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Resumé

Objective : Characterise congruences of multinomial lattices

and their continuous analogues.

Lattice theoretic approach to rewriting, algebraic semantics of
linear logic.

Inspiration : Geometric interpretation of these lattices.

Elements can be seen as directed paths.
Idea : Join-prime elements as points separating these paths:
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baab

88

abba

ff
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ff 88
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OO

f : I ! I
f(
W
S) =

W
f(S)

form a quantale

Relation to dihomotopy

Priestley duality

Frame duality
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Overview and context : the discrete case

Multinomial lattices were introduced by Bennett & Birkhoff.

Study of the rewriting system associated to commutativity from a
lattice-theoretic perspective:

abbaa ! ababa ! aabba ! aabab ! aaabb

These lattices and their congruences are strongly related to

concurrency.

The word abbaa represents interleaving actions of two agents.

Multinomial lattice congruences give rise to certain Parikh
equivalences central to scheduling problems in concurrency.

A geometric interpretation closely relates these lattices to a
semantics of concurrent systems, namely directed topology.
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In this talk. . .

Goal: instantiate the link between dihomotopy and binomial

lattice congruences.

Binomial lattices.

Define binomial lattices and describe their congruences.
Recall their interpretation as lattices of lattice paths.
Describe the geometric intuition of their congruences.

Directed algebraic topology.

Recall the notion of directed space, and define cubical complexes.
Introduce the binomial complex and describe the dihomotopy
types of its subcomplexes.

Result: the correspondence.

Congruences correspond to dihomotopy types of subcomplexes.
The congruence lattice of a binomial lattice is isomorphic to the
lattice of subcomplex dihomotopy types.

We will end by briefly describing ongoing work in the continuous

setting.
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Binomial lattices and their congruences
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Multinomial lattices

Given v 2 Nk
, we denote by L(v) the set of words on the alphabet

⌃ = {a1, . . . , ak} such that:

w contains vi occurrences of the letter ai.
We equip this set with the partial order generated by

w  w0 () 9u, v
(
w = u · aiaj · v
w0 = u · ajai · v

and i < j.

The poset (L(v),) has the structure of a lattice.

These structures generalize permutations to permutations of

multisets, called multipermutations.

Indeed, for v = (1, . . . , 1), we have L(v) = Sk.
The order  generalizes the weak Bruhat order defining the
permutohedron.
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Binomial lattices

Today, we will focus on binomial lattices:

Given n,m 2 N, we denote by L(n,m) the set of words on the

alphabet ⌃ = {a, b} such that:

w contains n occurrences of the letter a,
and m occurrences of the letter b.

which we equip with the partial order generated by

w  w0 () 9u, v
(
w = u · ab · v,
w0 = u · ba · v.

We will henceforth denote L(n,m) simply by L.

Proposition (L. Santocanale ‘05)
L is a distributive lattice.

Cameron Calk (LIS) Congruences & Dihomotopy 23/01/2024 8 / 26



As lattices of lattice paths

The elements of L are interpreted as paths in an n by m grid:

w 2 L ! fw : [n+m] ! [n]⇥ [m]

an occurrence of a is a step in the x-axis,
an occurrence of b is a step in the y-axis.

The ordering is recovered as a point-wise ordering on paths.

The join and meet of L become point-wise maxima and minima:

Note that these paths are increasing in each coordinate.
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Distributive lattice congruences

Let L be a distributive lattice.

A congruence on L is an equivalence relation ✓ ✓ L⇥ L which is

compatible with the lattice operations.

In distributive lattices, congruences are given by sets of join-prime

elements.

j 2 L is join-prime if

j = u _ v ) j = u or j = v.

The set of join-prime elements of L is denoted by J .

Given S ✓ J , the congruence ⌘S is defined by:

u ⌘S v () 8j 2 S, j  u iff j  v.
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Join-prime elements of L(n,m)

What are the join-prime elements of L?

They are the paths that have exactly one north-east turn:

As words, these are of the form

akblan�kbm�l

They are thus characterized by (k, l), with

(
0  k < n

0 < l  m
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Geometric interpretation of congruences

Let us look at the particular case when S = {j}.
Recall that

w ⌘S w0 () j  w iff j  w0.

Let (k, l) be the coordinate of the NE turn of j.
j  u means fu passes “above” (k, l),
j 6 v means fv passes “below” (k, l).

The same holds for arbitrary S ✓ J .

So, lattice congruences of L correspond to separating directed

paths by squares. This reminds us of directed homotopy. . .
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Directed homotopy and binomial complexes
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Directed topology

Directed topology provides a geometric semantics for true

concurrency.

A directed space X consists of

A topological space X,
A set of directed paths dX.

We interpret directed paths as executions.

Today, we focus on a particular class of directed spaces, namely

cubical complexes. In two dimensions, these consist of:

vertices, which may be related by. . .
edges, which may form the border of. . .
squares.

Such two-dimensional complexes model two-agent concurrent

systems:

Directed paths are those which increase in each coordinate.
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Binomial complexes

In particular, for n,m 2 N, we consider the binomial complex C:

C0 := {v(i,j) | 0  i  n and 0  j  m},
C1 := {e(i1,j1),(i2,j2) | i2 = i1 + 1 exor j2 = j1 + 1},
C2 := {F(k,l) | 0  k < n and 0 < l  m}.

This cubical complex corresponds to the n by m grid, with all

“holes” filled by squares.

Note that we encode squares

by their upper-left corner.

Given S ✓ C2, we denote by CS
the cubical complex with the

same set of vertices and edges, but in which CS
2 := C2 \ S.
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Cubical homotopy

Given a concurrent system, which executions produce the same

output?

We say that paths are dihomotopic if we can “slide” one onto the

other through a sequence of directed paths, and if they start and

end at the same point.

In a cubical complex �, it suffices to consider

combinatorial dipaths,
i.e. those which are contained
in the set of edges �1,

combinatorial homotopy,
i.e. dipaths are equivalent
when the space between them
is filled by squares in �2.
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Dihomotopy quotients

The combinatorial dihomotopy relation, denoted by
⇤!, is an

equivalence relation on combinatorial dipaths with the same

beginning- and end-points.

Given the binomial complex C, we denote by
�!P (C) the set of

combinatorial dipaths from (0, 0) to (n,m).

Note that for any S ✓ C2, we have
�!P (C) =

�!P (CS).

We are interested in the quotient by combinatorial dihomotopy:

�!P (CS)
� ⇤! .

In the particular case in which S = {F(k,l)}. . .
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The correspondence
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Correspondences

Elements of L. Elements of
�!P (CS).

Lattice paths

Join prime elements of L. Squares in C.

J ' {(k, l) | 0  k < n and 0 < l  m } ' C2

Congruences ⌘S of L(n,m) Subcomplexes CS(n,m).
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Results

Using the point-wise order induced on paths in C, we have that

L '
�!P (CS) as lattices.

Dihomotopy quotients are then lattice morphisms, and we obtain:

Proposition
For any S ✓ J ' C2, we have the lattice isomorphism

L(n,m)
�
⌘S

⇠=
�!P (CS)

� ⇤! .

Moreover, the maps induced by inclusions S0 ✓ S on each side

correspond, i.e. the following maps coincide:

qS0,S :
�!P (CS0

)
� ⇤! �!

�!P (CS)
� ⇤!

pS0,S : L(n,m) /S0 �! L(n,m) /S .
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Ongoing work
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Multinomial lattice quotients

We have established a concrete link between directed algebraic

topology and binomial lattices.

In the case of multinomial lattices L(v1, . . . , vn), for n � 3. . .
L(v) is not distributive.
Because of this, its congruences are not as simple.
Indeed, here congruences correspond to subsets S ✓ J which are
closed under the join-dependency relation.

On the geometric side. . .

Join-dependency means that adding squares is no longer “free” in
the sense that adding a square may necessitate adding parallel
squares.
We can also consider higher homotopy groups - what is their
interpretation?

In this direction, we are studying the higher dimensional

automata associated to the multinomial complexes.
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The continuous case

Let Q_(I) denote the set of order preserving maps

f : I ! I s.t. f(
_

X) =
_

f(X),

equipped with the point-wise ordering .

Proposition (M.J. Gouveia, L. Santocanale ‘18)
The structure (Q_(I),) is a completely distributive lattice.
With composition �, the lattice Q_(I) is a ?-autonomous quantale
which moreover satisfies the mix rule.

f : I ! I
f(
W

X) =
W
f(X)

'
C ✓ I2

complete, dense,

totally ordered

⌘
p : I ! I2

continuous,

monotone paths
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Dihomotopy and the continuous order

In the discrete case, paths f [n+m] ! [n]⇥ [m] are parametrised

by arc-length.

We can recover the ordering on L in two ways:

As the point-wise order inherited from

(x, y) 2 (x0, y0) iff x0  x and y  y0,

or as that generated by the elementary cubical homotopy
relation  :

In the continuous case, parametrisation is an obstruction to this

characterisation.

t 7! (t, t) t 7! (t2, t2)

We define simultaneous parametrisations of given maps in

order to recover these results:

Proposition (C.C, L. Santocanale)
Let f, g 2 Q_(I) such that f  g. There exist parametrisations ⇡f ,⇡g of
f and g such that:

⇡f (t) 2 ⇡g(t) for all t 2 I,
there exists an increasing homotopy  f,g : ⇡f ) ⇡g.

A characterisation of all congruences of Q_(I) akin to that

obtained for L(n,m) via dihomotopy types is not possible. . .
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Dualities

Priestley duality relates bounded, distributive lattices to

topological spaces:

Given a lattice L, construct a space X whose points are prime
filters of L.
There is a Galois connection

[[�]] : P(L2)⌦ P(X) : ✓

We have identified the topology on XJ ⇢ X, the set of principal
prime filters, as a directed-suprema closure topology on I2.

Frame duality relates certain lattices to topological spaces:

A frame is a complete lattice in which finite meets distribute over
arbitrary joins.
Given such a lattice L, its set X of meet-prime elements are
endowed with a topology.
We have identified which congruences of Q_(I) are spatial.
Which congruences are complete?
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Thank you
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