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Why DAGs?

Omnipresent data structure:
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- genealogy trees (those are not trees!);
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- compacted trees (or XML documents);
- hash-consing...
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Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]

- Counting by vertices and edges: [Ges96] e Problems:
- Uniform sampling: [MDBO1], [KM15] e e Inclusion-exclusion
e No or little control
Unlabelled DAGs: over the number of
- Counting by vertices: [Rob70; Rob77] e edges
e Only binary

Compacted trees:
- Counting in the binary case: [GGKW20; EFW21] e



- Finer control over the number of edges?

- What can we say about compacted
structures?
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Complexity: computing all D, m for n,k < N.and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

In practice: about 400 edges in a few minutes.
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A first asymptotic result

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo? (And what about k?)

Simplification: drop parameters, only count by vertices.

D, def #{DOAG with n vertices, one source.}

Number of single-source DOAGs

D, ~ c-n""2.e"".in—1l

n—oo

for c ~ 0.30256 and where im! = [],_, R\.
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Random sampling again!

Corollary
Dp
#{matrices of variations of length 1,2,...,n —1}

Nl=

c-n

Rejection sampling: draw matrices of variations until they correspond to a
DOAG

Generating one variation: ~ nlog,(n) random bits.

Complexity:
Cost(successful generation) + #rejections x Cost(failed generation)
2
= % log,(n) + O(v/n - Cost(one failed generation))
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Early rejection

(2?2 (?2(?2 2?2?77

2
Complexity = O(nIn(n)) Total complexity = % log,(n) + O(v/n - nin(n))
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- Law of the number of edges?
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- Law of the number of edges?
- Multigraph equivalent: DOAMG
- Identical to compacted plane trees
- We have to count by edges
- Simpler recurrence relation
- No asymptotics (yet)
- Collaborations with Alfredo Viola (Montevideo) and Michael Wallner (TU Wien)
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> New model: DOAG
> New way of counting
> Control over the number of edges
> When forgetting edges:
> (Fun?) asymptotic results
> Optimal uniform sampler

<I> https://github.com/Kerl13/randdag
® https://wkerl.me
&< martin.pepin@lipn.univ-parisi3.fr

Al
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What about labelled DAGsS?

Idea: mark one source, and remove it.

Anmr = #DAGs (n vertices, m edges, k sources)
R+s—1\/n—-s—R
kAn,m,k =n ZAnfme/és,feJrs% ( s ) ( i )

IS

- New counting formula for DAGs;
- Effective sampler with fixed number of edges and
vertices.

19
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