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Introduction

Theoretical Foundations of Computer Science

Alan Turing ~1936

Turing Machines
Manipulating symbols via primitive instructions. J
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Introduction

Theoretical Foundations of Computer Science

- .-
,:\ 0
Alan Turing ~1936 \V

Turing Machines
Manipulating symbols via primitive instructions. J

The Lambda Calculus

Church ~1932
Based on a primitive notion of function.

@ variable: x
@ abstraction: A\x.P, read f(x) = P
@ application: PQ, read P(Q)

Computation becomes substitution: (Ax.P)Q — 4 P[x := Q]
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Introduction

Self-reference

Russell's paradox. Let R={x | x ¢ x},thenRe R <— R ¢ R.

Turing Machines and the Halting Problem

INFINITE LOOP

YES b
& D
INPUT HALTING
STRING = \% ~—F
NO

Key point: Encode programs with natural numbers: P(n) where n = #P

Lambda calculus

Programs can be seen both as functions and as arguments.
Q= (MxXx)(AXxX) 2 Q=5 Q—p---
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Introduction

A wealth of techniques are employed

Category Theory
Recursion Theory Topology
LogiC \ J Universal Algebra
7 x
Term Rewriting Proof Theory
Sharing Graphs Complexity

Type Theory
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Introduction

Lambda calculus has many applications

Programming Languages

Set Theory Proof Assistants
: T Universal Algebra
HOgIC e >
Infinitary Rewriting Cost Models

Type Systems
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Introduction

The “Bible” of Lambda Calculus — 1981/84

Best seller, translated in
@ Russian (MIR),
@ Chinese (Nanjing
University Press).
> 11000 copies sold.

STUDIES IN LOGIC
AND
THE FOUNDATIONS OF MATHEMATICS

VoLUME 10y

3 BARWISE/ B KAPLAN /5.J KEISLER /P SUPPES /A S TROELSTRA
Eomons

Problems & conjectures:
@ Complexity of Aw,
@ Range property for #H,
@ Sallé’s conjecture,
@ Bijectivity in An

Its Syntax and Semantics

REVISED EDITION

H.P. BARENDREGT

The Lambda Calculus by Henk Barendregt ® .-
Its Syntax and Semantics
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Introduction

The “New Testament” of A-calculus?

A Lambda Calculus
Satellite

iy

EST. 80005
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A Lambda Calculus by HenkrBarrendregt & Giulio Manzonetto
Satellite
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Introduction
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Introduction

Overview of this talk

1. The plane conjecture
2. Bijectivity and invertibility in An
3. Dance of the starlings
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Reduction

— Reduction —
Leaving a S-reduction plane



Reduction

A p-reduction plane

Definition

(i) Define an equivalence relation: M O N <= M —3 N =3 M.
(i) Planes = the equivalence classes [M].
(iiiy M is an exit (of its plane) if M —g N and N ¢ [M].

Example:

I = Ax.x

W = \xy.xyy

A = Ax.xx
Q=AA

A =xylyy =5 A

Giulio Manzonetto

wi(wi) A/A/\(Wl)

Iwnwi) ¢ INUD#

: AT
: AA\V(
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Reduction

The Plane Conjecture

“If a plane has an exit point, then every point of the plane is an exit.”
Klop’s conjecture (1980)

Theorem (Mulder 1984 / Sekimoto-Hirokawa 1986)
The plane conjecture is invalid.

PROOF (MULDER). Define

H = Mg ff(Ay.g(9y)),
P = (Xx.)z, for a variable z,
P" = Ax.Px.

Then M = HH(\y.P(Py)) is not an exit, but reduces to one. so the variable z
is erased forever,
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Reduction

The Plane Conjecture

“If a plane has an exit point, then every point of the plane is an exit.”
Klop’s conjecture (1980)

Theorem (Mulder 1984 / Sekimoto-Hirokawa 1986)
The plane conjecture is invalid.

PROOF (MULDER). Define

H = XMg.ff(\y.g(gy)),
P = (Xx.1)z, for a variable z,
P?T = Ax.Px.
Onehas P —gl, so the variable z is erased forever,

P = XX.Px =3 AXx.Ix =3 |
P X —B PX —B IX —B X
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Reduction

Mulder’s Proof (continues. . .)

Consider M = HH (Ay.P(Py)). The only three 1-step reducts are the following
(Ag.-HH (Ay.g(gy))(Ay.P(Py)), HH(Ay.1(Py)), HH(A\y.P(ly))

These all three flow back to M and hence are in its plane:

M = HH(\y.P(Py)) ————————= HH(\y.|(Py)) % HHI

(Ag-HH(Ay.g(gy))(Ay.P(Py)) HH(Ay.P(ly))
(Ag.HH (Ay.g(gy)) P" Hgpr

HH(A\y.P"(Py))

Hence M is not an exit. But N = HH (Ay.1(Py)) — HH (M\y.1(ly)) —» HHI,
and the latter misses the free variable z, so cannot be in the plane of M.
So N is an exit.0
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Reduction

— Conversion —

Does bijectivity correspond
to invertibility modulo 5n?



Reduction

Bijectivity vs Invertibility

In Set Theory:
f is bijective <= f is invertible

More precisely:

(i) fisinjective <= fis left-invertible (assuming the excluded middle).

(i) fis surjective <= f is right-invertible (assuming AC).
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Reduction

Bijectivity vs Invertibility

In Set Theory:
f is bijective <= f is invertible
More precisely:
(i) fisinjective <= fis left-invertible (assuming the excluded middle).
(i) fis surjective <= f is right-invertible (assuming AC).

In A-calculus:

A (closed) A-term F is bijective if it is
@ injective: VX, Ye N° FX=FY = X=Y,;
@ and surjective: VY e A°, IX e A° . FX =Y.

A (closed) A\-term F is invertible if it is
@ left-invertible: JLeN°.LoF=1;
@ and right-invertible: 3R € A°.1=F o R.
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Reduction

Does bijectivity correspond to invertibility for =g,,?
For set-theoretic reasons:
Finvertible ==  F bijective

Question: F bijective = F invertible?

Theorem [Dezani 1974 & Bergstra-Klop 1982]

F isinvertible <= F is a hereditary permutation of a finite n-expansion of I.

AXyz.z \XyZ.z
/N s
212,y X X ANZ1Z2. Y —y |
/ AN / AN
Zo Zq Z4 Z>

Proposition [Batenburg-Velmans 1983]
F is injective and right-invertible = F invertible
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Reduction

A positive answer by Folkerts

Theorem [Folkerts 1995]
Modulo 5n: F bijective < F invertible.

PROOF. The usual (injective = L-invertible, surjective = R-inv) doesn’t work.

bijective injective X

i |

surjective ——- regular —— faithful —(*; right-invertible — invertible
KX_/
where
@ Fisregularif F =g, AXy.xPy - Py.

@ Fis faithful if F =g, Axy.xPy - - - Py, such that the P;’s are unsolvable or
have one of the y’s as free head-variable.

left-invertible
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Reduction

Interesting analysis of unsolvables. ..

The most difficult part is to prove
surjective & faithful =  right-invertible

Folkerts needs infinitely many unsolvables remaining essentially different.
This happens when they have a different ‘unsolvable core’:

Xn = W,W;™1! where
Wn = Ayt VX XXY1- Yn

Their looping reduction graph is:

X, = W Wyt 7 (AY2 ... YnX XXWpya - - ya )W
B B (n — 2 steps)
(AXXXWEM)Wp, (VX XXWR 1y \Wi2
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Dance of the Starlings

Dance of the starlings
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Dance of the Starlings

Combinatory logic

Curry&Schoénfinkel's combinatory logic is based on two ‘combinators’:
Kxy —w X

Sxyz —w xz(yz)

In Smullyan’s beautiful fable about combinators figuring as birds in an
enchanted forest, S is the starling.

Theorem
Combinatory logic is (almost) as powerful as A-calculus.

Idea: Every A-term is expressible as a combination of K and S.
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Dance of the Starlings

The S-fragment of CL

What about the fragment S containing exclusively S?
Sxyz —w xz(yz)

Examples:
S,SSS(SSS)S, SS(SS)(SSS), ...

Some properties:

@ Not as powerful as the A-calculus (no cancellation).

@ Reduction —, is confluent.

@ The anti-reduction ,< is strongly normalizable.

@ S-terms tends to grow in size along reduction.

@ (S,—y)isacyclic: VP € S$,3Qe€ S.P =y Q —»y P.

Is there a non-terminating S-term?
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Dance of the Starlings

How to construct a non-terminating term?

Look for a ‘spiralling’ term P, i.e.: P —}, C[P], for some context C[].

Waldmann 2000
There is no spiralling P € S.

Property
For every k € N there exists a Px € S such that

k < growth(Py) < oo.

where
size(nfy (P))

arowth(P) = (P if P has a w-nf;
0, otherwise.
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N o)
Non-terminating S-terms

P Year found By
(SSS)(SSS)(SSS) 1975 Barendregt
S(SS)SSSS 1976 Dubou&Baron
S(SSS)(SSS)(S(SSS)(SSS)) 1976 Pettorossi
S(SS)(SS)(S(SS)(SS)) 1978 Zachos




Dance of the Starlings

Non-terminating S-terms

P Year found By
(SSS)(SSS)(SSS) 1975 Barendregt
S(SS)SSSS 1976 Dubou&Baron
S(SSS)(SSS)(S(SSS)(SSS)) 1976 Pettorossi
S(SS)(SS)(S(SS)(SS)) 1978 Zachos

It makes sense to define the Berarducci tree BeT(P) of an S-term. Idea:

@ ‘push’ the reduction into infinity;
@ collect the ‘stable pieces’ of the term in a tree-like structure.
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Dance of the Starlings

The Berarducci tree of (SSS)(SSS)(SSS)

AAA

SSSA A
AA(SAA)
SSSA (SAA)

SA(SA)(SAA)
A(SAA)(SA(SAA))
SSS(SAA) (SA(SAA))
[S(SAA)(S(SAA))(SA(SAA))|
SAA(SA(SAA)) (S(SAA)(SA(SAA)))
A(SA(SAA))(A(SA(SAA)))(S(SAA)(SA(SAA
SSS(SA(SAA)) (A(SA(SAA)))(S(SAA)(SA(SAA)))
S(SA(SAA))(S(SA(SAA)))(A(SA(SAA))) (S(SAA)(SA(SAA)))
SA(SAA)(A(SA(SAA))) (S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA)))
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Dance of the Starlings

Decidable properties

Theorem (Waldmann 1998)
(Strong) normalization of S-terms is decidable in linear time.

Proof: Waldmann constructed a finite state automaton accepting the
normalizing S-terms only.

Theorem (Padovani 2020)
Head normalization of S-terms is decidable.

Proof: Padovani gave a criterion characterizing head-normalizable terms.
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Dance of the Starlings

Berarducci trees equality

Define:
Sy

Sn—4-1

S,
S(S,), forn>1.
Theorem (Padovani 2020)

Let
A = S(S4(S4S3))(S(S255)Ss),

B = S(S3S3)(S4S3).
Then
e AA +#£, BB, but
@ BeT(AA) = BeT(BB).
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Conclusions

Open problem

The word problem: Is w-conversion decidable for S-terms?

Padovani’s example shows that =, is not the equality of Berarducci trees.
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THE END

(THANKS)
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