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A crash course in generatingfunctionology

aka symbolic and analytic combinatorics



Enumerative combinatorics and generating functions

Let A be a set of combinatorial objects equipped with an integer size |.| and assume
that for each n the set

A, ={{a e Ast. |a| =n}

is finite, and let a,, = |.A,,| denote its cardinality.

The generating function (gf) of the class A w.r.t. the size is

A= At) = Z ant" = Z el

n>0 acA

Refined enumeration:
A(u) = A(u, t) := Z g Ut = Z yP(@) ¢l
n,k>0 acA
for some parameter p: A — Z, and ag ., = |{a € A, | p(a) = k}
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1
Here A(z) = % — %(1 — 42)1/2, so that a,, = [t"]A(t) ~ (—%) : ”_22\/%
| | n—-—+:0oo

(1/4)™" ~ L= . 4nn=3/2
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Leaves In plane trees

A symbolic specification

A=zu+ A x A with z atom of size 1 and additive size
The gf translation

A(u,t) = tu + A(u, t)* with unique sol A(u,t) = Z aru"t" in Clu][[t]].

n>0
= exact formulas or efficient enumeration algorithms
possible (Naranaya numbers) but increasingly cumbersome.
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average number of lea in t f An: ﬁn—— ¢ kag n, = —[t"]— (1,
ge nu ves in trees o Z (1) = Z ag - ]8 (1,t)
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Recall A(z) =1 —2(1—-42)1/? = an =1t ]A(t)n;;wm 4™ 3/
8A 1/2 — bn ~ %n
on the other hand 5-(1,z2) = 4(1 —42)" 2 4+ 0((1 - 2/p)?) n—+00
= [t"]22(1,t) ~ - .4npl/2

n—>+00 8\/_
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Applies in particular to non ambiguous context free grammars.
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A (slightly) different family of trees

and catalytic equations of order one



Dyck-tukasiewicz trees

B = {blue/red binary trees} : planted binary tree with blue and red (inner) edges
F = {Non negative bicolored trees} : no more red than blue in each planted subtree

D = {Dyck-tukasiewicz trees} : non negative and #{ red edges } = { blue edges }

s -
e

1, 4, 48,832, 17408, 408576, 10362880, 277954560, 7777026048, 224908017664
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in corresponding subtree.




Dyck-tukasiewicz trees

B = {blue/red binary trees} : planted binary tree with blue and red (inner) edges
F = {Non negative bicolored trees} : no more red than blue in each planted subtree

D = {Dyck-tukasiewicz trees} : non negative and #{ red edges } = #{ blue edges }
Label each inner edge or vertex with the difference between nbs of blue and red edges
in corresponding subtree.

o p 0
0 o\, 1/ ©
of 1 o O 0
R, U oy o L/ 0™ ¢
N/ 2\ 1/ 0
0 N o 0N

1 0
0

Labels from a leaf to the root form a Lukasiewicz walk. 5123323221 00




Enumeration of Dyck-tukasievicz trees
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Enumeration of Dyck-tukasievicz trees

Proposition. The familly F of non negative trees admit the extended symbolic specification

. 2
F = zX (1—|—au]-"—|—bu_ (.F\D))

The gf traduction: The bivariate gf F'(u) = F'(u,t) of non negative trees with u marking root label
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satisfies F'(u) =t (1 +u F(u) +
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In particular
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_ m 4m4-2Y
"] f = %[mn Nz —42?) (1 + 427)*" = (m—|—1é)l(2m—{—1) ( n:: ) with n = 2m + 1
Observe. [t"]V ~ cy - p~"n~3/2 with standard 3/2 tree counting exponent
but [t"™]f ~ cy . p~™n~5/2 with critical exponent 5/2

= direct context-free specification for f cannot exist!



Other instances of catalytic equations

In fact, various families of combinatorial structure are known to involve such equations with the
divided differences %(F(u) — F'(0)) with respect to a catalytic variable.

e Various families of planar maps and triangulations (Tutte et al. 60’s)

e Various families of pattern avoiding permutations (West's two-stack sortable, 90's)
e Tamari intervals (Chapoton, 2000's, Bousquet-Mélou-Chapoton 2022)

e Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)

e Duchi et al.’s fighting fish and variants (2016)

e Chen's fully parked trees (2021)

All these examples lead to the same 5/2 counting exponent.



A generic tree interpretation (Duchi-S. 2020)

A (Q-tree is a plane tree with black and red edges and blue bullets
on vertices, with weight g; ;5 on vertices with ¢ black edge children,
7 red edge children and k bullets.
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A generic tree interpretation (Duchi-S. 2020)

A (Q-tree is a plane tree with black and red edges and blue bullets
on vertices, with weight g; ;5 on vertices with ¢ black edge children,
7 red edge children and k bullets.

Let 7[x] denote the subtree of 7 at vertex or edge x, and let
¢+ (x) = #{blue bullets in 7[x]} — #{red edges in 7[z]}

A Q-tree T is non negative if £-(e) > 0 for all edges e. G020 G002 9010 G211 000 G001 G010 Joo2 = 1

A Dyck-tukasiewicz tree QQ-tree is a non negative QQ-tree 7 with ¢(7) = 0 (where £(7) := £ (root)).

Let Fin(t) be the weighted gf of non negative Q-trees 7 with £(7) = m
and F(u) = F(u,t) =3, 50 Fm(t)u”® and f = f(t) = Fin(t) = F(0,1) . e

be the gf of DL-Q-trees,
N

F;’a' f; >/

" — I< + (/Y*\/,+...+(m;> 4((/'-/1_)4- ...+{ﬁ,-|))

Proposition. F'(u) is* the unique fps solution of F —
F(u) = tQ(F(u), L(F(u) - f),u) i

where Q (v, w,u) = Z qijkviwjuk is the vertex type gf.
1,j,k=>0



Open and closed Pbmrk—tey

The skeleton trees have () ® O
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e applications: binary nodes ) O

A
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with condition that in each subterm there are more variables than abstractions.
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Open and closed planar A-terms

The skeleton trees have () ® O
.. . A A
e applications: binary nodes )\ O O
e abstractions: unary nodes
i O (U
e variables: leaves, represented as arrow. \
with condition that in each subterm there are more variables than abstractions. )\

Let the catalytic parameter be excess(7) = #{variables} — #{abstractions}

Then the catalytic equation is

P(u) = tu+ tP(u)® + L (P(u) - p)

cf Zeilberger-Giorgietti 15, Singh 22 Eq (3.5)

Open planar A-terms immediately correspond to ()-trees with:

e applications: binary nodes carrying two black edge
e abstractions: unary nodes carrying one red edge =

e variables: leaves with unit catalytic increment.

Then closed planar A\-terms correspond to DL-Q-trees.



Analytic combinatorics for catalytic equations

and the universality of counting exponents



Drmota-Noy-Yu theorem

Theorem (Drmota, Noy, Yu, 2020): Let F'(u) = F(u,t) be the unique power series solution of the
equation

F(w =1Q (F(w. + (Fw) - /), u)

where Q(v,w,u) is a non linear® polynomial with non negative coefficients. Then f = f(t) = F(0)
has a dominant singularity p > 0 with singular expansion

f(z) =ap —vp(1 = 2/p) =65 (1 = 2/p)*/? + O((1 = 2/p)?)
with computable positive constants oy > 0, v and 05 > 0.

Under standard technical aperiodicity conditions, transfer theorems then imply

5 .
[tn]f(t) ~ F(_g/z) PN 5/2,

Corollary (Drmota, Noy, Yu, 2020): The critical counting exponent 5/2 is generic for combinatorial
classes governed by a non negative equation with one catalytic variable of order one.

+ additive auxiliary parameters have linear expectation (and Gaussian law)




Proof technics: Bousquet-Mélou—Jehanne's method

 awmiedto F(u) = 0Q (F(u) L(F(w) ~ f).u

yields  Fl(u) = F(u) -t (Q(...) + 2Q,(...)) —t 2 E=S o (. )y +¢Ql(...)
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 awmiedto F(u) = 0Q (F(u) L(F(w) ~ f).u

yields  Fl(u) = Fl(u) -t (Qh(...) + 2Q,(...) —t 2 E=S o (. )y +¢Ql(...)

(*)
The unique fps U = U (t) satisfying U =t U Q/, (F(U), %,U) +tQ), (F(U), %,U)

cancels the left term ().



Proof technics: Bousquet-Mélou—Jehanne's method

1
2 applied to  F'(u) =tQ (F(u),a(F(u)—f),u)
yields  Fl(u) = Fl(u) -t (Qh(...) + 2Q,(...) —t 2 E=S o (. )y +¢Ql(...)

(*)
The unique fps U = U (t) satisfying U =t U Q/, (F(U), F(U)_f,U) +tQ), (F(U), F(U)_f,U)

U U
cancels the left term ().

Then U,V =F(U), W = % and f satisfy a polynomial system

(U = tUQL(V,W,U)+tQ., (V,W,U)
Vo= tQ(V,W,U)

1 0 = —tLWQLV,W,U)+tQL(V,W,U)

L f = v-Uuw

This system shows that f is algebraic but it is not non negative in general

—> Drmota-Lalley-Wood does not apply (except if Q!, = 1, cf Chapuy 2006)



Proof technics: Drmota, Noy, Yu's trick and tour de force

- S —
U, V, W and [ satisfy Use Line 1 to replace Q’, by Q. in Line 3:
(U = tUQL(V,W,U) + QL (V,W,U) (U = tUQLV,W,U) +tQl,(V, W, U)
]V = tQ(V,W,U) V= teVWU)
0 = —t+=WQLV,W,U)+tQ,(V,W,U) W = tWQ,(V,W,U)+tQ,(V,W,U)
f = V-UW S = V=-UWwW
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0 = —t+=WQLV,W,U)+tQ,(V,W,U) W = tWQ,(V,W,U)+tQ,(V,W,U)
f = V-UW S = V-UW

The power series U, V and W are now defined by a non negative strongly connected system,

and DLW theorem immediately implies

U = ay—Bu(l-2/p)"/?+0(1-z/p)
V. = av-Bv(l-2/p)'/?+0(1-z/p)
W = aw—Bw(l—z/p)'/?+001 - z/p)
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f = V-UW S = V-UW

The power series U, V and W are now defined by a non negative strongly connected system,

and DLW theorem immediately implies

U = ay—Bu(l-2/p)"/?+0(1-z/p)
V. = av-Bv(l-2/p)'/?+0(1-z/p)
W = aw—Bw(l—z/p)'/?+001 - z/p)

DNY then show that there is a systematic cancellation in f =V — UW:

[ =ay — (Byr—oaBy

=0

e ) (1 — 2/p)' /7 +O(1 — z/p)
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f = V-UW S = V-UW

The power series U, V and W are now defined by a non negative strongly connected system,

and DLW theorem immediately implies
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DNY then show that there is a systematic cancellation in f =V — UW:

f =y — Brue=appwr—emwBr) (1 — 2/p)"/? +v5(1 — 2/p) — 65(1 — 2/p)*/? + O((1 — 2/p)?)
=0
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Proof technics: Drmota, Noy, Yu's trick and tour de force

- S ~
U, V, W and [ satisfy Use Line 1 to replace Q’, by Q. in Line 3:
(U = tUQy(V,W,U)+tQ,(V,W,U) (U = tUQL(V,W,U)#tQQU(V,W,U)
< V o= tQ(V,W,U) ~ V. = tQ(V,W,U)
0 = —t+=WQLV,W,U)+tQ,(V,W,U) W = tWQ;(V,W,U)JHQ;(V,W,U)
f = V-UW S = V-UW

The power series U, V and W are now defined by a non negative strongly connected sﬁystem,

and DLW theorem immediately implies

U = ay—-Bu(l—2/p)"? +w(l—2z/p)—u(l—2/p)*?*+0(1—-2/p)?
V. = ay—Bv(l—z/p)"/? +w(l—z/p) —bv(1—2/p)*? +O0(1 —2/p)?)
W = aw—Bwl—=2/p)"?+yw@l —2/p) = dw(l—2/p)** +P((1 — z/p)?)

DNY then show that there is a systematic cancellation in f =V — UW:
f =y — Bru=appwr—ewBr) (1 — 2/p)"/? +v7(1 — 2/p) — 65(1 — 2/p)*/?|+ O((1 — 2/p)?)

“ —

and a quite delicate analysis allows to check that|éf # 0] = [t"]f(t) ~ % cp""n

—5/2




A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

D Fl(u) = Flw) -t (Qy(.)+ 1@ () —t 2L gr (L) +tQu(..)

cama,@ !92 O s U



A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

 FL(uw) = FL(w) -t (QL(.)+ 2QL(.)) —t L EW= L gr )y 1@l ()

cama,@ !92 S S U

Fl(u) = F{(u) - ¢ (Qy(-- )+ 2Q(.)) =t L1 QL)+ Q(...)
- " o

r Q(-.)
ez U O = tft—Uwa(...)




A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

 FL(uw) = FL(w) -t (QL(.)+ 2QL(.)) —t L EW= L gr )y 1@l ()

cama,@ !92 S S U

F(u) = Fl(u) -t (Q)(...) + ELFQL( )+ QL)

pwsU 0O - tf{
WS

b= QG v
t 1-tQ!(...) 1-tQ,(V,W,U)

=




A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

Then U, V, W and f are the unique fps satisfying the system

(U = tUQL(V,W,U)+tQ.,(V,W,U) Vo = tQV,W,U) /
W= tWQLV.W,U) +tQ,(V,W,U) o=t {1+R)-QV, W U)
\ V = tQ(V,W,U) =< U = t-(1+R) -Q,(V,W,U)
tfl = 14 W = t-(1+R) Q,(V,W,U)
\ t 1—t¢ Qg(vava) \ tfé = (]. —|— R) . V



A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

Then U, V, W and f are the unique fps satisfying the system

(U = tUQL(V,W,U)+tQ.,(V,W,U) Vo = tQV,W,U) /
W= tWQLV.W,U) +tQ,(V,W,U) o=t {1+R)-QV, W U)
\ V = tQ(V,W,U) =< U = t-(1+R) -Q,(V,W,U)
tfl = 14 W = t-(1+R) Q,(V,W,U)
\ t 1—t¢ Qg(vava) \ tfé = (]. —|— R) . V

This system for V', R, U and W is™ strongly connected, non linear and non negative

and tf/ is a positive combination of R and V.

Drmota-Lalley-Wood then immediately implies that tf]’c has generic square root singularity

tfi = (1+ar)ay — (avBr + (01 +ar)Bv))(1—2/p)/? + 01 - z/p)
>



A new proof: singular behavior via marking

Fu) =1Q (F(. (F@) - )

Then U, V, W and f are the unique fps satisfying the system

(U = tUQL(V,W,U)+tQ.,(V,W,U) (Vo = tQ(V,W,U) /
W = tWQL(V,W,U)+tQ., (V,W,U) B= t-(1+R) Q(V,WU)
1 V. = tQV,W,U) = U = t-(1+R) Q,(V,W,U)
tfl = 14 W = t-(1+R) Q,(V,W,U)
L t 1-t Q! (V,W,U) \ tfé _ (1—|—R)-V

This system for V', R, U and W is™ strongly connected, non linear and non negative

and tf/ is a positive combination of R and V.

Drmota-Lalley-Wood then immediately implies that tf]’c has generic square root singularity

tfi = (1+ar)ay — (avBr + (01 +ar)Bv))(1—2/p)/? + 01 - z/p)
>

Corollary (Drmota-Noy-Yu 2020):

(] () = E[eef (1)~ SVERECEORIBY L pmnp=5/2,




Universal exponents for typical label and depth

Theorem (Duchi-S. 2020) The series V = F'(U) is the gf of DL-Q-trees with a marked red edge.

Theorem (S.23). The series A = F) (U) is the gf for of DL-Q-trees with a red marked edge
counted by the value of the label of the marked red edge. Then™

A=ap—B\(1—z/p)'/* +0((1 - z/p)'/?)

Corollary (S. 23) The average label value in DL-Q-trees of size n is

[ A(t) n=5/4 1/4
IV oot maym ~ ctenl/h,

Theorem (S. 23). The series A = FJ/(U) is the gf of DL-Q-trees with a red marked edge with a
marked vertex in its subtree. Equivalently A is the gf of DL-()-trees with a red marked vertex
counted by the red-depth of the marked vertex. Then*

A= (1_5/Ap)1/4 + O((l o Z/p)o)

Corollary (S. 23). The average vertex red-depth in DL-Q-trees of size n is

GAINO N
EPTEF (8) 1 oo

n—3/4 3/4
n—3/2

cte - ~ cte-n .




Applications

e The average value \,, of node labels and 9,, of red edges on path to the root
In a random ()-tree of size n.

E(An) ~ cte-nl/%. E(5,) ~ cte-n3/*.

n—oo n—oo

e The width \,, and depth ¢,, of a random cut in a uniform random fighting

fish of size n. ot . 5
o5 ; i'-_'l-.i'!.‘."'#-.'

A

|"l =
e The average length \,, of backward edges and recursion stack size 9,, during
the leftmost depth first search traversal of a uniform random planar map
with n edges.
e The average flow A, of cars at a random vertex and its depth o,, in a
random fully parked parking tree of size n.




Applications

e The average value \,, of node labels and 9,, of red edges on path to the root
In a random ()-tree of size n.

E(An) ~ cte-nl/%. E(5,) ~ cte-n3/*.

n—oo n—oo

e The average excess of nodes \,, and average number of abstractions above
node 9,, in a closed planar A-term of size n.




And now for something different...

Bijections!



From catalytic to context free specs, bijectively

Fu) =1Q (F(w. (F) - f).u)

-y =
3R -

1 .o -1 -2 I1 '2 .1
o i

@YY



From catalytic to context free specs, bijectively

Fu) =tQ (F(w.  (Plw) - ).u)

Ccw-closure: from e to o ccw.
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Rewiring: detach red edges from o




From catalytic to context free specs, bijectively

Fu) =tQ (F(w.  (Plw) - ).u)

Ccw-closure: from e to o ccw.
Rewiring: detach red edges from o

Reorient: away from the mark.




From catalytic to context free specs, bijectively

Lemma (Duchi-S. 23). The ccw-closure
1 . A .
Fu) =tQ (F(u), a(F(u) _ f),u) and rewiring of a DL-()-tree is a tree.

Proposition (Duchi-S. 23).

Ccw-closure and rewiring of DL-()-trees are
injective mappings, and their inverse are
cw-closure followed by rewiring.

Ccw-closure: from e to o ccw.
Rewiring: detach red edges from o

Reorient: away from the mark.




From catalytic to context-free specs, bijectively

1
Flu) = tQ (F<u>, L(Ew) - . u)
r VvV — t-Q(V,W,U)
R = t-(14+R)-Q,(V,W,U)
~{ U = t-(1+R)-Q, (V,W,U)
W = t-(1+R)-Q,(V,WU)

Theorem (Duchi-S. 23).

The node gf () and its derivatives induce
the node gfs of a family of multitype trees
governed by the companion algebraic system.

Moreover these multitype trees are exactly the
images of marked DL-()-trees by closure and
rewiring!




Planar A-terms, closure and rewiring
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Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p)ZQ(P(U),%(P(U)—p),%t)

Q(v,w,u,t) —C). —C(
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Planar A-terms, companion context-free spec
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Q(v,w,u,t) —C). —C(
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Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p)ZQ(P(U)ai(P(U)—p),u,t)

Qv,w,u,t) = O + —C( '_f v:——CfUJr —-C(:+ —O>— W

Q
=
|
_|_
=
_I_
=



Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p)ZQ(P(U)yi(P(U) p) u, )

Qv,w,ut) = = + —C(if v_——o’+——c( L O

v
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=
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=
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Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p)ZQ(P(U)yi(P(U) p) u, )

Qo,w,ut) = =T + —C( V——’d+—’(:< + O
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Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p)ZQ(P(U)yi(P(U) p) u, )

Qo,w,ut) = =T + —C( V——’d+—’(:< + O

R _O\+ « 0 + R"O< + R"O::
Qu=—C + 0 + 0 S R—Cf
Qu=10 + 0 + —Ox U= «Ce— + R



Planar A-terms, companion context-free spec

P(u) = tu+ tP(u)® + t(P(U)—p) ZQ(P(UL%(P(U)—p) u, )

kut

Q
=
|

Q
=
]

—O‘—C(if

v_—>(f+—>C< + —=O—w

- s
+R-O<+R-O<



Planar A-terms, closure and rewiring

Corollary.
Rewiring yields a size-preserving bijection between marked planar A-terms and
multitype trees with context-free spec:

N R
——Cﬁ 4(#3/ ) —-0—Q
V= + +—~O< + =0, +
1% v | i

v

R 2
= -'é) " _.? i "é)\ + '? V= 25y +tV?
| R
v v




Conclusion

The method is systematic:

catalytic equation of order one
= bijection via ccw closure and rewiring
= multitype trees with companion context free spec

Proofs based on context free decomposition of marked Dt-Q-trees (Duchi-S. 22)

However it often does not gives directly the simplest context free spec.

Moreover in general the bijection starts from the derivation trees of the catalytic
decomposition...



Thank you!



The general case: further useful observations!

Fu) =1Q (F(w, L (F@) - f),au)

2o Fiw) = Fo(w) t (Qu( )+ 2Q () =t LEW=E g () +tal ()
CMQ@J 52 /UL:U

Fi(w) = F{(u) ¢ (QU( )+ 2Qu()) =t LA QL(.) + QL)

Yo

& ) = Fw) -t (Qu( )+ L))+t (F=E — 2y Q)

.



The general case: further useful observations!

Fu) =1Q (F(w, L (F@) - f),au)
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Fi(w) = Fj(u) -t (Qu(.) +2Qu(. )+t (F=L — 2y Qi ()

oz U O = |\WU =0f, =af, and V =UW+ f=0>b(bf)]




The general case: further useful observations!

Fu) =1Q (F(w, L (F@) - f),au)

2o Fiw) = Fo(w) t (Qu( )+ 2Q () =t LEW=E g () +tal ()
cama.@ 52 /UL:U

o Flw) =Fl) -t Q)+ 2Qu(.)) —t2F QL. )+QC.)

Fi(w) = Fj(u) -t (Qu(.) +2Qu(. )+t (F=L — 2y Qi ()

oz U O = | WU =0bf, =af, and V =UW+ f=0(bf)]

Systematic combinatorial interpretation of V' as gf of Di-trees with a marked red edge!



Derivation of the generic 1/4 exponent

Returning to the original system:
P(F(u), f,u,t) =0
where P(v, f,u,t) = —v 4+ tQ(v, %(U — f),u)
Upon derivating w.r.t. u:
Py(F(u), f,u,t) g F(u) + Py (F(u), f,u,t) =0

so that the system of equations defining V =V (t), U = U(t) and f = f(t) reads

[ P(V,f,U,t)=0
(St) ¢ PV, 1, U, t) =0
P (V. f,Ut)=0
In particular the dominant singularity p is the unique solution of (S,) and
<PU(OéV,Oéf,OéU,,0) Pi(av,ar,au, p) Pu(OéV,Oéf,OéU,,O)>
det

\

le)/v(avaafvaUap) P,;,f(()év,()éfOZU,p) PQ/,/u(OéV,Oéf,OéU,p)
P,é/u(OCV,Oéf,OéU,t) Pqi/f(avvafvaUap) P{L/u(C\KV,CKf,OéU,p)

= —Pi(...) (P (.. )P () = Pl(..)%) =0 (Drmota, Noy, Yu 2020)



Derivation of the generic 1/4 exponent
Restarting from P/ (F(u), f,u,t)a%F(u) + P/ (F(u), f,u,t) =0

 P(V(t), f(t),U(t),t) =0
and { P/ (V(¢), f(t),U(t),t) =0 with dominant ps.t. P’ .P/’ — P"2 =
| PLV(D), £, U(1). 1) = 0

upon derivating again
PI(F(u), f,u,t) 25 F(u)

+P! () (2 F(w) + 2P (. )2 F(u)+ P (..)=0
So that V), satisfies the quadratic equation

P (V, f,Ut)-VZ+2P) (V, f,Ut)-VA+ PV, f,U,t) =0

with reduced discrimimant
A=At)=P! (V, f,U, t)2 — P (V. f,Ut)P! (V, f,U,t)

which cancels at t = p: A(t) = Ba(l —t/p)/2 +O(1 —t/p)



Derivation of the generic 1/4 exponent

V) satisfies the quadratic equation

P! (V, f,U,t)-VZ+2P! (V, f,Ut)-Vx+ P! (V,f,U,t) =0

with reduced discrimimant

A=P'(V, f,Ut?—-P'(V,f,UtP! (V, fUT¢t)

which cancels at t = p: A(t) = Ba(l —t/p)/2 +O(1 —t/p)

Hence:

— P — VAWM

VA(t) — P/ = Q) — \/BiA(l - t/p)1/4 T O(\/1 — t/p)

and by transfert theorem: [tV (t) ~ 4@) L
so that E(\,) = NN ( VBa  p " ) /(2L P_") W VBa VT

. 1/4
[tV (1) AT(2) nb/4 2/t  n3/2 Bv 2I'(2)

n






