ∃NS (f )

where M : C 9 A, N : D 9 B, R @ A, S @ B in p in
equation (e) and whereM : A9 C,N : B 9 D,R @ A, S @ B
in q in equation (f ). One main achievement of our approach is to
recover the dualities of linear logic in categorical situations such
as the subset hyperdoctrine on Set or the presheaf hyperdoctrine
on Cat, which are traditionally seen as intuitionistic. We will
see in particular (§5) that the formulas (a)–(f ) are bifibrational
generalisations of familiar distributivity laws of linear logic.

The identity predicate in the subset bifibration. As defined by
Lawvere, a hyperdoctrine is a pseudofunctor P : B op → Cat
from a cartesian closed category B whose fibers PA are them-
selves cartesian closed categories, and such that every substitution
functor Pf has a left adjoint Σf and a right adjoint Πf . Given such
a hyperdoctrine P : B op → Cat, Lawvere suggested to define
the identity predicate IA ∈ PA×A associated to an object A ∈ B
as the terminal object >A ∈PA existentially quantified along the
diagonal map ∆A : A→ A×A, as follows:

IA
def
= Σ∆A (>A )

In the case of the subset hyperdoctrine P, another construction of
the identity predicate is possible, starting this time from the subset
bifibration p : Rel• → Rel on sets and relations. Consider the
binary relation curry(idA) : 1 9 A×A obtained by currying the
identity relation idA : A 9 A, where 1 is the singleton set. Then,
define the identity predicate JA as the singleton subset 1 ∈ P1

existentially quantified along curry(idA):

JA
def
= ∃ curry(idA) ( 1 )

The identity predicates IA and JA coincide in the case of the subset
hyperdoctrine, but we will see (§3) that they differ in the case of the
presheaf hyperdoctrine, and that JA appears to be the appropriate
definition in that case.

Plan of the paper. After this long and detailed introduction, we
explain in §2 how to adapt smoothly all the results established
here for the subset hyperdoctrine on Set to the presheaf hyper-
doctrine on Cat. We then come back to the question of identity in
§3, explaining how the definition JA lifts naturally to the presheaf
hyperdoctrine and more generally to any monoidal closed bifibra-
tion. In §4 we introduce a string diagram notation for presheaves
(highly reminiscent of C. S. Peirce’s “existential graphs” for predi-
cate logic) which is derived from the decomposition of monoidal
closed bifibrations as monoidal closed bifibration chiralities. Fi-
nally, in §5 we explain in what sense the formulas (a)–(f ) extend to
bifibrations some familiar distributivity principles of linear logic.

Related works. The literature contains several different answers
to the question of what exactly it means to combine “linear logic
with bifibrations”. The approach that we develop here as well as in
prior work [15, 16] is to consider a functor which is both (symmet-
ric) monoidal closed and a bifibration, with these two structures
provided independently (but generating a rich interaction). The
same approach is taken in Hasegawa’s work [6] on logical pred-
icates for models of linear logic, as well as in Katsumata’s work
on logical predicates for computational effects [10]. Both build on
Hermida’s thesis [7] which considered a notion of “fibred-ccc”, al-
though a subtle difference with Hermida’s work is that the latter is
phrased in terms of fibred adjunctions [4], meaning that the func-
tors associated to the cartesian closed structure are explicitly re-



quired to preserve cartesian morphisms. That idea can also be seen
as the background for Birkedal, Møgelberg, and Petersen’s work on
linear Abadi-Plotkin logic [3], as well as Shulman’s definition [18]
of “monoidal bifibration” that asks for the tensor product operation
⊗ : E × E → E of the total category to preserve both carte-
sian and opcartesian morphisms. Our perspective is that when such
preservation properties hold, they should rather be seen as a con-
sequence of an underlying adjunction between refinement systems
[16, Prop. 2.4]. Most importantly, the requirement that the tensor
product operation preserves cartesian morphisms is violated for the
key models introduced in this paper, and in general we only have
the non-invertible principle (e).

2. The presheaf bifibration on distributors
In this section, we explain how to adapt to the presheaf hyperdoc-
trine P on Cat everything which was established in the introduc-
tion for the subset hyperdoctrine P on Set. The first step is to
replace the category Rel by the bicategory Dist (introduced by
Bénabou [1, 2]) whose objects are small categories A,B, 1-cells
M : A9 B are distributors defined as functors

M : B op ×A −→ Set

and 2-cells are natural transformations between distributors. The
identity 1-cell B 9 B is defined as the hom functor B op × B →
Set, which we denote idB , and the composition of two distributors
M : A9 B and N : B 9 C is defined using the coend formula

N ◦M = (c, a) 7→
∫ b∈B

N(c, b)×Set M(b, a)

The category Rel• is then replaced by the category Dist• whose
objects are the distributors R : 1 9 A, S : 1 9 B (i.e.,
contravariant presheaves), and whose morphisms R→ S are pairs
(M,α) consisting of a distributor M : A 9 B and of a natural
transformation α : M ◦R⇒ S, which may be depicted as

1

R

��

S

��
A

M
//

+3α

B

Similarly, the category Rel◦ is replaced by the category Dist◦
whose objects are the distributors R : A 9 1, S : B 9 1 (i.e.,
covariant presheaves), and whose morphisms R → S are pairs
(M,α) consisting of a distributor M : A 9 B together with a
natural transformation α : S ◦M ⇒ R, which may be depicted as

1

B

S

??
+3α

A

R

__

M
oo

Note that Dist• and Dist◦ are bicategories just like Dist, but
we prefer to consider them as categories for simplicity. The two
obvious functors

p : Dist• → Dist q : Dist◦ → Dist

are opfibrations, and they define together a bifibration chirality,

Dist•

p

��

(−)∗ // Dist op◦
∗(−)

oo

q op

��
Dist

(−)∗ // Dist op
∗(−)

oo

where the equivalence between Dist• and Dist op◦ transports every
small categoryA to its opposite categoryA∗ = A op, every distrib-
utor M : A 9 B to the opposite distributor M∗ : B op 9 A op

defined as the functor

M∗ = (a, b) 7→ M (b, a) : A op ×B −→ Set

and every contravariant presheaf R : 1 9 A to the covariant
presheaf R∗ : A op 9 1. The equivalence between the refinement
systems p and q op follows from the bijective correspondence of
2-cells in Dist:

1

R

��

S

��
A

M
//

+3

B

↔

1

A op

R∗
==
+3

B op

S∗
aa

M∗
oo

The induced bifibrational structure on Dist• → Dist may be
explicitly defined using coends and ends, as categorical analogues
of the corresponding formulas for Rel• → Rel:

∃M R = b 7→
∫ a∈A

M(b, a)×Set R(a)

∀M S = a 7→
∫
b∈B

M(b, a)→Set S(b)

(10)

The following property is fundamental:

Theorem 2.1. The refinement system p : Dist• −→ Dist is
symmetric monoidal closed with tensor product and implication of
the category Dist• defined as

R⊗ S = (a, b) 7→ Ra×Set Sb : 1 9 A×B
R( S = (a, b) 7→ Ra→Set Sb : 1 9 A op ×B (11)

where R : 1 9 A and S : 1 9 B are contravariant presheaves.

Note that the implication R ( S in Dist• is transported by p
to the implication A ( B defined as A op × B in the compact
closed bicategory Dist. From this follows that the category Dist◦
together with the category Dist• defines a symmetric monoidal
closed chirality

A = (Dist•,7, true) B = (Dist◦,6, false)

which thus satisfies formulas (a)–(f ) stated in the introduction.
Now, let us recall that in Lawvere’s presheaf hyperdoctrine

PA = [A op,Set]

the substitution operation

PF : [B op,Set] −→ [A op,Set]

along a functor F : A→ B is defined by precomposition

PFS = a 7→ S(Fa)

while the quantifiers

ΣF ,ΠF : [A op,Set] −→ [B op,Set]

may be defined as coends/ends:

ΣF R = b 7→
∫ a∈A

homB(b, Fa)×Set R(a)

ΠF R = b 7→
∫
a∈A

homB(Fa, b)→Set R(a)

In essentially the same way as we saw earlier for the subset hyper-
doctrine over sets, the presheaf hyperdoctrine can be decomposed
into a pair of bifibrations

p⊕ : Psh⊕ → Cat p	 : Psh	 → Cat op

where:



• Psh⊕ has as objects pairs (A,R) consisting of a category A
together with contravariant presheaf R : A op → Set, and
morphisms (F, α) : (A,R) → (B,S) consisting of a pair of
a functor F : A → B together with a natural transformation
α : R⇒ S ◦ F op;
• Psh	 has as objects pairs (A,R) consisting of a category
A together with a covariant presheaf R : A → Set, and
morphisms (F, α) : (A,R) → (B,S) consisting of a pair of
a functor F : B → A together with a natural transformation
R ◦ F ⇒ S;
• p⊕ and p	 are the evident projections.

Moreover, there are a pair of embedding functors

emb⊕ : Cat→ Dist emb	 : Cat op → Dist

acting as the identity on objects and sending a functor F : A→ B
to the respective distributors

F⊕ = (b, a) 7→ homB(b, Fa) : A9 B
F	 = (a, b) 7→ homB(Fa, b) : B 9 A

with the property that

Theorem 2.2. The bifibrations p⊕ : Psh⊕ → Cat and p	 :
Psh	 → Cat op are pullbacks of p : Dist• → Dist along the
functors emb⊕ and emb	, respectively.

Once again, this theorem implies that the triple adjunction

ΣF a PF a ΠF

of the presheaf hyperdoctrine may be reduced to a pair of adjunc-
tions

∃F⊕ a ∀F⊕ = ∃F	 a ∀F	
of the bifibration p : Dist• → Dist.

The other important logical ingredient in Lawvere’s original
definition of a hyperdoctrine is the cartesian closed structure of
each category of predicates PA. Here we note that the well-known
ccc structure on presheaf categories may be further decomposed
using the monoidal closed structure of the presheaf bifibration on
distributors, beginning with the following elementary observation
(recalled from [15, 16]):

Proposition 2.3. If E → B is a monoidal closed refinement system
which is also a bifibration, then every monoid

(A,m : A⊗A→ A, e : 1→ A) ∈ B

in the basis determines a monoidal closed structure on the fiber EA,
where the tensor and implication are defined for all R,S @ A by

R⊗A S
def
= pushm(R⊗ S)

R(A S
def
= pullcurry(m)(R( S)

and the tensor unit is defined by 1A
def
= pushe1.

Every category is a comonoid (A,∆A : A→ A×A, !A : A→ 1)
in Cat, and is hence transported by the functor emb	 to a monoid:

(A,∆	A : A×A9 A, !	A : 1 9 A) ∈ Dist

The fiber ofA in p : Dist• → Dist is thus automatically endowed
with a monoidal closed structure by Prop. 2.3,

R ∧ S def
= ∃

∆	
A

(R⊗ S) = ∀
∆⊕

A
(R⊗ S) > def

= ∃
!	
A

1 = ∀
!⊕
A

1

R ⊃ S def
= ∀

curry(∆	
A

)
(R( S)

and it is straightforward to verify using equations (10) and (11) that
this monoidal closed structure (∧A,>A,⊃A) is isomorphic to the
usual ccc structure on the presheaf category [A op,Set].

3. The problem of identity
We now turn to Lawvere’s abstract definition of the identity pred-
icate IA

def
= Σ∆A (>A ) in an arbitrary hyperdoctrine [12]. In the

presheaf hyperdoctrine this definition yields

IA = (a1, a2) 7→
∫ a∈A

homA(a1, a)×Set homA(a2, a)

which does not seem to give an appropriate notion of identity (any
pair of objects are “equated” so long as they can be completed to a
cospan), even in the case when the category A is a groupoid. Law-
vere remarked that a more natural choice of generalized “identity
predicate” on a category A within the presheaf hyperdoctrine is the
functor homA : A op × A → Set. Our first observation is that
this version of the identity predicate may be easily defined as a
pushforward in the symmetric monoidal closed refinement system
p : Dist• → Dist by

JA = 〈idA〉
def
= ∃curry(idA) ( 1 )

and that more generally we can recover the presheaf associated to
a distributor M : A9 B by the formula

〈M〉 @ A op ×B

〈M〉 def
= ∃curry(M) ( 1 )

Indeed, this abstract recipe allows us to define the “graph” of a
morphism f : A → B in a monoidal closed category B with
respect to any monoidal closed bifibration p : E → B

〈f〉 @ A( B

〈f〉 def
= pushcurry(f) I

where I is the monoidal unit of E . We then have

Theorem 3.1. Let p : E → B be a monoidal closed refinement
system which is also a bifibration, and suppose given refinements
R @ A and S @ B in E and a morphism f : A → B in B. Then
there are isomorphisms

pushfR ≡ pusheval(R⊗ 〈f〉) (12)

pullfS ≡ pulldni(S (〈f〉) (13)

where eval : A⊗ (A( B) −→ B is the left evaluation map, and
where dni : A −→ B ((A( B) is the right currying of eval.

Proof. Both formulas follow easily from distributivity properties
discussed in the introduction together with the axioms of monoidal
closed categories:

pusheval(R⊗ 〈f〉) ≡ pushevalpush(idA⊗curry(f))(R⊗ I)

≡ pusheval◦(idA⊗curry(f))R

≡ pushfR

pulldni(S (〈f〉) ≡ pulldnipullidB (curry(f)(S (I)

≡ pulldni;(idB (curry(f))S

≡ pullfS

Equation (12) may be compared with Lawvere’s equation [12, p.8]

ΣfR ≡ Σπ2(Pπ1R ∧ If )

where π1 : A × B → A and π2 : A × B → B are the projection
maps and where the graph If ∈ PA×B is defined by substitution
along f × idB into IB . Lawvere proved that this equation holds
for any hyperdoctrine satisfying Frobenius Reciprocity and a Beck-
Chevalley condition, but he also explicitly observed that those
conditions are violated by the presheaf hyperdoctrine.

On the other hand, equation (13) may be thought of as an ab-
stract generalization of Yoneda’s lemma. Indeed, one can consider



the formula in the bifibration p⊕ : Psh⊕ → Cat, which is also a
cartesian closed refinement system [15]. Taking f = a : 1→ A to
be an object of the category A, the two sides of (13) expand to

S(a) =

∫
a′∈A

homA(a′, a)→Set S(a′)

which is the precise statement of the Yoneda lemma.

4. A Peircean notation for presheaves as
generalized predicates

The prolific American logician Charles Sanders Peirce developed
during the late 19th and early 20th centuries a system for represent-
ing logical deductions as certain topological surgeries on diagrams
he called “existential graphs”.1 A key element of Peirce’s graphical
calculus was the idea of identifying the subject of two predicates
by joining them with an arc. For example, the diagram

black bird

expresses that there is something which is both black and a bird
(such as a crow). A second key element of existential graphs was
the use of an enclosing curve (which Peirce called a “cut” or “sep”)
to negate a proposition. Thus the diagram

man mortal

expresses that there does not exist a man who is not mortal, i.e.,
that every man is mortal. Similarly, the diagram

woman

daughter
bird

loves

expresses that there is some particular bird that every woman’s
daughter loves (the most popular bird at the park).

Geraldine Brady and Todd Trimble gave a categorical interpre-
tation of existential graphs [5] within Joyal and Street’s framework
of string diagrams for monoidal categories [9]. Their analysis be-
gan with a categorical axiomatization of classical first-order logic
in terms of Boolean hyperdoctrines, that is, hyperdoctrines with
Boolean algebra fibers and satisfying the Beck-Chevalley condi-
tion. They then went on to describe how to interpret the predicates
of any such hyperdoctrine as 1-cells in an appropriate compact
closed bicategory of Boolean-valued relations.

In this part of the paper we reveal a surprising development of
Brady and Trimble’s work, by explaining how the logical structure
of the refinement system p : Dist• → Dist in combination
with its chiral opposite q : Dist◦ → Dist leads in a relatively
straightforward way to a string diagram calculus for presheaves
that is remarkably reminiscent of Peirce’s existential graphs – this
despite the fact that our “predicates” and “relations” are by no
means Boolean-valued!

We will assume that the reader already has some familiarity
with string diagrams for monoidal categories in general, and with
the standard conventions for compact closed categories (otherwise,
the reader is encouraged to read [17] for a quick introduction). For

1 To witness existential graphs in Peirce’s own words and drawings, see
for example his “Prolegomena to an Apology for Pragmaticism”, published
in The Monist, Vol. 16, No. 4 (October 1906), pp. 492–546, and freely
available at http://www.jstor.org/stable/27899680.

example, following those conventions, the diagram

A

B

E

C

D

NM

L

represents the distributor L◦ (M ⊗N∗) : A×D op 9 E obtained
by composing distributors M : A 9 B, N : C 9 D, and
L : B × C op 9 E in the indicated way. Observe that here we
read the diagram from top-to-bottom and left-to-right, while we
place labels indicating the underlying categories to the left-hand
side of each oriented wire. More abstractly, in topological terms
these conventions can be said to rely on the assumption that the
surface in which the diagram of the distributor is embedded (in this
case, the page) is equipped with an orientation.

To represent a contravariant presheafR : A op → Set seen as a
refinement R @ A in p : Dist• → Dist, we lay it out just as one
would an ordinary distributor R : 1 9 A, but framed by a light
blue background to indicate that we view it as an object of Dist•.
Therefore, the operations of taking the tensor product of presheaves
or the pushforward along a distributor,

R @ A S @ B
R⊗ S @ A×B

R @ A M : A9 B
∃MR @ B

which can be defined respectively in terms of horizontal and verti-
cal composition of 1-cells in Dist, are displayed like so:

BA

SR A

B

R

M

Let us note here that there is a topological interpretation of the
refinement relation, in the sense that a diagram embedded in a
surface refines its boundary. As for implication between presheaves
or the pullback along a distributor,

R @ A S @ B
R( S @ A op ×B

M : A9 B S @ B
∀MS @ A

we base our conventions on the equations

R( S ≡ ∗(S∗ 7R) ∀MS ≡ ∗(∃M∗S∗)
and draw the following diagrams:

B

B

A B

A

SR
B

A

B

A

M∗

S

Here the dualization operation (−)∗ : Dist• → Dist
op(0,1)
◦ and

its inverse ∗(−) : Dist
op(0,1)
◦ → Dist• are being represented as

“functorial boxes” [13], which take the mirror image of the bound-
ary wires across the box from a blue region to a red region and vice
versa, while the action ? : Dist◦×Dist• → Dist◦ is represented
by gluing a blue diagram inside a dark red region. One subtlety is

http://www.jstor.org/stable/27899680


that since the dualization operations reverse the orientation of the
tensor product, we must therefore read horizontal juxtaposition in
the red region (corresponding to the action ?) running right-to-left
rather than left-to-right. Also, it is worth noting that these conven-
tions ensure that inside any red region there is always exactly one
boxed (i.e., negated) blue region, which can be seen as a sort of
intuitionistic restriction on Peirce’s system.

We next deduce some equations on the diagrams that are im-
plied by the axioms of a monoidal closed bifibration chirality.
Equations between purely positive formulas such as

∃N∃MR ≡ ∃N◦MR and ∃M⊗N (R⊗ S) ≡ ∃MR⊗ ∃NS
are geometrically manifest using these conventions, just as the
axioms of monoidal categories are geometrically manifest using
ordinary string diagrams. On the other hand, since dualization is an
involutive operation, it is also always possible to add or remove an
annulus around the diagram of a contravariant or covariant presheaf
without changing its meaning:

R
= R

S =
S

(14)

Seen in this way, the important distributivity law

∃MR( ∀NS ≡ ∀M(N (R( S)

simply removes an annulus, pushes one component (M ) outside the
blue region, and places the annulus back in another location:

S

N∗

R

M
=

S

N∗

R

M

(15)

Finally, the two formulas (12) and (13) derived for the identity pred-
icates defined in §3 have the following geometric interpretation:

R

M
=

MR

(16)

M∗

S

=

S M

(17)

Besides capturing isomorphism, one can also express natural trans-
formations between presheaves as certain diagrammatic moves or
“surgeries”. The unit and counit of the two families of adjunctions

R⊗− a R( − ∃M a ∀M

yield directed versions of rule (14),

S
→

R SR

SRR

→
S

(18)

R
→

M∗

M

R

M

M∗

S

→
S

(19)

where rule (18) reduces to (14) in the case that R = 1, and (19) to
(14) in the case that M = id.

5. Comparison with linear logic
One main benefit of our approach based on chiralities is that it en-
ables us to recover the dualities of classical logic in categorical
situations like the subset hyperdoctrine P on Set, or the presheaf
hyperdoctrine P on Cat, which are traditionally seen as intuition-
istic. We thus find instructive to explain in what sense the six prin-
ciples (a)–(f ) asserted for the monoidal closed bifibration chirality

(p, q) : (Dist•,Dist◦)→ (Dist,Dist)

generalise well-known principles of linear logic. To that pur-
pose, we consider a ∗-autonomous category V with finite prod-
ucts and coproducts and we construct two categories Mat⊕(V )
and Mat	(V ) whose objects A,B are the finite sets seen as dis-
crete categories ; and whose morphismsM : A9 B are V -valued
matrices defined as functors M : B × A → V . Composition of
M : A9 B and N : B 9 C in Mat⊕(V ) is defined as

N ◦M = (c, a) 7→
⊕
b∈B

N(c, b)⊗M(b, a).



whereas composition of M : A 9 B and N : B 9 C in
Mat	(V ) is defined as

N �M = (c, a) 7→
¯
b∈B

N(c, b) `M(b, a).

Mat•(V ) is the category whose objects are the V -valued matrices
R : 1 9 A, S : 1 9 B, which may be alternatively seen as
families {Ra | a ∈ A } or {Sb | b ∈ B } of objects of V ; and
whose morphisms R → S are the pairs (M,α) consisting of a
matrix M : A 9 B and of a natural transformation α : M ◦R⇒
S, which may be alternatively seen as a family of morphisms living
in the category V

αa,b : M(b, a)⊗Ra −→ Sb

indexed by the pairs (a, b) ∈ A × B. Similarly, Mat◦(V ) is the
category whose objects are matrices R : A 9 1, S : B 9 1 ;
and whose morphisms R → S are the pairs (M,α) consisting
of a matrix M : A 9 B together with a natural transformation
α : R ⇒ S �M , which may be alternatively seen as families of
morphisms living in the category V

αa,b : Ra −→ Sb `M(b, a)

indexed by the pairs (a, b) ∈ A × B. The forgetful functors
p : Mat•(V ) → Mat⊕(V ) and q : Mat◦(V ) → Mat	(V )
define a bifibration chirality

Mat•(V )

p

��

(−)∗ //Mat◦(V ) op
∗(−)

oo

q op

��
Mat⊕(V )

(−)∗ //Mat	(V ) op
∗(−)

oo

where a finite set A in Mat•(V ) is transported by (−)∗ to itself:
A∗ = A ; where a morphismM : A9 B of Mat⊕ is transported
to the morphism M∗ : B → A in Mat	 obtained by flipping the
inputs A and B and by applying pointwise negation in V :

M∗ = (a, b) 7→ (M(b, a))∗

and where the objectR∗ : A9 1 in Mat◦ is defined by pointwise
negation in V :

R∗ = a 7→ (Ra)∗

The fact that (p, q) define a bifibration chirality follows from the
existence of the natural bijection

V (M(b, a)⊗Ra, Sb) ∼= V (S∗b , R
∗
a `M∗(a, b))

in the ∗-autonomous category V . Given a V -valued matrix M :
A 9 B, the existential quantification of R : 1 9 A along M and
the universal quantification of R : 1 9 B along M : A 9 B in
the bifibration p are given by the formulas

∃M R = b 7→
⊕
a∈A

M(b, a)⊗Ra

∀M S = a 7→
¯
b∈B

M∗(a, b) ` Sb

The bifibration chirality (p, q) is also monoidal closed, with con-
junction and disjunction defined pointwise:

R7 S = (a, b) 7→ Ra ⊗ Sb @ A×B
R6 S = (a, b) 7→ Ra ` Sb @ A×B

where R @ A and S @ B. In this specific monoidal closed bifi-
bration chirality (p, q), the formulas (a)–(f ) enable us to recover
familiar principles of linear logic:

&b∈B(Sb `M(b, a))
(a, b) ≡ ( ⊕b∈BM∗(a, b)⊗ S∗b )∗(

⊕a∈AM(c, a)⊗Ra
)
⊗
(
⊕b∈B N(d, b)⊗ Sb

)
(c) ≡ ⊕(a,b)∈A×B

(
M(c, a)⊗N(d, b)⊗Ra⊗ Sb

)
(

&a∈A Ra `M(a, c)
)` (&b∈B Sb `N(b, d)

)
(d) ≡ &(a,b)∈A×B

(
Ra ` Sb `M(a, c) `N(b, d)

)
(

&a∈A Rc `M(c, a)
)
⊗
(

&b∈B Sd `N(d, b)
)

(e) → &(a,b)∈A×B
((
Ra ⊗ Sb

)`N(d, b) `M(c, a)
)

⊕(a,b)∈A×B
(
N(d, b)⊗M(c, a)⊗ (Rc ` Sd)

)
(f) →

(
⊕a∈AM(c, a)⊗Ra

)` (⊕b∈B N(d, b)⊗ Sb
)
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