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The plan

e A brief overview of maps and the A-calculus
e Context and related results

e [he planar A-calculus

e Goulden-Jackson recurrence for planar maps

e Closing remarks
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ACT...

e A central object in modern combinatorics, but not only that:
(probability, algebraic geometry, theoretical physics... 7

scaling limits... matrix integrals, Witten's conjecture, ...
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What are maps?

e A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

e [ heir enumeration was pioneered by Tutte in the 60s, as
part of his approach to the four colour theorem.
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What is the A-calculus?

f,t:=x|Ax.t|(ft)
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What is the A-calculus?

f t:=x ‘ Ax.t ‘ f t) “— applications
/\} ; represent “f(t)"

variables

abstractions
represent functions “x +— t”

eIntroduced by Church around 1928, developed together with
Kleene, Rosser.

eEquivalent to: Herbrand-Godel recursive functions (Kleene),
Turing machines (Turing).

e Church-Turing thesis: “effectively computable” = definable
in A-calculus (or Turing machines, or recursive functions).

eln its typed form: functional programming, proof theory,...
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Linking terms and maps

e |In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps <+ closed linear terms
rooted (2,3)-valent maps <+ closed affine terms

In the same year, together with Gittenberger, they study:
BCI(p) terms (each bound variable appears p times)

general closed A-terms
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Linking terms and maps

e |In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps <+ closed linear terms
rooted (2,3)-valent maps <+ closed affine terms

In the same year, together with Gittenberger, they study:
BCI(p) terms (each bound variable appears p times)

general closed A-terms

e In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps <+ normal planar lambda terms

Both make use of decompositions in the style of Tutte!
(cf. the approach of Arqués-Béraud in 2000)

e In 2015, Zeilberger advocates for

“linear lambda terms as invariants of rooted trivalent maps”
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Some results e=w. Bodini, Zeilberger e= e + Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):
e Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)
e Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)

e Vertices of degree 1 in (1,3)-valent maps and free variables in open

linear terms
Limit law: N((2n)1/3, (2n)/3)

Patterns in trivalent maps and redices in closed linear terms

. . n
Asymptotic mean and variance: 5;

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: 2
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Some results e=w. Bodini, Zeilberger e= e + Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):
e Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)
e Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)

e Vertices of degree 1 in (1,3)-valent maps and free variables in open

linear terms
Limit law: N((2n)1/3, (2n)/3)

Patterns in trivalent maps and redices in closed linear terms

n

Asymptotic mean and variance: 5;

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: 2

Similar results for planar maps/terms, plus: a new interpretation of
a recurrence of Goulden and Jackson. :
This talk!—)
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The planar A-calculus - formally

Inductive definition (keeping track of variables not “captured” by a A):

var
X - X

free
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The planar A-calculus - formally

Inductive definition (keeping track of variables not “captured” by a A):

I'x t
var abs
7? ~ X "= Ax.t
free bound /)
abstractions

represent functions “x +— t”
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The planar A-calculus - formally

Inductive definition (keeping track of variables not “captured” by a A):

disjoint
/~ )

ar L xFt abs -1 @t app
V

ﬁl—x M Ax.t A E(ft)

free bound /)

abstractions
represent functions “x +— t”

applications
represent “f(t)"
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Decomposing planar trivalent maps
(with a boundary)
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Decomposing planar trivalent maps
(with a boundary)

edges

\ non-root boundary vertices

e
P(z,u) = UZ
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Decomposing planar trivalent maps
(with a boundary)
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Decomposing planar trivalent maps
(with a boundary)
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Boundary contains at least one non-root vertex
&

Consume first according to contour

edges

non-root boundary vertices

/ I
P(z,u) =UZ + ZP(Z, u)2 4+ ZP(Z'u)uP(Z,O)
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Decomposing planar trivalent maps
(with a boundary)

N
L Y L 4
.......

At least 1 free var
&

Consume rightmost one

edges

\ non-root boundary vertices

4

P(z,u) =UZ + ZP(Z, LL)2 T ZP(Z'”')_P(Z,O)

w
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Decomposing planar trivalent maps and open planar terms!
(with a boundary)

edges

\ non-root boundary vertices

p(z,ﬁz uz + zP(z,u)? + z

L\
free vars.

subterms

P(z,u)—P(z,0)
u
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Decomposing planar trivalent maps and open planar terms!
(with a boundary)

N
L Y L 4
.......

For arbitrary genus replace ZF(Z’u);F(Z’O) by 20, F(z, u)!
edges

\ non-root boundary vertices

p(z,ﬁz uz + zP(z,u)? + z

L\
free vars.

subterms

P(z,u)—P(z,0)
u
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Closed planar terms and contexts

e Restricting the previous bijection we have:
closed planar terms < rooted trivalent planar maps

Ax.AY.((x y) (Az.z)) <
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Closed planar terms and contexts

e Restricting the previous bijection we have:
closed planar terms < rooted trivalent planar maps

Ax.AY.((x y) (Az.z)) <

®\\Ve can also consider contexts:

Ax.Ay.((x y) O) <
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Closed planar terms and contexts

Lemma

A closed planar term with n =3k + 2,k € N, subterms has:

n =11
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The planar Goulden-Jackson recurrence

In [GJO8], Goulden and Jackson give the following recurrence
for F(k, g) = # of rooted triangulations of k faces and genus g:

F(k, g) = 522, for (k, g) € S\ {(—1,0),(0,0)},
where S ={(k,g) €Z? |k > —1,0< g < %} and f(k, g) is
f(—1,0) = %
f(k,g) =0, for (k,g) ¢ S.

f(k,g) = 42 (k(3k - 2)f(k — 2,9 — 1) + ¥ f(i, h)f(j, ),

with the sum being taken over all pairs (i,h) € S, (j, ) € S
such that1+j=k—2and h+{=g.
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The planar Goulden-Jackson recurrence
_» using the KP hierarchy!
/

In [GJO8], Goulden and Jackson give the following recurrence
for F(k, g) = # of rooted triangulations of k faces and genus g:

F(k,g) = 5%, for (k,g) € S\{(~1,0),(0,0)}
where S ={(k,g) €Z? |k > —1,0< g < %} and f(k, g) is
f(—1,0) = %
f(k,g) =0, for (k,g) ¢ S.

f(k,g) = 42 (k(3k - 2)f(k — 2,9 — 1) + ¥ f(i, h)f(j, ),

with the sum being taken over all pairs (i,h) € S, (j, ) € S
such thati+j=k—2and h4+{=g.

Open problem: give a combinatorial interpretation of the above.
Planar case resolved by Baptiste Louf [B19].
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The planar Goulden-Jackson recurrence
Reparameterising and setting g = 0, we have:

u(0) =1
wk+1) =2(3k+2)p(k)

ket 1plk) = 3 ultjuln -~

where u(k) counts contexts with 2k vertices and p(k) counts:
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The planar Goulden-Jackson recurrence
Reparameterising and setting g = 0, we have:

u(0) =1
wk+1) =2(3k+2)p(k)

ket 1plk) = 3 ultjuln -~

where u(k) counts contexts with 2k vertices and p(k) counts:

erooted planar triangulations with 2k faces
? duality

erooted planar trivalent maps with 2k vertices
) bijection
eclosed planar terms with k applications

To keep in mind:
3k + 2 edges <+ 2k vertices

3k + 2 subterms <> k applications
10 F



How to (re)prove the Planar G&J Recurrence

e Step 1.
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How to (re)prove the Planar G&J Recurrence

e Step 1.

k applications = 3k + 2 subterms
u(0) =1—" /

u(k +1) =2(3k + 2)p (k) 2 ways to introduce a new application

D

Ax.Ay. (O (x y))
AXAY.(xY) <= or

Ax.Ay.((x y) O)
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How to (re)prove the Planar G&J Recurrence

e Step 1.
2Kk vertices = 3k + 2 edges

0) = /7

u 1
u(k+1) =2(3k + 2)p(k)
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How to (re)prove the Planar G&J Recurrence

e Step 1:
2Kk vertices = 3k + 2 edges
u(0) =1 /
u(k +1) = 2(3k + 2)p(k)

2 Ways to introduce a new box vertex




How to (re)prove the Planar G&J Recurrence

e Step 2:

n

(4 1plk) = T ubuln—1
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How to (re)prove the Planar G&J Recurrence
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n

(4 1p(k) = T uiuln—1

/k applications = (k + 1) variables

AX.AY. (AzAW. (AuWAV.Z U V) W) (X Y)
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How to (re)prove the Planar G&J Recurrence
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How to (re)prove the Planar G&J Recurrence

e Step 2:

/k applications = (k + 1) variables

n

(4 Dpl) = L uiuln—1

AXAY. (Az. AW, (AuAv.z u V) W) (x y)

AX.AY.

split var-pointed term into two contexts

/*minimal closed subterm that contains v
(always starts with Al)

(x y)

AZAW. (AUAVv.Zzuv) w  — AL AL (AL AL o O) o
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e Step 2:

/k applications = (k + 1) variables

n

(4 Dpl) = L uiuln—1
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How to (re)prove the Planar G&J Recurrence

e Step 2:

/'k applications = (k + 1) variables

n

(4 Dpl) = L uiuln—1

AXAY. (Az. AW, (AuAv.z u V) W) (x y)

AX.AY.

split var-pointed term into two contexts

/*minimal closed subterm that contains v
(always starts with Al)

(x y)

AZAW. (AUAVv.Zzuv) w  — AL AL (AL AL o O) o

— Ao (Ac Ao o O) o
— Aw.(Au.Av.u v O) w
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How to (re)prove the Planar G&J Recurrence

-

(4 Dpl) = L uiuln—1

e Step 2:

split var-pointed term into two contexts
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Some open problems

e Bijective interpretation of G&J rec. for general genus
0(0,g) =1
o(k+1,g) =2(3k+2)t(k, g)

2k(3k —2)o(k —1,g — 1)
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Some open problems

e Bijective interpretation of G&J rec. for general genus
0(0,g) =1
o(k+1,g) =2(3k+2)t(k, g)

2k(3k —2)o(k —1,g — 1)

® Genus for A-terms?

Thank you!
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