
Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting structure(s) from the base to the total category
Posetal closed (and ∗-autonomous) Grothendieck construction

Luigi Santocanale

Joint work with
Cédric de Lacroix and Gregory Chichery

Laboratoire d’Informatique et Système (LIS)
Aix-Marseille Université (AMU)

LambdaComb Days
Paris, January 23, 2024

: 1/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work

: 2/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A few theorems on Complete Lattices

Theorem (Egger, Kruml, Paseka ∼ 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The quantale L (L of join-preserving endomaps of L is a Frobenius

quantale.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects in SLattare exactly the completely distributive lattice.

: 3/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A few theorems on Complete Lattices

Theorem (Egger, Kruml, Paseka ∼ 2008, Santocanale 2020)
Let L be a complete lattice. The following are equivalent:
• L is a completely distributive lattice.
• The quantale L (L of join-preserving endomaps of L is a Frobenius

quantale.

Theorem (Raney 1960, Higgs and Rowe 1989)
The nuclear objects in SLattare exactly the completely distributive lattice.

: 3/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Constructing counter-examples in ∗-autonomous categories

Conjecture Let A be an object of a symmetric monoidal closed category. The
following are equivalent:

1. A is nuclear.

2. The object A (A of endomorphisms of A is a Frobenius monoid.

Theorem (De Lacroix & S., CSL 2023)
If A is an object of ∗-autonomous category, then (1) implies (2). The converse
implication holds if A is pseudoaffine, that is, the tensor unit I is a retract of A.

Counter-example (De Lacroix & S.): There exists a ∗-autonomous category and
an object A (of this category) such that A (A is Frobenius monoid, which is not
nuclear.

: 4/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Constructing counter-examples in ∗-autonomous categories

Conjecture Let A be an object of a symmetric monoidal closed category. The
following are equivalent:

1. A is nuclear.

2. The object A (A of endomorphisms of A is a Frobenius monoid.

Theorem (De Lacroix & S., CSL 2023)
If A is an object of ∗-autonomous category, then (1) implies (2). The converse
implication holds if A is pseudoaffine, that is, the tensor unit I is a retract of A.

Counter-example (De Lacroix & S.): There exists a ∗-autonomous category and
an object A (of this category) such that A (A is Frobenius monoid, which is not
nuclear.

: 4/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Constructing counter-examples in ∗-autonomous categories

Conjecture Let A be an object of a symmetric monoidal closed category. The
following are equivalent:

1. A is nuclear.

2. The object A (A of endomorphisms of A is a Frobenius monoid.

Theorem (De Lacroix & S., CSL 2023)
If A is an object of ∗-autonomous category, then (1) implies (2). The converse
implication holds if A is pseudoaffine, that is, the tensor unit I is a retract of A.

Counter-example (De Lacroix & S.): There exists a ∗-autonomous category and
an object A (of this category) such that A (A is Frobenius monoid, which is not
nuclear.

: 4/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Schalk-de Paiva category Q-Set

Let Q be commutative quantale (= posetal complete SMMC).
• An object of Q-Set:

a pair (X , α) with X a set and α : X −−−−→ Q a function.
• An arrow of Q-Set from (X , α) to (Y , β):

a relation R ⊆ X × Y such that

xRy =⇒ α(x) ≤ β(y) , ∀x ∈ X , y ∈ Y .

Proposition Q-Set is SMMC. If Q is a Girard quantale, then Q-Set is
∗-autonomous.

For Q well chosen, Q-Set is the underlying category providing the previous
counter-example.

: 5/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Schalk-de Paiva category Q-Set

Let Q be commutative quantale (= posetal complete SMMC).
• An object of Q-Set:

a pair (X , α) with X a set and α : X −−−−→ Q a function.
• An arrow of Q-Set from (X , α) to (Y , β):

a relation R ⊆ X × Y such that

xRy =⇒ α(x) ≤ β(y) , ∀x ∈ X , y ∈ Y .

Proposition Q-Set is SMMC. If Q is a Girard quantale, then Q-Set is
∗-autonomous.

For Q well chosen, Q-Set is the underlying category providing the previous
counter-example.

: 5/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

∗-autonomous categories from Girard quantales?

• A Girard quantale is a posetal complete ∗-autonomous category.
• How do we lift properties from Q to Q-Set?

More general (and philosophical?) questions:
• How do Girard quantales relate to ∗-autonomous categories?
• Cf. Heyting algebras, CCCs, topoi.
• Is there a linear version of the notion of topos?

: 6/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

∗-autonomous categories from Girard quantales?

• A Girard quantale is a posetal complete ∗-autonomous category.
• How do we lift properties from Q to Q-Set?

More general (and philosophical?) questions:
• How do Girard quantales relate to ∗-autonomous categories?
• Cf. Heyting algebras, CCCs, topoi.
• Is there a linear version of the notion of topos?

: 6/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The total (or Grothendieck) category
∫

Q of a functor Q

For a functor
Q : B −−−−→ Pos

its total category
∫

Q is defined as follows:

• an object of
∫

Q:
(X , α) with X ∈ Obj(B) and α ∈ Q(X),

• an arrow (X , α) −−−−→ (Y , β):
f : X −−−−→ Y such that Q(f)(α) ≤ β.

The first projection:

π :

∫
Q −−−−→ B

is the standard example of an (op-)fibration (with posetal fibers).

Lemma [Folklore ?] If B and Q are monoidal:

1 −−−−→ Q(I) , µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y)

then
∫

Q is monoidal and π strictly preserves the tensor structure.

: 7/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Q-Set as a total category

For R ⊆ X × Y and α ∈ QX , define

QR(α)(y) :=
∨
xRy

α(x) .

QX is a functor Rel −−−−→ Pos.

Proposition Q-Set =
∫

QX. Moreover, the functor QX is monoidal and,
consequently, Q-Set is a monoidal category, and the first projection

Q-Set −−−−→ Rel

strictly preserves the monoidal structure.

: 8/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

What more ?

Moral:
• Understanding why Q-Set =

∫
Q is monoidal is well-covered by the theory of

monoidal (op-)fibrations.

Is it possible to have a theory explaining:
• when

∫
Q is closed?

• when
∫

Q is ∗-autonomous?
• which does not depend on specific properties of Rel

(which is a Cartesian bicategory whence dagger compact closed)?

: 9/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

What more ?

Moral:
• Understanding why Q-Set =

∫
Q is monoidal is well-covered by the theory of

monoidal (op-)fibrations.

Is it possible to have a theory explaining:
• when

∫
Q is closed?

• when
∫

Q is ∗-autonomous?
• which does not depend on specific properties of Rel

(which is a Cartesian bicategory whence dagger compact closed)?

: 9/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work

: 10/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting functors from the base B

Let

Q : B −−−−→ Pos , so π :

∫
Q −−−−→ B

Definition Let F : B −−−−→ B be an endofuctor of B. A lifting of F to
∫

Q is a
functor F :

∫
Q −−−−→

∫
Q such that the following diagram commutes:∫

Q
∫

Q

B B

π

F

π

F

That is, we want
F(X , α) = (F(X), β)

for some β ∈ Q(F(X)) which depends on α ∈ Q(X).

: 11/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting functors from the base B

Let

Q : B −−−−→ Pos , so π :

∫
Q −−−−→ B

Definition Let F : B −−−−→ B be an endofuctor of B. A lifting of F to
∫

Q is a
functor F :

∫
Q −−−−→

∫
Q such that the following diagram commutes:∫

Q
∫

Q

B B

π

F

π

F

That is, we want
F(X , α) = (F(X), β)

for some β ∈ Q(F(X)) which depends on α ∈ Q(X).

: 11/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting functors from the base B

Let

Q : B −−−−→ Pos , so π :

∫
Q −−−−→ B

Definition Let
F : (Bop)n × Bm −−−−→ B

be functor. A lifting of F to
∫

Q is a functor

F : (

∫
Q

op

)n ×

∫
Q

m

−−−−→

∫
Q

such that the following diagram commutes:

(
∫

Q
op
)n ×
∫

Q
m ∫

Q

(Bop)n × Bn B

(πop)n×πm

F

π

F

: 11/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Proposition Liftings of a functor F : (Bop)n × Bm −−−−→ B to
∫

Q bijectively
correspond to collections of order-preserving maps

ψX ,Y :
∏

i

Q(Xi)
op ×
∏

j

Q(Yj) −−−−→ Q(F(X ,Y))

such that, for each pair of maps f : X −−−−→ X ′ in Bn and g : Y −−−−→ Y ′ in Bm,
the following diagram half-commutes:

∏
i Q(Xi)

op ×
∏

j Q(Yj)

∏
i Q(X ′i)

op ×
∏

j Q(Yj)
∏

i Q(Xi)
op ×
∏

j Q(Y ′j)

Q(F(X ′,Y)) Q(F(X ,Y ′))

id×
∏

i Q(gj)
∏

i Q(fi)op×id

ψX′ ,Y ψX ,Y′

Q(F(f ,g))

: 12/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

α : ((X , x) ⊗ (Y , y)) ⊗ (Z , z) −−−−−→ (X , x) ⊗ ((Y , y) ⊗ (Z , z))

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

α : ((X ⊗ Y) ⊗ Z , µX⊗Y ,Z (µX ,Y (x, y), z)) −−−−−→ (X ⊗ (Y ⊗ Z), µX ,Y⊗Z (x, µY ,Z (y, z)))

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) ≤ µX ,Y⊗Z (x, µY ,Z (y, z))

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) = µX ,Y⊗Z (x, µY ,Z (y, z))

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting monoidal structures
Proposition There is a bijection between the following kind of data:
• a lifting of a symmetric monoidal structure (I,⊗, α, λ, ρ, σ) from B to

∫
Q ,

• a collection of order-preserving maps

1
u
−−→ Q(1) , { µX ,Y : Q(X) × Q(Y) −−−−→ Q(X ⊗ Y) }X ,Y∈Obj(B) ,

such that
1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X) × Q(Y) Q(X ′) × Q(Y ′)

Q(X ⊗ Y) Q(X ′ ⊗ Y ′)

Q(f)×Q(g)

µX ,Y µX′ ,Y′

Q(f⊗g)

2. and

Q(α)(µX⊗Y ,Z (µX ,Y (x, y), z)) = µX ,Y⊗Z (x, µY ,Z (y, z)) ,

Q(λ)(µI,Y (u, y)) = y ,

Q(ρ)(µX ,I(x, u)) = u ,

Q(σ)(µX ,Y (x, y)) = µY ,X (y, x) .

: 13/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

(Q(X) × Q(Y)) × Q(Z) Q(X) × (Q(Y) × Q(Z))

Q(X ⊗ Y) × Q(Z) Q(X) × Q(Y ⊗ Z)

Q((X ⊗ Y) ⊗ Z) Q(X ⊗ (Y ⊗ Z))

αQ

µ×id id×µ

id×µ µ⊗id

Q(α)

1 × Q(X) Q(I) × Q(X)

Q(X) Q(I ⊗ X)

λQ

u×id

µ

Q(λ)

Q(X) × 1 Q(X) × Q(I)

Q(X) Q(X ⊗ I)

ρQ

id×u

µ

Q(ρ)

Q(X) × Q(Y) Q(Y) × Q(X)

Q(X ⊗ Y) Q(X ⊗ Y)

σQ

µX ,Y µY ,X

Q(σ)

: 14/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting the closed structure

Let B be SMC, with

evX ,Y :X ⊗ (X (Y) −−−−−→ Y , ηX ,Y :Y −−−−−→ X ((X ⊗ Y) .

Suppose µ is used to lift ⊗ to
∫

Q.

Proposition
∫

Q is closed if and only if we have are given a collection of order-preserving
maps

{ ιX ,Y : Q(X)op × Q(Y) −−−−−→ Q(X (Y) }X ,Y∈Obj(B) ,

such that

1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X)op × Q(Y) Q(X)op × Q(Y ′)

Q(X ′)op × Q(Y)

Q(X ′ (Y) Q(X (Y ′)

id×Q(g)

Q(f)op×id

ιX ,Y′

ιX′ ,Y

Q(f(g)

2. and

Q(ηX ,Y)(y) ≤ ιX ,X⊗Y (x, µX ,Y (x, y)) ,

Q(evX ,Y)(µX ,X(Y (x, ιX ,Y (x, y))) ≤ y .

: 15/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting the closed structure

Let B be SMC, with

evX ,Y :X ⊗ (X (Y) −−−−−→ Y , ηX ,Y :Y −−−−−→ X ((X ⊗ Y) .

Suppose µ is used to lift ⊗ to
∫

Q.

Proposition
∫

Q is closed if and only if we have are given a collection of order-preserving
maps

{ ιX ,Y : Q(X)op × Q(Y) −−−−−→ Q(X (Y) }X ,Y∈Obj(B) ,

such that

1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X)op × Q(Y) Q(X)op × Q(Y ′)

Q(X ′)op × Q(Y)

Q(X ′ (Y) Q(X (Y ′)

id×Q(g)

Q(f)op×id

ιX ,Y′

ιX′ ,Y

Q(f(g)

2. and

Q(ηX ,Y)(y) ≤ ιX ,X⊗Y (x, µX ,Y (x, y)) ,

Q(evX ,Y)(µX ,X(Y (x, ιX ,Y (x, y))) ≤ y .

: 15/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting the closed structure

Let B be SMC, with

evX ,Y :X ⊗ (X (Y) −−−−−→ Y , ηX ,Y :Y −−−−−→ X ((X ⊗ Y) .

Suppose µ is used to lift ⊗ to
∫

Q.

Proposition
∫

Q is closed if and only if we have are given a collection of order-preserving
maps

{ ιX ,Y : Q(X)op × Q(Y) −−−−−→ Q(X (Y) }X ,Y∈Obj(B) ,

such that

1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X)op × Q(Y) Q(X)op × Q(Y ′)

Q(X ′)op × Q(Y)

Q(X ′ (Y) Q(X (Y ′)

id×Q(g)

Q(f)op×id

ιX ,Y′

ιX′ ,Y

Q(f(g)

2. and

Q(ηX ,Y)(y) ≤ ιX ,X⊗Y (x, µX ,Y (x, y)) ,

Q(evX ,Y)(µX ,X(Y (x, ιX ,Y (x, y))) ≤ y .

: 15/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting the closed structure

Let B be SMC, with

evX ,Y :X ⊗ (X (Y) −−−−−→ Y , ηX ,Y :Y −−−−−→ X ((X ⊗ Y) .

Suppose µ is used to lift ⊗ to
∫

Q.

Proposition
∫

Q is closed if and only if we have are given a collection of order-preserving
maps

{ ιX ,Y : Q(X)op × Q(Y) −−−−−→ Q(X (Y) }X ,Y∈Obj(B) ,

such that

1. for f : X −−−−−→ X ′ and g : Y −−−−−→ Y ′, the following diagram semi-commutes:

Q(X)op × Q(Y) Q(X)op × Q(Y ′)

Q(X ′)op × Q(Y)

Q(X ′ (Y) Q(X (Y ′)

id×Q(g)

Q(f)op×id

ιX ,Y′

ιX′ ,Y

Q(f(g)

2. and

Q(ηX ,Y)(y) ≤ ιX ,X⊗Y (x, µX ,Y (x, y)) ,

Q(evX ,Y)(µX ,X(Y (x, ιX ,Y (x, y))) ≤ y .

: 15/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

. . . a more readable characterisation

Proposition
∫

Q is closed if and only if for each pair of objects X ,Y , the following
diagram

Q(X) × Q(Y) Q(X ⊗ Y)

Q(X) × Q(X ((X ⊗ Y)) Q(X ⊗ X ((X ⊗ Y))

Q(X)⊗Q(ηX ,Y)

µX ,Y

µX ,X((X⊗Y)

Q(evX ,X⊗Y)

commutes, and, for each α ∈ Q(X), the map

1 × Q(X (Y)
α×id
−−−→ Q(X) × Q(X (Y)

µX ,X(Y
−−−−−→ Q(X ⊗ X (Y)

Q(evX ,Y)
−−−−−−→ Q(Y)

has a right adjoint.

: 16/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The beauty of SLatt

Corollary If Q factors (monoidally) as

SLatt

B Pos ,

UQ′

Q

then
∫

Q is monoidal and closed.

Corollary Q-Set =
∫

QX is closed.
For F : Rel −−−−→ Rel comonoidal (and . . .), QF -Set =

∫
QFX is closed.

nuTS =
∫

UP is monoidal closed.

Here UP : Rel −−−−→ SLatt is the ”free completely distributive lattice” functor.

: 17/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

The beauty of SLatt

Corollary If Q factors (monoidally) as

SLatt

B Pos ,

UQ′

Q

then
∫

Q is monoidal and closed.

Corollary Q-Set =
∫

QX is closed.
For F : Rel −−−−→ Rel comonoidal (and . . .), QF -Set =

∫
QFX is closed.

nuTS =
∫

UP is monoidal closed.

Here UP : Rel −−−−→ SLatt is the ”free completely distributive lattice” functor.

: 17/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work

: 18/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting dualizing objects

Let X∗ := X (0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX)

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting dualizing objects

Let X∗ := X (0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX)

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting dualizing objects

Let X∗ := X (0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX)

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting dualizing objects

Let X∗ := X (0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX)

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting dualizing objects

Let X∗ := X (0. An object 0 is dualizing if, for each object X , the canonical map

jX : X −−−−−→ X∗∗

is an iso.

For ω ∈ Q(0), let
ωX := ιX ,0(·, ω) : Q(X)op −−−−−→ Q(X∗) .

Proposition For an object (0, ω) of
∫

Q, TFAE:
• (0, ω) is dualizing,
• 0 is a dualizing object of B and the following diagrams commute:

Q(X) Q(X∗)

Q(X∗∗)
Q(jX)

ωX

ωX∗

• (provided µ is natural) 0 is a dualizing object of B and, for each object X of B,

ωX : Q(X)op −−−−−→ Q(X∗) is invertible.

: 19/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

From ∗-autonomous to Girard

Let B be ∗-autonomous, with 0 dualizing. Let

Q : B −−−−→ SLatt

be monoidal (that is, let µ be natural), so
∫

Q is closed.

Remarks
• Q(I) is a monoid in SLatt, that is, a quantale.
• If 0 = I and (I, ω) is a dualizing object,

then ω is a dualizing element of the quantale Q(I).

Problem
If I is a dualizing object of B and ω is a dualizing element of Q(I),

is (I, ω) a dualizing object of
∫

Q?

: 20/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

From ∗-autonomous to Girard

Let B be ∗-autonomous, with 0 dualizing. Let

Q : B −−−−→ SLatt

be monoidal (that is, let µ be natural), so
∫

Q is closed.

Remarks
• Q(I) is a monoid in SLatt, that is, a quantale.
• If 0 = I and (I, ω) is a dualizing object,

then ω is a dualizing element of the quantale Q(I).

Problem
If I is a dualizing object of B and ω is a dualizing element of Q(I),

is (I, ω) a dualizing object of
∫

Q?

: 20/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A double negation nucleus
Recall: B is ∗-autonomous, Q : B −−−−→ SLatt is monoidal, and ω ∈ Q(0).
For each object X of B, α ∈ Q(X) and β ∈ Q(X ∗), let

〈α, β〉X := Q(evX ,0)(µX ,X∗(α, β)) , so ωX(α) =
∨
{ β ∈ X ∗ | 〈α, β〉X ≤ ω } .

Define then

⊥(β) :=
∨
{α ∈ X | 〈α, β〉X ≤ ω } .

Theorem
Let

¬¬ωX(α) :=
⊥(ωX(α)) and Q¬¬ω(X) := {α ∈ Q(X) | ¬¬ωX(α) = α } .

Then
• Q¬¬ω is made into a monoidal functor Q¬¬ω : B −−−−→ SLatt,
• ¬¬ωX : Q(X) −−−−→ Q¬¬ω(X) is an epi in SLatt, natural in X,
• ω ∈ Q¬¬ω(X) and (0, ω) is dualizing in

∫
Q¬¬ω .

Remark This generalises Hyland/Schalk focused orthogonality structures.
: 21/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A representation theorem

Phase semantics. If Q is a commutative quantale and ω ∈ Q , then
¬¬ω(x) = (x (ω)(ω is a nucleus on Q and the quotient Q¬¬ω is a Girard
quantale.

Completeness of phase semantics. If Q is a commutative Girard quantale,
then we can choose ω ∈ P(Q), so that Q and P(Q)jω are isomorphic quantales.

Theorem
Let 0 ∈ B be dualizing and Q : B −−−−→ SLatt monoidal such that

∫
Q is

∗-autonomous.
Let PUQ be the functor

B SLatt Set SLatt .Q U P

Then Q is naturally isomorphic to PUQ¬¬ω for some ω ⊆ Q(0).
Thus,

∫
Q and

∫
PUQ¬¬ω are equivalent categories.

: 22/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A representation theorem

Phase semantics. If Q is a commutative quantale and ω ∈ Q , then
¬¬ω(x) = (x (ω)(ω is a nucleus on Q and the quotient Q¬¬ω is a Girard
quantale.

Completeness of phase semantics. If Q is a commutative Girard quantale,
then we can choose ω ∈ P(Q), so that Q and P(Q)jω are isomorphic quantales.

Theorem
Let 0 ∈ B be dualizing and Q : B −−−−→ SLatt monoidal such that

∫
Q is

∗-autonomous.
Let PUQ be the functor

B SLatt Set SLatt .Q U P

Then Q is naturally isomorphic to PUQ¬¬ω for some ω ⊆ Q(0).
Thus,

∫
Q and

∫
PUQ¬¬ω are equivalent categories.

: 22/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

A representation theorem

Phase semantics. If Q is a commutative quantale and ω ∈ Q , then
¬¬ω(x) = (x (ω)(ω is a nucleus on Q and the quotient Q¬¬ω is a Girard
quantale.

Completeness of phase semantics. If Q is a commutative Girard quantale,
then we can choose ω ∈ P(Q), so that Q and P(Q)jω are isomorphic quantales.

Theorem
Let 0 ∈ B be dualizing and Q : B −−−−→ SLatt monoidal such that

∫
Q is

∗-autonomous.
Let PUQ be the functor

B SLatt Set SLatt .Q U P

Then Q is naturally isomorphic to PUQ¬¬ω for some ω ⊆ Q(0).
Thus,

∫
Q and

∫
PUQ¬¬ω are equivalent categories.

: 22/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work

: 23/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting coalgebras of functors

Suppose F : B −−−−→ B has been lifted to F :
∫

Q −−−−→
∫

Q by means of the lax
natural ιX : Q(X) −−−−→ Q(F(X)).

Proposition

CoAlg(F) '
∫

Qν −−−−→ CoAlg(F)

with Qν : CoAlg(F) −−−−→ Pos defined by

Qν(ψ : X −−−−→ F(X)) := {α ∈ Q(X) | Q(ψ)(α) ≤ ιX(α) } .

Corollary If Q : B −−−−→ Pos, with the Q(X) complete lattices, then

νX .F(X) = ((ν.F , ξ) , ν.φ)

with

φ := Q(ν.F)
ιν.F
−−−−→ Q(F(ν.F))

Q(ξ−1)
−−−−−−→ Q(ν.F) .

: 24/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting coalgebras of functors

Suppose F : B −−−−→ B has been lifted to F :
∫

Q −−−−→
∫

Q by means of the lax
natural ιX : Q(X) −−−−→ Q(F(X)).

Proposition

CoAlg(F) '
∫

Qν −−−−→ CoAlg(F)

with Qν : CoAlg(F) −−−−→ Pos defined by

Qν(ψ : X −−−−→ F(X)) := {α ∈ Q(X) | Q(ψ)(α) ≤ ιX(α) } .

Corollary If Q : B −−−−→ Pos, with the Q(X) complete lattices, then

νX .F(X) = ((ν.F , ξ) , ν.φ)

with

φ := Q(ν.F)
ιν.F
−−−−→ Q(F(ν.F))

Q(ξ−1)
−−−−−−→ Q(ν.F) .

: 24/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting coalgebras of functors

Suppose F : B −−−−→ B has been lifted to F :
∫

Q −−−−→
∫

Q by means of the lax
natural ιX : Q(X) −−−−→ Q(F(X)).

Proposition

CoAlg(F) '
∫

Qν −−−−→ CoAlg(F)

with Qν : CoAlg(F) −−−−→ Pos defined by

Qν(ψ : X −−−−→ F(X)) := {α ∈ Q(X) | Q(ψ)(α) ≤ ιX(α) } .

Corollary If Q : B −−−−→ Pos, with the Q(X) complete lattices, then

νX .F(X) = ((ν.F , ξ) , ν.φ)

with

φ := Q(ν.F)
ιν.F
−−−−→ Q(F(ν.F))

Q(ξ−1)
−−−−−−→ Q(ν.F) .

: 24/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting algebras of functors

Remark
We have

AlgC(F) = CoAlgCop (Fop) .

Considering that SLatt is auto dual (∗-autonomous), we can get initial algebra lifting from
the previous proposition/coroallary when Q : B −−−−−→ SLatt.

In general:
Proposition If Q(X) is a complete lattice (for all objects X), then define
Qµ : Alg(F) −−−−−→ Pos by

Qµ(ψ : F(X) −−−−−→ X) = {α ∈ Q(X) | Q(ψ)(ιX (α)) ≤ α } .

Then Qµ is a pseudofunctor, so
∫

Qµ is well defined. If Q(f) preserves suprema of chains,
then

µX .F(X) = ((µ.F , ξ), µ.φ)

with

φ := Q(µ.F)
ιµ.F
−−−→ Q(F(µ.F))

Q(ξ)
−−−−→ Q(µ.F) .

: 25/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Lifting algebras of functors

Remark
We have

AlgC(F) = CoAlgCop (Fop) .

Considering that SLatt is auto dual (∗-autonomous), we can get initial algebra lifting from
the previous proposition/coroallary when Q : B −−−−−→ SLatt.

In general:
Proposition If Q(X) is a complete lattice (for all objects X), then define
Qµ : Alg(F) −−−−−→ Pos by

Qµ(ψ : F(X) −−−−−→ X) = {α ∈ Q(X) | Q(ψ)(ιX (α)) ≤ α } .

Then Qµ is a pseudofunctor, so
∫

Qµ is well defined. If Q(f) preserves suprema of chains,
then

µX .F(X) = ((µ.F , ξ), µ.φ)

with

φ := Q(µ.F)
ιµ.F
−−−→ Q(F(µ.F))

Q(ξ)
−−−−→ Q(µ.F) .

: 25/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Plan

1. Background

2. Lifting closed structure

3. Dualizing objects, star-autonomy

4. Coalgebras and algebras of a functor

5. Ongoing and future work

: 26/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

TODO list

• Other kind of liftings:
• limits/colimits,
• monads, comonads,
• algebras of a functor,
• linearly distributive structures, . . .

• Understand various monoidal categories of the form
∫

Q w.r.t. the theory just
developed. In particular:
• finite dimensional Banach (normed) spaces and contracting linear maps.

• Understand the categorical structure of various categories of fuzzy relations,
as generalization of Q-Set, by replacing Rel by Rel(Q).

: 27/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

TODO list: an interesting conjecture

All the previous computations as if we had a typed quantale.

Conjecture Let B be ∗-autonomous and let Q : B −−−−→ SLatt be monoidal.
Then

∫
Q is ∗-autonomous if and only if Q is a Girard monoid in the monoidal

category [B,SLatt] (with convolution as tensor).

Remarks
• If B is ∗-autonomous, then [B,SLatt] is ∗-autonomous as well (Egger 2008).
• The conjecture yields a test ground for the results in (De Lacroix and S.,

CSL 2023).

: 28/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

TODO list: an interesting conjecture

All the previous computations as if we had a typed quantale.

Conjecture Let B be ∗-autonomous and let Q : B −−−−→ SLatt be monoidal.
Then

∫
Q is ∗-autonomous if and only if Q is a Girard monoid in the monoidal

category [B,SLatt] (with convolution as tensor).

Remarks
• If B is ∗-autonomous, then [B,SLatt] is ∗-autonomous as well (Egger 2008).
• The conjecture yields a test ground for the results in (De Lacroix and S.,

CSL 2023).

: 28/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

TODO list: an interesting conjecture

All the previous computations as if we had a typed quantale.

Conjecture Let B be ∗-autonomous and let Q : B −−−−→ SLatt be monoidal.
Then

∫
Q is ∗-autonomous if and only if Q is a Girard monoid in the monoidal

category [B,SLatt] (with convolution as tensor).

Remarks
• If B is ∗-autonomous, then [B,SLatt] is ∗-autonomous as well (Egger 2008).
• The conjecture yields a test ground for the results in (De Lacroix and S.,

CSL 2023).

: 28/29

Background Lifting closed structure Dualizing objects, star-autonomy Coalgebras and algebras of a functor Ongoing and future work

Thanks!

: 29/29

Some relevant (and incomplete) literature

Some relevant (and incomplete) literature

A. Carboni and R. F. C. Walters.

Cartesian bicategories. I.
J. Pure Appl. Algebra, 49:11–32, 1987.

C. de Lacroix and L. Santocanale.

Unitless Frobenius quantales.
working paper or preprint, Apr. 2022.

C. de Lacroix and L. Santocanale.

Frobenius structures in star-autonomous categories.
In B. Klin and E. Pimentel, editors, CSL 2023, volume 252 of
LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

J. Egger.

Star-autonomous functor categories.
Theory Appl. Categ., 20:307–333, 2008.

M. Fiore, Z. Galal, and F. Jafarrahmani.

Fixpoint constructions in focused orthogonality models of
linear logic.
To appear in the proceeedings of the conference MFPS 2023,
Electronic Notes in Theoretical Informatics and Computer
Science, 2023.

J. Harding, C. Walker, and E. Walker.

Categories with fuzzy sets and relations.
Fuzzy Sets Syst., 256:149–165, 2014.

I. Hasuo, K. Cho, T. Kataoka, and B. Jacobs.

Coinductive predicates and final sequences in a fibration.

Electronic Notes in Theoretical Computer Science,
298:197–214, 2013.
Proceedings of MFPS XXIX.

C. Hermida.

On fibred adjunctions and completeness for fibred categories.
In Recent trends in data type specification. 9th workshop on
specification of abstract data types joint with the 4th
COMPASS workshop, Caldes de Malavella, Spain, October
26–30, 1992. Selected papers, pages 235–251. Berlin:
Springer, 1994.

M. Hyland and A. Schalk.

Glueing and orthogonality for models of linear logic.
Theor. Comput. Sci., 294(1-2):183–231, 2003.

F. Jafarrahmani.

Fixpoints of Types in Linear Logic from a
Curry-Howard-Lambek Perspective.
PhD thesis, Université Paris Cité, 2023.

J. Moeller and C. Vasilakopoulou.

Monoidal Grothendieck construction.
Theory Appl. Categ., 35:1159–1207, 2020.

A. Schalk and V. de Paiva.

Poset-valued sets or how to build models for linear logics.
Theor. Comput. Sci., 315(1):83–107, 2004.

M. Shulman.

Framed bicategories and monoidal fibrations.
Theory and Applications of Categories, 20(18):650–738,
2008.

: 29/29

	Background
	Lifting closed structure
	Dualizing objects, star-autonomy
	Coalgebras and algebras of a functor
	Ongoing and future work
	Appendix
	Some relevant (and incomplete) literature

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	hours:
	minutes:

