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Introduction



A partial order, is a binary relation < on
a set P such that forall a,b,c € P

- a < a (reflexivity)

ra<bandb<a = a=>b
(antisymmetry)

ca<bandb<c = a<c
(transitivity)

set of all subsets of 3 elements ordered
by inclusion




Let (P, <) be a partially ordered set. Let
X,¥,m e P, then mis called the Meet
(greatest lower bound or infinimum)
m=xAyif:
-m<xandm<y
- Foranyw e P,withw < xandw <y
thenw <m

- Dually a Join (Smallest upper bound
or supremum) m=xVy

- If a meet (resp. join) exists then it is Meets do not always exist (for example
unique d,e)




A partially ordered set (L, <), is a lattice
ifva,b el

- a,b have a infimum (a A b exists)

- a,b have an supremum (a Vv b exists)

set of all subsets is a lattice




- The Tamari Lattice is a poset introduced by Dov Tamari in 1962

- The Poset has equivalent definitions on bracketed expressions, binary trees,
Dyck paths and triangulations

- Many connections with triangulations, combinatorial maps, lambda calculus,

e

=

A(BC) (AB)C




((((a%b) %) +d) xe)
If we denote by 7, the set of bracketed (@ ) ay=e)
expressions with n atoms. /

o0 ((ax ((b*c)xd)) xe)
Definition ’ \ (@sb)s(crd)re)
The Tamarl poset by endOW|ng 777 Wlth (a, (b c), d),e))  ((a, (b, (c, ) ((ab) %) * (d*e€))
the transitive closure < of the covering !
relation A(BC) N (AB)C (5h|ft|ng a (@x(@xexd)re) N\ (ax(bra)x@dse) (@b x((cxd+e)
parenthesis to the left) \ ]

(ax(bx((cxd)xe)) (ax((bro)s(dxe))  ((axb)x(cx(dxe))

L

(ax (b (cx (dxe)))




A Dyck path is a lattice path in N2
starting at the origin, ending on the
x-axis and consisting of up steps

U= (1,1) and down steps D = (1,—1).

Catalan numbers
Let Dy, be the set of Dyck paths of
semilength n, then :

|Dn| = 2n)!/(n'(n+ 1)1

D ES UHZO Dn

---------

- first/last return decomposition of a

non-empty Dyck path is unique,
P = URDS, where R,S € D

- A Dyck path is prime whenever it

only touches the x-axis at its
beginning and its end



Tamari Lattice

Defined by endowing D, with the
transitive closure < of the covering
relation transforming an occurrence of
DUQD into an occurrence UQDD where
QeD.

/
YARN
e
2N\
A\MAA




BKN Poset



N
%

BKN poset A
Defined by endowing D, with the /\{
transitive closure < of the covering JARN /M
relation transforming an occurrence of VOV A(AA
DURDF into an occurrence URDRD with T |
kR >1. \ I

" ~. 1

PoVaVavaN

The red arrow does not belong to BKN




Lemma
For n > 2, any Dyck path P € Dy, P £ U"D", contains at least one occurrence of

DURDF for some k > 1.
3an occurrence of DU, and the rightmost occurrence of DU always starts an occurrence of
DU U*D*D, ¢ > 0.

Lemma

For n > 2, any Dyck path P € D,, P # (UD)", contains at least one occurrence of U*D*D
for some k > 1, and then P contains at least one occurrence of UDD.

By contradiction, assume P does not contain occurrence UDD. Then any peak UD is either
at the end of P, or it precedes an up step U, implying that a down step cannot be

contiguous to another down step. Thus, P = (UD)" contradicting P # (UD)".



Propositions :

1. The poset (D;, <) admits @ maximum element and @ minimum element.

2. Given P,Q € D, satisfying P < Q, P # Q, such that P = RDS and Q = RUS' (R is
the maximal common prefix). Let W the Dyck path obtained from P by
applying the covering P —s W on the leftmost occurrence of DUFD®, k > 1, in
DS, then we necessarily have W < Q.



Theorem
The poset (Dy, <) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

For n < 3 the poset is isomorphic to the Tamari lattice.



Theorem
The poset (Dy, <) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

Assume S, = (Dp, <) is a lattice for n < N, and show for N + 1. Distinguish
according to first return decomposition



Theorem
The poset (Dy, <) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

(1) If P = URDS and Q = UR'DS' where |R| = |R'|. Apply the recurrence hypothesis
for R and R’ (resp. S and S), which means that RV R’ (resp., SV ') exists. Then, the
path U(RV R)D(S Vv §') is necessarily the least upper bound of P and Q, proving
existence of PV Q.



Theorem
The poset (Dy, <) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

(2) Let us suppose that P = URDS and Q = UR'DS’ where |R'| < |R|. Let M be an
upper bound of P and Q (Prop 1). Since |R’| < |R|, M has necessarily a
decomposition M = UM1DM, where |[M4]| > |R]. In any sequence of coverings

Q—...—M
from Qto M, there is necessarily a covering that elevates the down-step just after R/




Theorem
The poset (Dy, <) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

Iterating this process with P and Q, construct P’,Q’ such that P < M,Q <M

=P <M,Q < Mwhere P’ and @ lie (1). Using the hypothesis recurrence

P"v Q' = PV Q exists. The existence of greatest lower bound then follows
automatically since the poset is finite with a least and greatest elements. O



Let (L, V, A) be a Lattice :

- Lis distributive if Vx,y,z€ L,XxA(yVZ) = (XAy)V (XA Z)

- The Tamari and BKN lattices are not distributive

/\ - o B

M \ N AN A
yvz TAY TAz

ooy AL A
zA(yVz) (xAY)V(TAz2)

\AM/ AN /N



- L is semidistributive if it is both join- and

meet-semidistributive where //\
- meet-semidistributive if for all //\ \
. - PSS 1
elements e, x,y € L in the lattice 1 \/
we have :

eAX=eNy = eAx=eA(xVy) );d//

/\A/\/\/\/\/\/\/\

- join-semidistributive if for all

elements e,x,y € L in the lattice AN SIN AN
we have : one oo &)
AN NN /\
evx=evy = evx=eV(xAy) Aevs)
/\/\/\

- Tamari is semidistributive but not BKN



Characteristics of BKN




Let A(X,¥,2) = > 50 an,Mx”y’?zf be the generating function where a, 4 is the
number of Dyck paths of

- semilength n having

- k possible coverings (or equivalently k outgoing edges),

- £ incoming edges.

Az — R(x,y,z) — \/Z+><(xzy—xy—)<Z—i—1)(xy—i—xz—x—1)4—!&’(><,y,z)2
o= 2 (xzy —xy —xz + 1) ’

where R(X,y,2) = X?zy — X2y —X°Z+X> =Xy —xZ2 +x + 1.



o R(x,y,z)—\/4x(xzy—xy—xz+1)(xy+xz—x—1)+R(x,y,z)2
A(x,y,2) = P (e , Where

R(X,Y,Z) = X°2y — X°y — X?Z+X? =Xy —XZ+ X+ 1.

- Using last return decomposition P = RUSD
- 6 different cases according to Rand S

2 2 2

X’z X’z
A =1 X A —1)x A—1 A—T)yA
+R\§-’+L,)_X+'I—XZ 1—XZ( )y+1—xz( )y
=o=€ ~
Re JRee,  RAeS=UD S=s'UeDe n
= 1
cax(a—1-x— X7 _qa—n Z a1
1—xz Y =i-x2 y)
S#£S YD



G.F E(x) of the total number of possible coverings over all Dyck paths of
semilength n (or equivalently the number of edges in the Hasse diagram) is

—1+ 4x + (1 —2x)m
B = ——Sa-ma-x

From A(x, y,z) simply compute 9y (A(x,y, 1))|y=1.
The coefficients of x (A057552 in [Sloane et al,, 2003]) are given by

(")

M


https://oeis.org/A057552

G.F E(x) of the total number of possible coverings over all Dyck paths of
semilength n (or equivalently the number of edges in the Hasse diagram) is

1A+ (1= 2)) V1 — 4x
B = ——=Za-mo—n

From A(x, y,z) simply compute 9y (A(x,y, 1))|y=1.
The coefficients of x (A057552 in [Sloane et al,, 2003]) are given by

”i(zfe;rz)'

k=0

The ratio between the numbers of coverings in 7, and S, tends towards 3/2.


https://oeis.org/A057552

- Aninterval is an ordered pair of elements (P,Q) with P < Q
- Inspired by [Bousquet-Mélou and Chapoton, 2023]

- Lletl(x,y) = > am,?x”y’?, where a, , number of intervals in S, with upper
n,kR>1

path ends with k down-steps exactly
- letJ(x,y) = > bnﬁkx”yk, where b, , number of intervals (P, Q) in S, such
n,kR>1
that the upper path Q is prime and ends with k down-steps exactly

IGy) = J06y) + 1061) - J(x,Y) @)
—— ~———
Interval is Q=RUSD,P=P1P,
either prime  [;:=(P,R) and I,:=(P,,USD)



The following also holds :

J06y) =%, 1)

J(x,y) = Xy +  xyl(x,y) + S oy, (3)
N~~~ ' H/—’ / R y - 1
PUID ane =L aPng, rﬁ):crgseé.PQ::UiQ?D P is not prir?]re, P = RUSD

const. h intervals

where C(x) is the gf. for Catalan numbers, i.e., C(x) = 1+ xC(x)?.

Q = QUkDFHE = P =RUSD =

S —
Prefix Q" Length of USD=2k



With little rearrangments

I(X7 y) - 1],(j((7))</7)-|)7
(%1
J06y) = xy +xy 20+ LD L ()2,

In order to compute J(x, 1) use the kernel method [Banderier et al., 2002] on

J(x,y) - <1 — 3 _T{M) - C(;y_)ﬁy ) =Xy — j)fx_? - COy Xy

Cancel the factor of J(x,y) by finding y as a function y, of J(x,1) and x to find :

1_ M _ C(xyvo)xv} -0
1#}2}@1& Vo1 )
XYo — )/;‘—_1 - C(xyo)xys =0.

Then yo = HAXEW'



- The generating function J(x,y) can be found explicitly

- From J(x,y) we exhibit

(prime intervals) J(x, 1) = 1‘@ =X +2x>+8x3 + 40X +224%° +
(A052701) (2""cp_1)

+ We then obtain : I(x,y) = J(x,¥) - *057"

- (intervals) I(x,1) = == 22X(x—\i-/11)78 — X432 4 13)3 4 67x* 1+ 38155 4+
(A064062) (- S n+m—Ty 5my N200 23nn=3/2
(ﬁ z::( )( m ) ) = W

Both sequences are related to counting outerplanar maps and bi-colored Dyck

Paths [Geffner and Noy Serrano, 2017]

Asymptotic exponential growth of intervals in 7, and S is <32>

27



https://oeis.org/A052701
https://oeis.org/A064062

Generalization




BKN poset

Defined by endowing D, with the
transitive closure < of the covering
relation transforming an occurrence of
DURD into an occurrence URDD with
kR>1.

Reminder BKN :
DURDF into an occurrence URDRD with
k> 1.

s
AN

i

A OO AN

The red arrow does not belong to BKN




- The resulting poset is a lattice N

meet-semidistributive  join-semidistributive /
Tamari yes yes AN
BKN no no /
General yes no

- As n tends to infinity, the number of
intervals

pn="2 = 1 +5v5 3, [2754123v5
’ 2 8 0m

Asymptotic form

BKN 1 pin=3/2 wm=28
Tamari co pin=%/? p2 = 28 ~ 9.48148
General Capsn~/? pa =" ~11.09  The red arrow does not belong to BKN



Open questions




- Fix m > 1, an m-Dyck path is a path in N? /
starting at (0, 0) ending on the x-axis and
consisting of U = (m, m) and D = (1, —1). VAN

- m-BKN poset is defined by endowing Dy
with the transitive closure < of the covering

transforming an occurrence of DU*D™* into N / \
AN
PN

an occurrence UfD™ D with k > 1. / \ i
. . —
- m-BKN seems to always give lattices VAN AN ;
- Can we extend our approach to count \ /
intervals in m-BKN? N\/‘Q AN
=
- I2=0,1,6,55,600,7192, 91470, . .. oo .
s The red arrows belong to 2-Tamari but
- B =0,1,10,152,2723, 53307, 1104003, . . .
not to 2-BKN



id

A=A
- In [Zeilberger, 2019] showed a ABA=C
sequent calculus capturing the AxB,A=C
Tamari order (semi-associative law) A=A r=8 .
- Can we find a calculus capturing the Al =AxB
BKN order? - A B, C are formulas, A, T are lists of
- Currently working on proofs formulas

- (atoms) lowercase latin letters
- (Formulas) F :=a,b,... | (F x F)



id

b0 =l d5d? eseld A=A
b,c= (bxc) d,e=(d=e) - AB,A=C
_ b,c,d,e = ((bxc)*(dxe)) mL
w=a d (bx0)de= ((bx)x(dxe)

o pagiees @={Dedeldeg)) A=A C=B .
(ax(bxc)),d,e= (ax*((bxc)x*(d=xe))) A, C=AxB
((ax(bxc))«d),e= (ax((bxc)x*(dxe))) ]
(((ax (bxc))xd)xe) = (ax((bxc)x(dxe))) T=A A=8 p

T,A=AxB
m A, B, C are formulas, A a list of formulas
and ¥ a list of atoms.



- Aterm with no free variables is
closed

- Aterm is indecomposable if it has
no closed proper subterms

- An abstraction Ax.M is linear if the x
has exactly one free occurrence in
M. By extension, a term is linear if
every abstraction subterm is linear

- Alinear term M is planar if its
binding diagram is planar Ae. (0. (e Qa((@) @B (B)@()) (D)@ (e)))))
- Aterm is B-normal if it can not be
reduced further by g-reductions



- In [Zeilberger, 2019] showed that
Tamari intervals are in bijection
with Closed indecomposable
B-normal linear planar lambda

terms / \
- X -> \y ->\z > \Ww -> wlu -> u(2)(y(x)

- BKN Lattice being a restriction of N

xxxxxxxxxx

the Tamari Lattice Lo WUy ox wouozy x

- Can we characterize the properties

of the fragment of Lambda Calculus } - )
induced by BKN? Figure from [Zeilberger, 2019]

(W * (u*2)) ¥y) *x (W* (u*2))*(y *x)




- In [Zeilberger, 2019] showed that
Tamari intervals are in bijection g
with Closed indecomposable
B-normal linear planar lambda
terms

- BKN Lattice being a restriction of
the Tamari Lattice

- Can we characterize the properties de. (0O (a((@)80B-((B)8()B((DB(E))
of the fragment of Lambda Calculus First term belonging to Tamari but not to
induced by BKN ? BKN



- Sequence of prime intervals :

AN N

X+ 2x* 4+ 8x% +40X" +224X° + S
136446 + ... (A052701) (2"~"cp_1) s N\
/N

- Also corresponds to Number of Dyck N /f\

. . . P A

paths of semilength n in which the N\
N

step U = (1,1) not on ground level o
comes in 2 colors A b
SN
- Can we find a bijection between N oS

these classes?


https://oeis.org/A052701

- The diameter is the maximum
distance between any two vertices

- The diameter of BKN gives an upper
bound on the diameter of the
Tamari Lattice

- For n > 3, we conjecture that the
diameter of S, is 2n — 4, and that
this value corresponds to the
distance between (UD)" and
Uu(uUD)"—=2DD.

PN
y
@
7
A0 PN

N

/T\A SN PN
TN\ o/
S é@/
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XY (Z1+HIGN) UG D EY)y =y +1)

J(x.y) = J06T) COY) X2 — C ) X2 —xy2 — (6 1)y +xy + (1) +y — 1
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