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Objective of the talk(!)

We will revisit some classic & well-established category theory (coherence &
strictification for associativity)

Motivation We often ignore the structure of coherence & work in the “strict” setting

Simple Question Do we miss anything interesting, by doing so?

Our claim :

We can see categorical coherence as a concrete tool in a wide range of topics,

from combinatorics & number theory to algebra, cryptography, and computability.

Further, interpreting such topics via category theory allows us to make

non-trivial connections between them.
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The structure of the talk

1 Basic definitions & properties relating to coherence.

2 What they look like in the untyped (i.e. single-object, or monoid-theoretic case).

Coherence for associativity as pure algebra.

Why there is only one interesting case(!)

and where else we see it.

3 The unbiased setting (a tensor of every arity).

Coherence, strictification, reduction to the usual setting.

The untyped setting.

Why we should care ...

Throughout the talk ...

A series of conjectures / open questions / random ideas . . .
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The very basics

A (semi-monoidal) tensor on a category C is a monoidal tensor w.o. an explicit unit.

A functor b : C ˆ C Ñ C equipped with a (semi-monoidal) natural isomorphism

α : p b p b qq ñ pp b q b q

that satisfies “a notion of coherence”.

Very informally(!)

Any two ways of performing the same rebracketing are the same.

A necessary and sufficient condition is MacLane’s pentagon.

For all objects pX ,Y ,Z ,T q P ObpC ˆ C ˆ C ˆ Cq,
the components of the natural iso. α satisfy :

αXbY ,Z ,T αX ,Y ,ZbT “ pαX ,Y ,Z b IdT qαX ,Y bZ ,T pIdX b αY ,Z ,T q
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Why we don’t really care :)

A tensor b is strict when the natural isomorphism mediating associativity

α : p b p b qq ñ pp b q b q

is the identity, in which case all its components are identity arrows.

Informally, again ...

In the strict case, we do not need to consider bracketings.

Theorem (MacLane) Every category with a tensor is (semi-monoidally) equivalent to a
category with a strict tensor.

Practically

In day-to-day working, we ignore entirely questions of
1 bracketings
2 coherence isomorphisms
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A relevant quotation!

MONOIDAL CATEGORIES : A Unifying Concept
in Mathematics, Physics, and Computing (Noson Yanofsky 2023)

“The above theorem is subtle. Most people use this fact so as not
to worry that the tensor in their favorite category is not strictly associative.
The reasoning is that all ‘mathematically relevant’ properties are preserved
. . . hence, they might as well use the properties of the strict monoidal cate-
gory.

Peter Freyd describes what properties are preserved [by equivalences] in
the category of categories. We are asking about the 2-category of monoidal
categories. What is exactly true about a strict monoidal category and not true
about its equivalent [non-strict] monoidal category?

As far as I know, no one has worked out the details of this. It is
worthy of further study.

peter.hines@york.ac.uk 01232 457964 nihil sub sōle novum 6 / 60



Some low-hanging fruit

Let b be a tensor on a small category M.

We say that pM,bq untyped when it has precisely one object1.

Algebraically, M is a monoid, and the tensor

b : M ˆ M Ñ M

is a homomorphism.

Proposition :

The following are equivalent :
1 pM,bq is monoidal (rather than semi-monoidal).
2 M is the endomorphism monoid of a unit object.
3 b is strictly associative.

1The cardinality of ObpMq is certainly not preserved by equivalences of categories!
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An important special case:

Proposition:

p ‹ q : M ˆ M ãÑ M is strictly associative
ðñ

The unique object of M is the unit object.

Proof (ð) [Standard Theory ...]

By the Eckmann-Hilton argument on the interchange law, the endomorphism

monoid of a unit object is abelian, and the tensor and composition coincide.
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Is it because I is strict?

Proof (ñ) [Journal Homotopy & Related Structures PMH 2016]

Define an injective monoid endomorphism by :

η “ p1 ‹ ‹ 1q : M ãÑ M

Define a semi-monoidal tensor on its image ηpMq by, for all ηprq, ηpsq P ηpMq

ηprq d ηpsq “ 1 ‹ pr ‹ sq ‹ 1

By construction, pM, ‹q – pηpMq,dq.

Observe : the unique objects of both pM, ‹q and pηpMq,dq are pseudo-idempotent.

Reminder . . .

A pseudo-idempotent object of a semi-monoidal category is one satisfying U – U b U
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The final step

By definition, for all ηpf q P ηpMq,

1 d ηpf q “ 1 ‹ p1 ‹ f q ‹ 1
“ 1 ‹ 1 ‹ f ‹ 1
“ 1 ‹ f ‹ 1
“ ηpf q

Thus 1 d “ IdηpMq “ d 1.

The unique object of pηpMq,dq is a cancellative pseudo-idempotent!

Similarly, of course, for pM, ‹q.

Now recall A. Saavedra’s characterisation of unit objects as cancellative
pseudo-idempotents.

Catégories Tannakiennes A. Saavedra (1972)

Elementary Remarks on Units J. Kock (2008)

Coherence for Weak Units A. Joyal, J. Kock (2011)
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A “folklore” result

What we have in the non-strict case (e.g. Lambek & Scott’s C-monoids) :

Theorem :

Let ‹ : M ˆ M Ñ M be a tensor on a (non-abelian) monoid.

The canonical associativity isomorphisms for ‹ form a group,

isomorphic to Richard Thompson’s group F .

Proof ? Rediscovered many times! Known to R. Thompson et al. (1970s ?)

(Incomplete) historical account & outline proof (PMH 2023)

First fully explicit proof by P. Dehornoy
“The structure group for the associativity identity” (1996)

An explicit tensor on F given (purely algebraically) by K Brown
“The homology of Thompson’s F” (2004)
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The structure of F
Thompson’s F is defined by :

Elements (Equivalence classes of) pairs of binary trees pS,T q

where S and T have the same number of leaves.

The Equivalence The smallest equivalence relation satisfying :

pT ,Sq „ pV ,Uq if we can derive both
1 V from T
2 U from S

by “pasting some binary tree X onto the same leaf of both T and S”.

Composition This is determined by rT ,Ss„ rS,Rs„ “ rT ,Rs„

Identity & Inverses rT ,T s is always the identity, and rT ,Us
´1

“ rU,T s.

There are many other equivalent descriptions of F
e.g. M. V. Lawson’s 2006 description as linear clauses using the clause algebra

of unification & resolution from Girard’s Geometry of Interaction (III)
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Diagrammatics & Interpretations

We see the key ‘equivalence’ illustrated in José Burillo’s “An introduction to
Thompson’s F” :

is equivalent to

An obvious operadic interpretation

In ‘some suitable operad’ O, the quotient is the smallest equivalence satisfying,

pU,T q „ pU ˝x A,V ˝x Aq for all U,V P On , x ď n and A P O

We will consider this equivalence in other operads . . .
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A key fact :

Theorem : (M. Brinn, C. Squier 1985) Thompson’s F has no non-abelian quotients.

Categorical Interpretation

For associativity in the untyped setting, there are two options :

The “free” case Canonical isomorphisms form a copy of F

The “trivial” case Everything collapses to a monoid of ‘abstract scalars’.
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A conjecture on coherence for untyped associativity
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A very ‘computer-science’ application

(2004) V. Shpilrain & G. Zapata introduce a general prescription for protocols in
non-commutative cryptography.

(2006) V. Shpilrain & A. Ushakov give the first concrete example, based on
Thompson’s F .

(2007) Ruinsky, Shamir, Tsaban comprehensively break this protocol (for the
second time ... following F. Mattuci (2006))

Conjecture [RST]

“No cryptographic protocol based on [coherence for untyped associativity]

can ever be secure.”

An interpretation (PMH 2020 Graphical Methods in Security )

Finding Alice & Bob’s private keys / shared secret in the S-U protocol is precisely
“finding the missing labels on edges in a canonical commuting diagram”.
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An ‘equivalent’ setting :

Coherence for (untyped) unbiased associativity.
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The unbiased setting

Definition : An unbiased family of tensors on a category C consists of

An N`–indexed family of functors
!

bn :
śn

j“1 C Ñ C
)

ną0
where b1 “ IdC .

A coherent family of natural isomorphisms.

These are usually written

IdC : C Ñ C
p b q : C ˆ C Ñ C

p b b q : C ˆ C ˆ C Ñ C
p b b b q : C ˆ C ˆ C ˆ C Ñ C

. . .

Informally, ‘coherence’ is then the condition that any two ways of
1 rebracketing,
2 inserting brackets
3 deleting brackets

are the same.
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Equivalence with a simpler setting

Does this bring anything new???

Theorem (T. Leinster 2009)

Every category with a family of unbiased tensors is equivalent to one with a single
strict (binary) tensor.

Steps in Proof :

unbiased ÝÑ binary non-strict ÝÑ strict

Question : Is there any reason to study unbiased tensors — untyped, or otherwise?
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A plan of action(!)

We will go in the opposite direction to T.L.’s proof :

Start with an untyped (binary) tensor

— a model of conjunction from categorical logic.

Exhibit an equivalent unbiased (still untyped) version.

Describe the structure of coherence

— particularly, parts already known in :

T.C.S. / logic / algebra / combinatorics / number theory.
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Another conjecture, on coherence for unbiased associativity
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Uniqueness of the ‘untyped’ case?

The untyped case is based on a family of tensors on a monoid M
#

‹n :
n
ź

j“1

M Ñ M

+

ną0PN

Conjecture (By analogy with the binary case)

There are precisely three possibilities :

The ‘strict’ case The binary case ‹2 is strict iff all other tensors are strict,

in which case M “ CpI, Iq is uninteresting.

The ‘familiar’ case The binary tensor ‹2 is non-strict,

but all ‹n for n ą 2 are given by bracketings of ‹2.

The ‘free’ case The setting we are about to describe :)
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Some motivation . . .

In the structure of coherence for untyped, unbiased tensors, we encounter :

Algebra Thompson’s groups F and V, and their usual generalisations, Dynamical
algebras, S. Kohl’s ‘class transposition’ group, Grigorchuk’s G, maximal prefix
codes.

Number Theory & combinatorics Card shuffles, Cantor spaces, Erdös’s
covering systems, famous integer sequences, prime factorisations, notorious
number-theoretic conjectures, mixed-radix arithmetic, Conway’s congruential
functions.

Computability / decidability Conway’s proof of undecidability / computational
universality in elementary arithmetic.

Several other topics(!) . . .

Most importantly

The ability to relate / translate between different fields.
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Unbiased, untyped, tensors

„

A combinatorial approach based on card shuffles
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Our starting point ...

We base everything on, ‘Shuffles & deals of decks of cards’.

Deck 2Deck 1Deck 0

Merged
Deck

ShuffleShuffle

We assume all decks are countably infinite, and impose two simple rules.

1 Ordering is preserved.

“If card a is above card b before the shuffle,

then a is still above b afterwards.”

2 The shuffle is fair(!)

“No cards are discarded; no ‘extras’ get introduced.”
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Hilbert’s Hotel vs. Cantor’s Casino (I)

There are two different (equivalent) ways we may model shuffles :

The ‘denotational’ description, as bijections

pn, iq_

��
defined by

Card n of Deck i

gets mapped to
��

k Position k in the final deck

Define the induced partial order on

k times
hkkkkkkikkkkkkj

N Z . . .Z N “ N ˆ t0, . . . , k ´ 1u by

px , iq ď py , jq iff x ď y and i “ j

Definition A shuffle is a monotone bijection ψ : N Z . . .Z N Ñ N.
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Hilbert’s Hotel vs. Cantor’s Casino (II)

There are two different (equivalent) ways we may model shuffles :

The ‘operational’ description, as points of Cantor spaces

Consider some ϕ : N Ñ t0, . . . , k ´ 1u as a 1-sided infinite string

ϕ “ ϕ0ϕ1ϕ2ϕ3ϕ4 . . . P t0, . . . , k ´ 1u
ω

and interpret this as a step-by-step instruction

“On the j th step, take a card from the bottom of deck j,
and place it on top of the final stack.”

Alt. Definition A shuffle is a balanced Cantor point; some ϕ : N Ñ t0, . . . , k ´ 1u

satisfying
ˇ

ˇ

ˇ
ϕ´1

piq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
ϕ´1

pjq
ˇ

ˇ

ˇ
@ i , j P t0, . . . k ´ 1u
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From the Hotel to the Casino

Moving from a denotational to an operational picture is straightforward.

Given a monotone bijection ψ : N ˆ t0, . . . k ´ 1u,

we recover a balanced Cantor point ϕ : N Ñ t0, . . . , k ´ 1u by :

N
ψ´1
//

ϕ ))

N ˆ t0, . . . k ´ 1u

π2

��
t0, . . . , k ´ 1u

An advantage :

We can translate some very number-theoretic concepts

into the theory of monoids / codes / Cantor spaces, . . .
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What about deals??

We consider deals to be ‘time-reversed shuffles’.

Deck 0 Deck 1 Deck 2

Single
Deck

DealDeal

Denotationally A bijection λ : N Ñ N Z N Z . . .Z N whose inverse is monotone.

Operationally A balanced Cantor point

ϕ “ ϕ0ϕ1ϕ2ϕ3 . . . P t0, . . . , k ´ 1u
ω

with a different interpretation :

“On the j th step, put the next card on top of stack number ϕj .”
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Faro Shuffles & Fair Deals

An important class of examples are the Faro, or (perfect) riffle shuffles

�1 : N Ñ N
‚

‚

n ÞÑ n

�2 : N Z N Ñ N
‚ ‚

‚

pn, 0q ÞÑ 2n
pn, 1q ÞÑ 2n ` 1

�3 : N Z N Z N Ñ N
‚ ‚ ‚

‚

pn, 0q ÞÑ 3n
pn, 1q ÞÑ 3n ` 1
pn, 2q ÞÑ 3n ` 2

�4 : N Z N Z N Z N Ñ N
‚ ‚ ‚ ‚

‚

pn, 0q ÞÑ 4n
pn, 1q ÞÑ 4n ` 1
pn, 2q ÞÑ 4n ` 2
pn, 3q ÞÑ 4n ` 3

We will compose by pasting / substitution;
every rooted planar tree (uniquely) determines a shuffle.
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Faro Shuffles & Fair Deals

Their inverses are the fair deals

�1 : N Ñ N
‚

‚

n ÞÑ n

�2 : N Ñ N Z N
‚

‚ ‚

n ÞÑ pa, iq where

n ” i mod 2 and a “ n´i
2

�3 : N Ñ N Z N Z N
‚

‚ ‚ ‚

n ÞÑ pa, iq where

n ” i mod 3 and a “ n´i
3

�4 : N Ñ N Z N Z N Z N
‚

‚ ‚ ‚ ‚

n ÞÑ pa, iq where

n ” i mod 4 and a “ n´i
4

Every inverted rooted planar tree similarly
(uniquely) determines a deal.
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Back to category theory :)

Consider the symmetric group on the natural numbers, SpNq.

Define the generalised conjunctions to be the unbiased family of tensors
␣

‹n : SpNq
ˆk

ãÑ SpNq
(

ną0 given by :

pf0 ‹ f1 ‹ . . . ‹ fk´1q
def .
“ �k pf0 Z f1 Z . . .Z fk´1q�k

‚

f0 f1 ‚ ‚ ‚ fk´1

‚

The intuition :

A pack of cards is dealt out amongst k players, using a fair deal. Each player j then
applies fj to his stack of cards. All stacks of cards are then shuffled together using the
perfect riffle shuffle.
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Some fun facts . . .

These are all trivially functorial (group homomorphisms)

�k pg0 Z . . .Z gk´1q �k �k pf0 Z . . .Z fk´1q�k “ �k pg0f0 Z . . .Z gk´1fk´1q�k

The binary case is well-known; it models the conjunction of MELL,
in Girard’s first two Geometry of Interaction papers.

We may ‘compose’ generalised conjunctions by substitution2 to give
1 ‘Compound’ conjunctions, e.g.

pp ‹ p ‹ ‹ qq ‹ q , pp ‹ q ‹ ‹ p ‹ qq : SpNq
ˆ4

ãÑ SpNq

2 Unique, coherent natural isomorphisms between them :

pp ‹ p ‹ ‹ qq ‹ q
??
ñ pp ‹ q ‹ ‹ p ‹ qq

2Operadic composition in the endomorphism operad of SpNq in the (strictified) category of
monoids with Cartesian product . . .
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Finding natural isomorphisms graphically (I)

Let us derive (the unique component of) a natural isomorphism

pp ‹ p ‹ ‹ qq ‹ q ñ pp ‹ q ‹ ‹ p ‹ qq

As shuffles and deals :

¨

¨

¨

´ ´ ´ ´ ´

¨

¨

¨

ñ

¨

¨ ¨

´ ´ ´ ´ ´

¨ ¨

¨
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Finding natural isomorphisms graphically (II)

Let us derive (the unique component of) a natural isomorphism

pp ‹ p ‹ ‹ qq ‹ q ñ pp ‹ q ‹ ‹ p ‹ qq

We find this by composing a shuffle and a deal :

¨

¨

¨

¨ ¨ ¨ ¨ ¨

¨ ¨

¨

n ÞÑ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

6n
4 n ” 0 mod 4

n
2 ` 2 n ” 2 mod 12
n´2

4 n ” 6 mod 12
n
2 ´ 3 n ” 10 mod 12

n ` 2 n ” 1 mod 2

The component of the nat iso. is :

a bijection on N, defined piece-wise linearly on modulo classes . . .
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A notion of coherence?

Defining natural isomorphisms in this way allows us
to build a posetal groupoid of functors/ nat. iso.s.

Objects Arbitrary operadic composites of generalised conjunctions,
SpNq

ˆk
Ñ SpNq for all k ą 0.

Arrows A single natural isomorphism between any two
composites of the same arity.

Unbiased natural iso.s

Given a series of arrows in this groupoid . . .

T0

η0

��

T1

η1

��

. . . Tk´1

ηk´1

��
U0 U1 . . . Uk´1
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A notion of coherence?

Defining natural isomorphisms in this way allows us
to build a posetal groupoid of functors/ nat. iso.s.

Objects Arbitrary operadic composites of generalised conjunctions,
SpNq

ˆk
Ñ SpNq for all k ą 0.

Arrows A single natural isomorphism between any two
composites of the same arity.

Unbiased natural iso.s

. . . we have the required ‘interchange’ with gen. conjunctions.

p T0 ‹ T1 ‹

pη0‹η1‹...‹ηk´1q

��

. . . ‹ Tk´1 q

p U0 ‹ U1 ‹ . . . ‹ Uk´1 q

Equipping our posetal groupoid with a compatible family of unbiased tensors.
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Some obvious questions

Questions :

How do we derive the (unique) components of these natural iso.s,

What is their structure?

Are any of them interesting?

We now give explicit, algebraic descriptions.
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Rooted planar trees as covering systems

Let us interpret a rooted planar tree as a composite of Faro shuffles :

pN, 1q pN, 2q pN, 3q

pN, 0q ¨

¨ pN, 4q

N

defines a bijection : N ˆ t0, . . . , 4u Ñ N

Each individual deck N ˆ tju is monotonically mapped to some modulo class AjN ` Bj .

For example : N ˆ t3u is mapped onto 12N ` 10.

For arbitrary trees :

All modulo classes are disjoint; their union is the whole of N
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Leaves as modulo classes

label each leaf of a tree by the The Fifth Associahedron K5

modulo class to which it is mapped (Diagram “borrowed” from Tai-Danae

Bradley’s www.math3ma.com blog.)

12N ` 2 12N ` 6 12N ` 10

4N ¨

¨ 2N ` 1

¨

An ordered exact, covering system (P. Erdös, 1950s)

A sequence of disjoint modulo classes whose union is the whole of N.
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The multiplicative coefficients

Multiplicative coefficients In leaf-traversal ordering

12N ` 2 12N ` 6 12N ` 10

4N ` 0 3-fold

2-fold 2N ` 1

2-fold

4 “ 2 ˆ 2

12 “ 2 ˆ 2 ˆ 3

12 “ 2 ˆ 2 ˆ 3

12 “ 2 ˆ 2 ˆ 3

2 “ 2 (!)

To find multiplicative parts . . .

Multiply the arities of each branching, from root to leaf.
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Counting paths

Additive coefficients Path from leaf to root

12N ` 2

0

12N ` 6

1

12N ` 10

2

4N ` 0

0

3-fold

1

2-fold

0

2N ` 1

1

2-fold

0 “
Base 2 Base 2

0 0

2 “
Base 3 Base 2 Base 2

0 1 0

6 “
Base 3 Base 2 Base 2

1 1 0

10 “
Base 3 Base 2 Base 2

2 1 0

1 “
Base 2

1

To find additive parts . . .

Write down the ‘address’ of each leafa

& treat it as a number in a mixed-radix counting system
(with bases determined by the number of branchings).

ain leaf-to-root order!
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A brief interlude

– a simple application –
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When all branchings have the same arity . . .

Well-known theory

(Finite) trees with k -ary branchings are in 1:1 correspondence with (finite) maximal
prefix codes over the free monoid t0, 1, . . . , k ´ 1u

˚.

root-to-leaf paths leaf-to-root paths

100 101

¨ 11

0 ¨

¨

8N ` 1 8N ` 5

¨ 4N ` 3

2N ¨

¨

Maximal prefix code Exact covering system
t0, 100, 101, 11u Ď t0, 1u

˚
t2N, 8N ` 1, 8N ` 5, 4N ` 3u
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The general case

The set of maximal prefix codes over t0, . . . p ´ 1u
˚ is in 1:1 correspondence with

exact covering systems whose multiplicative coefficients are of the form px
P N.

Consider a (lexicographically ordered) maximal prefix code

tw0 , . . . , wnu Ď t0, . . . , p ´ 1u
˚

This uniquely determines an exact covering system
!

plenpwj qN ` }reversepwj q}base p

)

j“0,1,...,n

where :

len : t0, . . . , p ´ 1u
˚

Ñ pN,`q is the length homomorphism.

reverse : t0, . . . , p ´ 1u
˚

Ñ t0, . . . , p ´ 1u
˚ is the reversal anti-isomorphism.

} }base p : t0, . . . , p ´ 1u
˚

Ñ N interprets a string as a (base-p) number.
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End of interlude

– back to natural isomorphisms –
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Congruential functions as natural isomorphisms

Each of our composite conjunctions is based on an ordered covering system.

¨

¨

¨

´ ´ ´ ´ ´

¨

¨

¨

ñ

¨

¨ ¨

´ ´ ´ ´ ´

¨ ¨

¨

t4N, 12N ` 2, 12N ` 6, 12N ` 10, 2n ` 1u t6N, 6N ` 3, 3N ` 16N ` 2, 6N ` 4u

We build the canonical isomorphism between them by monotonically mapping
between leaves :

leaf 0 4N ÞÑ 6N
leaf 1 12N ` 2 ÞÑ 6N ` 3
leaf 2 12N ` 6 ÞÑ 3N ` 1
leaf 3 12N ` 10 ÞÑ 6N ` 2
leaf 4 2N ` 1 ÞÑ 6N ` 4
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The general case

For arbitrary rooted planar trees, determining shuffles / generalised conjunctions :

leaf 0 A0N ` B0 ÞÑ C0N ` D0

leaf 1 A1N ` B1 ÞÑ C1N ` D1

...
...

...

leaf n ´ 1 An´1N ` Bn´1 ÞÑ Cn´1N ` Dn´1

The natural iso. between them has, as unique component, the bijection :

x ÞÑ
1
Aj

ˆ

Cjx `

ˇ

ˇ

ˇ

ˇ

Aj Bj

Cj Dj

ˇ

ˇ

ˇ

ˇ

˙

where x ” Bj mod Aj
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A general setting for natural isomorphisms

Definition : A function f : N Ñ N is congruential if it is
“defined piece-wise linearly on a family of modulo classes”.

More formally, there exists :

An exact covering system tAjN ` Bj ujPJ

A similarly-indexed family of rationals tprj , sj qujPJ

such that
n P AjN ` Bj ñ f pnq “ pjn ` qj

Motivated by problems of Lothar Collatz . . .

Theorem : (J. Conway 1972)

Given

A congruential function f : N Ñ N,

A natural number n P N,

It is in general undecidable whether the orbit of n under f is finite or infinite.
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A disturbing possibility

Questions :

Might we see undecidable behaviour from canonical isomorphisms ??

If so, how simple might these be?

Let’s make some natural isomorphisms explicit :

pp ‹ q ‹ q p ‹ p ‹ qq
αks

p ‹ ‹ q

γ5

bj

γ

4<

peter.hines@york.ac.uk 01232 457964 nihil sub sōle novum 50 / 60



Some ‘previously studied’ functions

The associator (Canonical associativity iso. for the conjunction of GoI I, II)

α “

‚

‚

‚ ‚ ‚

‚

‚

giving αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4.

The amusical permutation (Introduced by L. Collatz, named by J. Conway)

γ “

‚

‚ ‚ ‚

‚

‚

giving γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

The flattened permutation (A ‘shifted’ version of the amusical permutation)

γ5 “

‚

‚ ‚ ‚

‚

‚

giving γ5pnq “

$

’

&

’

%

4n
3 n ” 0 mod 3,

4n`2
3 n ” 1 mod 3,

2n´1
3 n ” 2 mod 3.

satisfying γ5pnq ` 1 “ γpnq ` 1

peter.hines@york.ac.uk 01232 457964 nihil sub sōle novum 51 / 60



A couple more conjectures
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An unprovable(?) conjecture or two ...

The Original Collatz Conjecture : Lothar Collatz (1932)

The ‘amusical permutation’

γpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

has infinite orbits – precisely, the orbit of 8 is infinite.

Conway’s Unprovable Conjecture : J. Conway (2012)

The Original Collatz Conjecture is the simplest possible example of an undecidable
arithmetic statement.

Conway claimed the O.C.C. as the motivation for his proof of

undecidability in elementary arithmetic.

peter.hines@york.ac.uk 01232 457964 nihil sub sōle novum 53 / 60



Another application :

Thompson’s F , and the Original Collatz Conjecture
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Standard theory & interpretation (I)

In the usual group-theoretic approach :

Thompson’s F is generated by two pairs of trees

„

‚ ‚ ‚

‚

‚

, ‚ ‚ ‚

‚

‚

ȷ

and

«

‚ ‚ ‚s ‚

‚

‚

‚

,
‚ ‚ ‚s ‚

‚ ‚

‚

‚

ff

Interpreting as shuffles / deals (& hence canonical isomorphisms)) :

A subgroup of SpNq isomorphic to F is generated by
$

’

’

’

&

’

’

’

%

α “

‚

‚

‚ ‚ ‚

‚

‚

, Id ‹ α “

‚

‚

‚

‚ ‚ ‚ ‚

‚

‚

‚

,

/

/

/

.

/

/

/

-
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Standard theory & interpretation (II)

Explicitly, F is generated by the congruential functions :

αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4.
, pId ‹ αqpnq “

$

’

’

’

&

’

’

’

%

n n ” 0 pmod 2q

2n ´ 1 n ” 1 pmod 4q

n ` 2 n ” 3 pmod 8q

n´1
2 n ” 7 pmod 8q

Recall : Associativity decomposes into deleting brackets, and re-inserting brackets :

p ‹ ‹ q

γ5

t|
pp ‹ q ‹ q p ‹ p ‹ qq

α
ks

γ´1
bj
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An (easily checkable) corollary . . .

As a corollary, Thompson’s F is generated by the bijections

αpnq “ γpγ´1
pnq ` 1q ´ 1

pId ‹ αqpnq “

$

&

%

n n even,

2γ
`

γ´1 ` n´1
2

˘

` 1
˘

´ 1 n odd.

This can be checked by elementary (albeit tedious . . . ) arithmetic calculations.
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A couple more conjectures
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Two groups & a conjecture

Consider two subgroups of bijections F Ď Cz Ď SpNq.

Cz is generated by
tγ , γ5 , Id ‹ γ , Id ‹ γ5u

F is generated by

tα , Id ‹ αu “ tγ5γ
´1 , Id ‹ γ5γ

´1
u

Conjecture(s)

1 It is easy to characterise orbits of natural numbers under members of F .

They are either infinite or fixed points.

2 F is precisely the subgroup of Cz consisting of bijections satisfying this property.
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