DIRECTED ORDERED ACYCLIC GRAPHS

ASYMPTOTIC ANALYSIS AND EFFICIENT RANDOM SAMPLING

Martin Pépin

joint work with Antoine Genitrini & Alfredo Viola

January 11, 2023 °
2nd LambdaComb meeting I..I'DN

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Without labels: Unlabelled DAGs o/

Directed Acyclic Graphs

Directed Acyclic Graph (DAG)

- Afinite set of vertices Veg. {a,b,c,...,j};
- a set of directed edges E C V x V;
- no cycles.

Without labels: Unlabelled DAGs o/ -
Sin

Why DAGs?

Omnipresent data structure:
- Encoding partial orders in scheduling problems;
- Git histories;
- Bayesian networks in probabilities;
- genealogy trees (those are not trees!);
- class inheritance in OOP;
- compacted trees (or XML documents);
- hash-consing...

Why DAGs?

Omnipresent data structure:
- Encoding partial orders in scheduling problems;
- Git histories;
- Bayesian networks in probabilities;
- genealogy trees (those are not trees!);
- class inheritance in OOP;
- compacted trees (or XML documents);
- hash-consing...

Why DAGs?

Omnipresent data structure:
- Encoding partial orders in scheduling problems;
- Git histories;
- Bayesian networks in probabilities;
- genealogy trees (those are not trees!);
- class inheritance in OOP;
- compacted trees (or XML documents);
- hash-consing...

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]
- Counting by vertices and edges: [Ges96]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]
- Counting by vertices and edges: [Ges96]
- Uniform sampling: [MDBO1], [KM15]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]
- Counting by vertices and edges: [Ges96]
- Uniform sampling: [MDBO1], [KM15]

Unlabelled DAGs:
- Counting by vertices: [Rob70; Rob77]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]
- Counting by vertices and edges: [Ges96]
- Uniform sampling: [MDBO1], [KM15]

Unlabelled DAGs:
- Counting by vertices: [Rob70; Rob77]

Compacted trees:
- Counting in the binary case: [GGKW20; EFW21]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]
- Counting by vertices and edges: [Ges96] e Problems:
- Uniform sampling: [MDBO1], [KM15] e Inclusion-exclusion

Unlabelled DAGs:
- Counting by vertices: [Rob70; Rob77] e

Compacted trees:
- Counting in the binary case: [GGKW20; EFW21]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]

- Counting by vertices and edges: [Ges96] e Problems:
- Uniform sampling: [MDBO1], [KM15] e e Inclusion-exclusion
e No or little control
Unlabelled DAGs: over the number of
- Counting by vertices: [Rob70; Rob77] e edges

Compacted trees:
- Counting in the binary case: [GGKW20; EFW21]

State of the art

Labelled DAGs:
- Counting by vertices: [Rob70; Rob73; Sta73]

- Counting by vertices and edges: [Ges96] e Problems:
- Uniform sampling: [MDBO1], [KM15] e e Inclusion-exclusion
e No or little control
Unlabelled DAGs: over the number of
- Counting by vertices: [Rob70; Rob77] e edges
e Only binary

Compacted trees:
- Counting in the binary case: [GGKW20; EFW21] e

- Finer control over the number of edges?

- What can we say about compacted
structures?

Outline of the presentation

Background

Directed ordered acyclic graphs

b definition and recursive decomposition
Asymptotic analysis

5 matrix encoding

b asymptotic result
b faster sampler

Bonus: labelled DAGs

5 another way of counting

A new kind of DAG

Directed Ordered Acyclic Graphs

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+ a total order on the sources
+ only one sink

A new kind of DAG

Directed Ordered Acyclic Graphs

DOAG = Unlabelled DAG
+ a total order on the outgoing edges of each vertex
+ a total order on the sources
+ only one sink

/<\ =

#* = X X ></>
/N / \ / '\
Z/X\?J L z X

gk g

Recursive decomposition

Idea: remove the smallest source and see what is left.

Recursive decomposition

Idea: remove the smallest source and see what is left.

.
1 2 1
3 2
3
—> ﬁ@

Recursive decomposition

Idea: remove the smallest source and see what is left.

1
1 2 1
3 2 1
4 3
3 2
— — —

Recursive decomposition

Idea: remove the smallest source and see what is left.

3 2 1

|
J
|

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

.."h,

e,

S S
h' 'ﬂ "
< .
)

1
2
4

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

Recursive decomposition

} edges to new sources

n vertices, m edges, k sources

Recursive decomposition

n vertices, m edges, k sources

edges to new sources

i edges to internal nodes
5 ("F7%) choices

Recursive decomposition

."~
S s,

.
.

Q .,

1
/\ \
N edges to new sources

i edges to internal nodes
5 ("F7%) choices

n vertices, m edges, k sources

b

(n —1) vertices, (m — i — s) edges, (k+ s — 1) sources

Recursive decomposition

permute the , edges

A interleave " with
5 p ¢ 5 i1("F*) choices

1
/\ \
N edges to new sources

i edges to internal nodes
5 ("F7%) choices

n vertices, m edges, k sources

b

(n —1) vertices, (m — i — s) edges, (k+ s — 1) sources

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Complexity: computing all D, m for n,k < N.and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

Recurrence formula

Counting formula

Dnmr = #{DOAGs with n vertices, m edges and R sources}

n—RkR—s\.[i+s
— Z Dn—1,m—f—s,k+s—1< i >I!< i)

i4+s>0

Complexity: computing all D, m for n,k < N.and m < M costs:
- O(N“M) arithmetic operations;
- on integers of bit-size O(Mlog M).

In practice: about 400 edges in a few minutes.

Recursive random sampling = 3nifnuod

The recursive method [NW78]
If you can count, you can sample: just do the same, but backwards!

Recursive random sampling = 3nifnuod

The recursive method [NW78]

If you can count, you can sample: just do the same, but backwards!

- input = (n,m,R);
- output = uniform DOAG with n vertices, m edges, and k sources.

Recursive random sampling = 3nifnuod

The recursive method [NW78]

If you can count, you can sample: just do the same, but backwards!

- input = (n,m,R);
- output = uniform DOAG with n vertices, m edges, and k sources.
Complexity: O (3 d2) = O(M?).

out-degree of v

v vertex

Recursive random sampling = 3nifnuod

The recursive method [NW78]
If you can count, you can sample: just do the same, but backwards!

- input = (n,m,R);
- output = uniform DOAG with n vertices, m edges, and k sources.
Complexity: O (3 d2) = O(M?).

out-degree of v

v vertex

In practice: about 400 edges in a few ms.

Outline of the presentation

Background

Directed ordered acyclic graphs

b definition and recursive decomposition
Asymptotic analysis

5 matrix encoding

b asymptotic result
b faster sampler

Bonus: labelled DAGs

5 another way of counting

A first asymptotic result

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo? (And what about k?)

A first asymptotic result

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo? (And what about k?)

Simplification: drop parameters, only count by vertices.

D, def #{DOAG with n vertices, one source.}

A first asymptotic result

Asymptotics: (approximately) how many large DOAGs are there
when n,m — oo? (And what about k?)

Simplification: drop parameters, only count by vertices.

D, def #{DOAG with n vertices, one source.}

Number of single-source DOAGs

D, ~ c-n""2.e"".in—1l

n—oo

for c ~ 0.30256 and where im! = [],_, R\.

Matrix encoding
7 8 9 10 M

—> | [1]2]3

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N
1]2]3

=

O 0 N o o B~ o w N

=
o

—
s

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1
] 1(3[s| [2] [a]:2
2 3

3 1024

2 15

— 102 |s
7

8

9

10

1

i

Matrix encoding

1]2]3 1

] 1(3[s| [2] [a]:2

2 3

3 1]2]4

2 15

12 6

9 A —_ 7
«“' 8

8 10 9
10

1 .

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1
] 1(3[s| [2] [a]:2
2 3

3 124

2 15

102 |s

7

— 18
9

10

1

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N1

1]2]3 1

1(3(5| 2| |42

2 3

3 1024

2 1|5

12 6

e’ 7

© 18
S0

kY — 2(1|9

3 10

11 .

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1]2]3 1

N 1(3|s| [2] [a]>2

2 3

3 1)2]4

2 5

112] |6

7

%0 18
2(1]9

. —_ 110
11

i

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

-
N
w

-
N
O O N O U W N

=
N
(@)

=5
=

I

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1. strict upper triangular matrix; 123 1
] 1(3[s5] [2] [a]>2
2 3

3 1|24

2 15

12 6

1 7

1|8

219

110

1

I

Matrix encoding

1T 2 3 4 5 6 7 8 9 10 N

1. strict upper triangular matrix; 1]Iz 3 1
2. there is an element at (1, 2); T 1/3|5 2 4|2
2 3

3 1)2|4

2 15

12 6

1 7

1|8

219

110

1

I

Matrix encoding

17 2 3 4 5 6 7 8 9 10 N
1. strict upper triangular matrix; 1 Iz 3 1
2. there is an element at (1, 2); T 1|35 2 4|2
3. increasing numbers above 2 3
orange lines; 3 124
2 15
1|2 6
7
18
2|19
110
1

I

Matrix encoding

1.2 3 4 5 6 7 8 9 10 1
1. strict upper triangular matrix; 1 Iz 3 1
2. there is an element at (1, 2); T 1(3]5 2 4|2
3. increasing numbers above 2 3
orange lines; 3 124
4. orange lines go down. 2 1|5
1|2 6
1 7
18
2|19
110
11

I

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1]s]2]sa]a]x] [| |

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[a]s[2]s]a]x| [[|

Variation = SEQ(Z) * SET(Z2)

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]a] [3] = [e[1[s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)

V(2) = (1-2)7'¢

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

[6[1] [s] [2]4] [3] = [e[1][s[2]s]a]x] [[|

Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7 '
Vi = e-nl—o(1)

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]e] [3] = [e[1][s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

12

Proof sketch (1/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
[6[1] [s[[2]e] [3] = [e[1][s[2]a]a]x[[| |
Variation = SEQ(Z) * SET(Z)
V(2) = (1-2)7'e?
Vi = e-nl—o(1)

#{DOAG matrices} = #{collections of rows} < #{collections of variations}

12

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

mad n Mo i BEL
{DOAG matrices} D o + L+ =+

13

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
(A [(ELI L (T
o ¢¢¢ T L
{DOAG matrices} D 7&%% + ¢¥~ + 7é5r +
= # =
c’ - In(n)

13

Proof sketch (2/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
(AT (ELI L (T

o ¢¢¢ T L

{DOAG matrices} D 7&%% + ¢¥~ + 7é5r +
= # =
D, > € o i) e"in—11
n
Dy c’ - In(n)

13

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping

NEZ Z
7z N 0
e H+Hp "+ HHE +

{DOAG matrices} Dn_1LC Dn_2: Dp_3

LN L
LI L1l

14

Proof sketch (3/3)

3. Bootstrapping

The plan: 1. Upper bound

2. Lower bound

NEZ
=]
;\t _|_ =
DOAG matrices} = D11 ’
{ } n—1 Dp—2- D5
HA mEE

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

l

14

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
NA =
=Z N [0
+ B 4 R+
{DOAG matrices} = Dn_1LC Dn_2: Dp_3
Y I

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

o= (1=555) Pt e (- * o) Pt

14

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
NA =
=Z N [0
+ B 4 R+
{DOAG matrices} = Dn_1LC Dn_2: Dp_3
Y I

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

1 1 2
P”:<1_?—’1')P”—‘+ - n_2),) "t

'DnNPn—1

14

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
NA =
=Z N [0
+ B 4 R+
{DOAG matrices} = Dn_1LC Dn_2: Dp_3
Y I

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

'DnNPn—1

14

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
NA =
=Z N [0
+ B 4 R+
{DOAG matrices} = Dn_1LC Dn_2: Dp_3
Y I

1
Dn = (an1 - anZ)Dn% =+ i(vn% —2Vp_y + an3)an3Dn72 +ee

14

Proof sketch (3/3)

The plan: 1. Upper bound 2. Lower bound 3. Bootstrapping
NA =
=Z N [0
+ B 4 R+
{DOAG matrices} = Dn_1LC Dn_2: Dp_3
Y I

1
Dn - (Vn—1 - Vn—Z)Dn—1 + z(vn—1 - 2Vn—2 + Vn—B)Vn—3Dn—2 + o

1
Pn =P, (1 — %+O(n‘2)) =| P,~c-n7"?

14

Random sampling again!

Corollary
Dp
#{matrices of variations of length 1,2,...,n —1}

[N

c-n

15

Random sampling again!

Corollary
Dp
#{matrices of variations of length 1,2,...,n —1}

Nl=

c-n

Rejection sampling: draw matrices of variations until they correspond to a
DOAG

15

Random sampling again!

Corollary
Dp
#{matrices of variations of length 1,2,...,n —1}

c-n

Nl=

Rejection sampling: draw matrices of variations until they correspond to a
DOAG

Generating one variation: ~ nlog,(n) random bits.

15

Random sampling again!

Corollary
Dp
#{matrices of variations of length 1,2,...,n —1}

Nl=

c-n

Rejection sampling: draw matrices of variations until they correspond to a
DOAG

Generating one variation: ~ nlog,(n) random bits.

Complexity:
Cost(successful generation) + #rejections x Cost(failed generation)
2
= % log,(n) + O(v/n - Cost(one failed generation))

15

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

2022
7|7
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

2022
7|7
?

16

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

16

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

16

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

16

Early rejection

2|72 22?2 |?2[2|?2|?2|°?

2022
7|7
?

16

Early rejection

i
207
?

16

Early rejection

i
207
?

16

Early rejection

(2?2 (?2(?2 2?2?77

16

Early rejection

(2?2 (?2(?2 2?2?77

2
Complexity = O(nIn(n)) Total complexity = % log,(n) + O(v/n - nin(n))

16

- Law of the number of edges?

17

- Law of the number of edges?
- Multigraph equivalent: DOAMG
- Identical to compacted plane trees
- We have to count by edges
- Simpler recurrence relation
- No asymptotics (yet)
- Collaborations with Alfredo Viola (Montevideo) and Michael Wallner (TU Wien)

17

> New model: DOAG
> New way of counting
> Control over the number of edges
> When forgetting edges:
> (Fun?) asymptotic results
> Optimal uniform sampler

<I> https://github.com/Kerl13/randdag
® https://wkerl.me
&< martin.pepin@lipn.univ-parisi3.fr

Al

https://github.com/Kerl13/randdag
https://wkerl.me
mailto:martin.pepin@lipn.univ-paris13.fr

Outline of the presentation

Background

Directed ordered acyclic graphs

b definition and recursive decomposition
Asymptotic analysis

5 matrix encoding

b asymptotic result
b faster sampler

Bonus: labelled DAGs
5 another way of counting

19

What about labelled DAGsS?

Idea: mark one source, and remove it.

Anmr = #DAGs (n vertices, m edges, k sources)

kAn,m,k -

19

What about labelled DAGsS?

Idea: mark one source, and remove it.

Anmr = #DAGs (n vertices, m edges, k sources)

R+s—1\/n—-s—R
kAn,m,k =n ZAnfme/és,feJrs% (s) (i)

IS

19

What about labelled DAGsS?

Idea: mark one source, and remove it.

Anmr = #DAGs (n vertices, m edges, k sources)

R+s—1\/n—-s—R
kAn,m,k =n ZAnfme/és,feJrs% (s) (i)

IS

- New counting formula for DAGs;

19

What about labelled DAGsS?

Idea: mark one source, and remove it.

Anmr = #DAGs (n vertices, m edges, k sources)
R+s—1\/n—-s—R
kAn,m,k =n ZAnfme/és,feJrs% (s) (i)

IS

- New counting formula for DAGs;
- Effective sampler with fixed number of edges and
vertices.

19

References |

[EFW21] Andrew Elvey Price, Wenjie Fang, and Michael Wallner. “Compacted binary trees
admit a stretched exponential”. In: Journal of Combinatorial Theory, Series A 177
(2021), page 105306. ISSN: 0097-3165. DOI: 10.1016/5.jcta.2020.105306.

[Ges96] Ira Martin Gessel. “Counting acyclic digraphs by sources and sinks”. In: Discrete
Mathematics 1601 (1996), pages 253-258. ISSN: 0012-365X.

[GGKW20] Antoine Genitrini et al. “Asymptotic enumeration of compacted binary trees of
bounded right height”. In: Journal of Combinatorial Theory, Series A 172 (2020),
page 105177. 1SSN: 0097-3165. DOI:
https://doi.org/10.1016/7j.jcta.2019.105177.

[KM15] Jack Kuipers and Giusi Moffa. “Uniform random generation of large acyclic
digraphs”. In: Statistics and Computing 25.2 (2015), pages 227-242.
[MDBO1] Guy Melancon, Isabelle Dutour, and Mireille Bousquet-Mélou. “Random

Generation of Directed Acyclic Graphs”. In: Electronic Notes in Discrete
Mathematics 10 (2001), pages 202-207. DOI: 10.1016/S1571-0653 (04) 003944,
URL: https://doi.org/10.1016/S1571-0653 (04) 00394—4.

*1

https://doi.org/10.1016/j.jcta.2020.105306
https://doi.org/https://doi.org/10.1016/j.jcta.2019.105177
https://doi.org/10.1016/S1571-0653(04)00394-4
https://doi.org/10.1016/S1571-0653(04)00394-4

References Il

[NW78] Albert Nijenhuis and Herbert Wilf. Combinatorial Algorithms: For Computers and
Hard Calculators. 2nd. USA: Academic Press, Inc., 1978. I1SBN: 0125192606.

[Rob70] Robert William Robinson. “Enumeration of acyclic digraphs”. In: Proceedings of
The Second Chapel Hill Conference on Combinatorial Mathematics and its
Applications (Univ. North Carolina, Chapel Hill, NC, 1970), Univ. North Carolina,
Chapel Hill, NC (University of North Carolina at Chapel Hill, North Carolina,
May 8-13, 1970). 1970, pages 391-3909.

[Rob73] Robert William Robinson. “Counting labeled acyclic digraphs”. In: New Directions
in the Theory of Graphs (1973), pages 239-273.
[Rob77] Robert William Robinson. “Counting unlabeled acyclic digraphs”. In: Combinatorial

Mathematics V. Lecture Notes in Mathematics. Springer, 1977, pages 28-43.

[Sta73] Richard Peter Stanley. “Acyclic orientations of graphs”. In: Discrete Mathematics
5.2 (1973), pages 171-178.

*2

	Background
	Directed Ordered Acyclic Graphs
	Asymptotic analysis
	Conclusion
	Labelled DAGs
	Appendix
	References

