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A functor p : D — € between two categories is a bifibration when, roughly speaking, objects of D may

be pushed and pulled along arrows of €. Formally, for any arrow f : A — B in € and any object S in D
such that p(S) = A, there should be an object f, S and an arrow fs : S — f, S of D such that p(fs) = f,
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which are universal in the sense that for any arrow ¢ : B — C in € and arrow « : S — T in D such that
p(a) = fg, there is a unique arrow 3 : fx S — T such that a = fgp.
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Dually, for any arrow g : B — C'in € and object T in D such that p(T') = C, there should be an object g* T
and an arrow gr : ¢* T — T of D such that p(gr) = ¢,
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again universal in the sense that for any arrow f : A — B in C and arrow « : S — T in D such that
p(a) = fg, there is a unique arrow 3 : S — ¢* T such that a = 8gr.
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An immediate consequence of the definition is that if p : D — € is a bifibration then the operations of
pushing or pulling along an arrow f : A — B of C extend to a pair of adjoint functors
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where D 4 and Dpg are the fiber categories of A and B relative to the functor p, defined as the subcategories
of D spanned by the arrows living over the identities id4 and idg in €, and indeed any bifibration over € may
be equivalently described by a pseudofunctor € — Adj into the category of small categories and adjunctions.



The categorical notion of bifibration was originally introduced by Grothendieck, together with the weaker
notion of fibration where one only has the ability to pull objects of the category above along arrows of the
category below. One reason for the special interest of bifibrations from the perspective of logic and computer
science is that the operations of pushing forward or pulling back along an arrow may be seen as generalizations
of existential and universal quantification (cf. [MZ16]), and hence by alternating these operations one can in
some sense define objects of arbitrary quantifier complexity. The pushforward and pullback operations may
also be seen as generalizations of strongest postconditions and weakest preconditions in specification logics.

Although most functors are not bifibrations, any functor p : D — € generates a free bifibration, in the
sense that there is a bifibration p : BFib(p) — € and a functor 1, : D — BFib(p) such that p = pon,.
Moreover, the free bifibration is universal in the sense that if ¢ : € — € is any bifibration equipped with
a functor  : D — & such that p = ¢ o @, then there is an essentially unique morphism of bifibrations
6 BFib(p) — € such that 6 = 6o 7p. Whereas the free fibration over a functor has a well-known and very
simple concrete description, the free bifibration has been relatively little studied, and describing it explicitly
is far more subtle. The problem of building the free bifibration over a functor p : D — C is closely related
to the problem, studied by Dawson, Paré, and Pronk [DPP03a, DPP03b], of extending € to a 2-category
II,€ by freely adjoining right adjoints (cf. [SS86]). However, as far as we are aware there is only one direct
construction of the free bifibration over a functor in the literature, by Lamarche [Lam10, Lam14],

In our work, we have developed a number of alternative descriptions of the free bifibration over an
arbitrary functor p : D — €. One description is proof-theoretic, viewing the objects of BFib(p) as formulas
in a primitive logic containing unary connectives f, and f* for every morphism f of C, with the objects of
D serving as atomic formulas. The morphisms of BFib(p) are then defined as equivalence classes of proofs
in a simple cut-free sequent calculus containing only four logical rules
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where proofs are considered modulo four permutation relations, including the relations
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as well as their symmetric versions with pushforward and pullback swapped. The cut rule is admissible,
thereby defining composition of morphisms in BFib(p). This sequent calculus is closely related to an alter-
native description of the free bifibration using double category theory. The double category of zigzags ZC
has objects and horizontal arrows given by the objects and arrows of C, vertical arrows given by zigzags (=
signed sequences of arrows) in C, and double cells of zigzag morphisms generated by vertical pastings of the
four generating cells below (ignore the colored arcs for now)

modulo four permutation relations. Composition of zigzag morphisms can be defined inductively by analysis
of the intermediate zigzag, thereby defining horizontal composition for the double category. The connection
with bifibrations is that ZC€ is the free bifibration over the identity functor ide : € — €, while conversely,
any free bifibration may be reconstructed by pulling back the source functor src : Z€ — € of the double
category along an arbitrary functor p : D — €. Finally, zigzag morphisms in ZC also have a natural graphical



interpretation (at least in the case where C is a free category) as certain planar arc diagrams considered up
to isotopy (see colored arcs above).

A challenge in understanding free bifibrations is getting a handle on the equivalence classes of zigzag
morphisms induced by the permutation relations. Indeed, by a reduction of [DPP03b], this equivalence re-
lation is in general undecidable! One way we have attacked the problem is via the proof-theoretic technique
of focusing, developing a (for now conjectured) canonical form whereby permutation equivalence classes of
derivations in the above sequent calculus are represented by focused derivations modulo a more elementary
notion of “observational” equivalence. In many cases (namely when € is factorization preordered) the obser-
vational equivalence relation on focused derivations is just equality, although in general it is undecidable.

Another way we have attacked the problem is by considering examples, and here is where it appears that
free bifibrations give rise to a number of categories of great combinatorial interest. A basic example is the
free bifibration over the functor p = (¥ — 0) : 1 — 2 sending the unique object of 1 to the initial object of
the walking arrow category 2 = 0 — 1. In this case, objects in the fiber over 0 are isomorphic to even-length
sequences of alternating pushes and pulls f* f, --- f* fix 0 along the unique arrow f : 0 — 1, while objects
in the fiber over 1 correspond to odd-length sequences fy f* fs -+ f* f+ 0. When we consider morphisms,
it turns out that the fiber category BFib(p)g is equivalent to the (augmented) simplex category A of finite
ordinals and order-preserving maps, under an interpretation reading the length 2n sequence f* fy--- f* f4 0
as the ordinal n = {0 <1 < --- < n —1}. Similarly, the fiber BFib(p); is equivalent to the category A
of finite non-empty ordinals and order-and-least-element-preserving maps. In particular, from the sequent
calculus for free bifibrations we can easily derive the well-known formula (”+2_1) for the number of maps
m — n in A. It is also worth mentioning that in this case the total category of the free bifibration is
equivalent BFib(p) =~ Y to the category of schedules T introduced by Harmer, Hyland, and Mellies [HHMO07]
in their study of the categorical combinatorics of game semantics.

An even richer structure emerges considering the free bifibration over the functor p = (* — 0) : 1 > N
sending the unique object of 1 to the initial object of the natural numbers considered as a posetal category
under the natural order. In this case, objects in the fiber of 0 are isomorphic to sequences of rising and falling
steps in N that start at 0 and end at 0. In other words, they correspond to Dyck paths! By the standard
bijection between Dyck paths and rooted planar trees, the fiber BFib(p)o may therefore be interpreted as a
category of trees, giving rise to an interesting notion of morphism of planar trees. Indeed, it turns out that
BFib(p)o is equivalent to a category of finite rooted planar trees that was defined in an entirely different
manner by Joyal [Joy97] and Batanin [Bat98], namely as the full subcategory of the functor category [N°P, A]
consisting of those functors T' : N°® — A such that T'(0) = 1 and such that T'(h) = 0 for some h. Under
the Joyal-Batanin representation of planar trees, the ordinal T'(n) counts the number of nodes of height n
from the root, while the monotone functions T'(n + 1) — T'(n) map the nodes of height n + 1 to their parent
nodes of height n (these functions are necessarily order-preserving by planarity). It turns out that natural
transformations between such functors are in one-to-one correspondence with equivalence classes of zigzag
morphisms between the corresponding Dyck paths. In particular, we can enumerate natural transformations
between trees by enumerating focused derivations in the sequent calculus for the free bifibration. Finally, it
appears that we get some interesting combinatorics by fixing a tree T" and considering the sequences

in[T),=#{a: T ->T||T|=n} out[T],=#{a: T >T ||T'|=n}

counting all of the morphisms into 7" or out of 7" and out of/into a tree of a given size.
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