
A cartesian bicategory of polynomial functors in homotopy
type theory

Samuel Mimram
LambdaComb kickoff
April 11, 2021

This is joint work with Eric Finster, Maxime Lucas and Thomas Seiller.

1

Part I

Polynomials and polynomial functors

2

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed

• the 2-category of polynomial functors is not cartesian closed [Girard]
• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
• we have shown that the resulting bicategory is cartesian closed
• we have provided a small axiomatization of the type B of natural numbers

and bijections

3

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed
• the 2-category of polynomial functors is not cartesian closed [Girard]

• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
• we have shown that the resulting bicategory is cartesian closed
• we have provided a small axiomatization of the type B of natural numbers

and bijections

3

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed
• the 2-category of polynomial functors is not cartesian closed [Girard]
• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
• we have shown that the resulting bicategory is cartesian closed
• we have provided a small axiomatization of the type B of natural numbers

and bijections

3

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed
• the 2-category of polynomial functors is not cartesian closed [Girard]
• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda

• we have shown that the resulting bicategory is cartesian closed
• we have provided a small axiomatization of the type B of natural numbers

and bijections

3

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed
• the 2-category of polynomial functors is not cartesian closed [Girard]
• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
• we have shown that the resulting bicategory is cartesian closed

• we have provided a small axiomatization of the type B of natural numbers
and bijections

3

In a nutshell

The situation:

• the category of polynomial functors is cartesian closed
• the 2-category of polynomial functors is not cartesian closed [Girard]
• we should consider polynomial functors in groupoids [Kock]

Our contributions:

• we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
• we have shown that the resulting bicategory is cartesian closed
• we have provided a small axiomatization of the type B of natural numbers

and bijections

3

Categorifying polynomials

A polynomial is a sum of monomials

P(X) =
∑
0≤i<k

Xni

(no coefficients, but repetitions allowed)

We can categorify this notion: replace natural numbers by elements of a set.

P(X) =
∑
b∈B

XEb

4

Categorifying polynomials

A polynomial is a sum of monomials

P(X) =
∑
0≤i<k

Xni

(no coefficients, but repetitions allowed)

We can categorify this notion: replace natural numbers by elements of a set.

P(X) =
∑
b∈B

XEb

4

Polynomial functors

This data can be encoded as a polynomial P, which is a diagram in Set:

E B
p

where

• b ∈ B is a monomial
• Eb = P−1(b) is the set of instances of X in the monomial b.

b
. . .

X X X X

5

Polynomial functors

This data can be encoded as a polynomial P, which is a diagram in Set:

E B
p

where

• b ∈ B is a monomial
• Eb = P−1(b) is the set of instances of X in the monomial b.

It induces a polynomial functor

JPK : Set→ Set

X 7→
∑
b∈B

XEb

5

Polynomial functors

For instance, consider the polynomial corresponding to the function

E B
•
•
• •
•
• •

p

The associated polynomial functor is

JPK(X) : Set→ Set
X 7→ X × X ⊔ X × X × X

6

Polynomial functors

For instance, consider the polynomial corresponding to the function

N 1
...
•
•
• •

p

The associated polynomial functor is

JPK(X) : Set→ Set
X 7→ X × X × X × . . .

A polynomial is finitary when each monomial is a finite product.

7

Polynomial functors

For instance, consider the polynomial corresponding to the function

N 1
...
•
•
• •

p

The associated polynomial functor is

JPK(X) : Set→ Set
X 7→ X × X × X × . . .

A polynomial is finitary when each monomial is a finite product.
7

Polynomial functors: typed variant

We will more generally consider a “typed variant” of polynomials P

I E B Js p t

this means that

• each monomial b has a “type s(b) ∈ J”,
• each occurrence of a variable e ∈ E has a type s(e) ∈ I.

b
. . .

i1 i2 in−1in

j

8

Polynomial functors: typed variant

We will more generally consider a “typed variant” of polynomials P

I E B Js p t

this means that

• each monomial b has a “type s(b) ∈ J”,
• each occurrence of a variable e ∈ E has a type s(e) ∈ I.

It induces a polynomial functor

JPK(X) : SetI → SetJ

(Xi)i∈I 7→

 ∑
b∈t−1(j)

∏
e∈p−1(b)

Xs(e)


j∈J

8

The category of polynomial functors

Given a set I, we have an “identity” polynomial functor:

I I I Iid id id

Proposition
The composite of two polynomial functors is again polynomial:

SetI SetJ SetK
JPK

JQK◦JPK

JQK

Proof.
Basically the usual one: JQK ◦ JPK(Xi) =

∑∏∑∏
Xi

∼=
∑∑∏∏

Xi
∼=

∑∏
Xi

9

The category of polynomial functors

Given a set I, we have an “identity” polynomial functor:

I I I Iid id id

Proposition
The composite of two polynomial functors is again polynomial:

SetI SetJ SetK
JPK

JQK◦JPK

JQK

Proof.
Basically the usual one: JQK ◦ JPK(Xi) =

∑∏∑∏
Xi

∼=
∑∑∏∏

Xi
∼=

∑∏
Xi

9

The category of polynomial functors

Given a set I, we have an “identity” polynomial functor:

I I I Iid id id

Proposition
The composite of two polynomial functors is again polynomial:

SetI SetJ SetK
JPK

JQK◦JPK

JQK

Proof.
Basically the usual one: JQK ◦ JPK(Xi) =

∑∏∑∏
Xi

∼=
∑∑∏∏

Xi
∼=

∑∏
Xi 9

The category of polynomial functors

We can thus build a category PolyFun of sets and polynomial functors:

• an object is a set I,
• a morphism

F : I→ J

is a polynomial functor
JPK : SetI → SetJ

10

Polynomial vs polynomial functors

A polynomial P
I E B Js p t

induces a polynomial functor

JPK : SetI → SetJ

We have mentioned that composition is defined for polynomials. However, on
polynomials, it is not strictly associative: we can build a bicategory Poly of sets an
polynomial functors.

This suggests that 2-cells are an important part of the story!

11

Morphisms between polynomials

A morphism between two polynomials is

I E B J

I E′ B′ J

s

ε

p

⌟
β

t

s′ p′ t′

We send operations to operators, preserving typing and arities:

b
. . .

i1 i2 in−1in

j

7→ β(b)
. . .

i1 i2 in−1in

j

We can build a bicategory Poly of sets, polynomials and morphisms of
polynomials.

12

Morphisms between polynomials

A morphism between two polynomials is

I E B J

I E′ B′ J

s

ε

p

⌟
β

t

s′ p′ t′

We send operations to operators, preserving typing and arities:

b
. . .

i1 i2 in−1in

j

7→ β(b)
. . .

i1 i2 in−1in

j

We can build a bicategory Poly of sets, polynomials and morphisms of
polynomials.

12

Morphisms between polynomial functors

A morphism between polynomial functors

JPK, JQK : SetI → SetJ

is a “suitable” natural transformation, and we can build a 2-category PolyFun.

13

Cartesian structure

The category PolyFun is cartesian. Namely, given two polynomial functors in Poly

P : I→ J Q : I→ K

i.e., in Cat,
JPK : SetI → SetJ JQK : SetI → SetK

we have, in Cat,
⟨P,Q⟩ : SetI → SetJ × SetK ∼= SetJ⊔K

and the constructions preserve polynomiality: in PolyFun,

⟨P,Q⟩ : I→ (J ⊔ K)

14

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K.

15

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K.

15

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K.

15

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K.

15

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K.

15

Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

P : I ⊔ J→ K

i.e., in Cat,
P : SetI⊔J → SetK

we have
SetI⊔J → SetK

SetI × SetJ → SetK

SetI → (SetK)SetJ

SetI → SetSetJ×K

which suggests defining the closure as

[J,K] = SetJ × K

for LL-people: this looks like !J ` K. 15

Closed structure

In terms of operations, the intuition behind the bijection

PolyFun(I ⊔ J,K) ∼= PolyFun(I,SetJ × K)

is that we can formally transform operations as follows

I J
.

K

⇝

I
. . .

K
. . .
J

16

Closed structure

In terms of operations, the intuition behind the bijection

PolyFun(I ⊔ J,K) ∼= PolyFun(I,Set/J× K)

is that we can formally transform operations as follows

I J
.

K

⇝

I
. . .

K
. . .
J

16

Closed structure

There are two problems with our closure. The first one is that

[I, J] = Set/I× J

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

[I, J] = Setfin/I× J

or rather
[I, J] = N/I× J

Finitary polynomial functors are also known as normal functors (introduced by
Girard).

17

Closed structure

There are two problems with our closure. The first one is that

[I, J] = Set/I× J

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

[I, J] = Setfin/I× J

or rather
[I, J] = N/I× J

Finitary polynomial functors are also known as normal functors (introduced by
Girard).

17

Closed structure

There are two problems with our closure. The first one is that

[I, J] = Set/I× J

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

[I, J] = Setfin/I× J

or rather
[I, J] = N/I× J

Finitary polynomial functors are also known as normal functors (introduced by
Girard).

17

Closed structure

There are two problems with our closure. The first one is that

[I, J] = Set/I× J

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

[I, J] = Setfin/I× J

or rather
[I, J] = N/I× J

Finitary polynomial functors are also known as normal functors (introduced by
Girard).

17

Cartesian closed structure

Theorem
The category PolyFun is cartesian closed.

Remark (Girard)
The 2-category PolyFun is not cartesian closed.

18

Cartesian closed structure

Theorem
The category PolyFun is cartesian closed.

Remark (Girard)
The 2-category PolyFun is not cartesian closed.

18

Failure of the cartesian closed structure

We would like to have an equivalence of categories

PolyFun(I ⊔ J,K) ≃ PolyFun(I,N/J× K)

but consider the polynomial functor

JPK(X) = X2

The equivalence fails:

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

(two elements on the left, one on the right because 0 is initial)

19

Failure of the cartesian closed structure

We would like to have an equivalence of categories

PolyFun(I ⊔ J,K) ≃ PolyFun(I,N/J× K)

but consider the polynomial functor

JPK(X) = X2

The equivalence fails:

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

(two elements on the left, one on the right because 0 is initial)

19

Failure of the cartesian closed structure

We would like to have an equivalence of categories

PolyFun(I ⊔ J,K) ≃ PolyFun(I,N/J× K)

but consider the polynomial functor

JPK(X) = X2

which is induced by the polynomial

1 2 1 1

The equivalence fails:

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

(two elements on the left, one on the right because 0 is initial)

19

Failure of the cartesian closed structure

We would like to have an equivalence of categories

PolyFun(I ⊔ J,K) ≃ PolyFun(I,N/J× K)

but consider the polynomial functor

JPK(X) = X2

which has two automorphisms

1 2 1 1

1 2 1 1

τ id
⌟

The equivalence fails:

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

(two elements on the left, one on the right because 0 is initial)

19

Failure of the cartesian closed structure

We would like to have an equivalence of categories

PolyFun(I ⊔ J,K) ≃ PolyFun(I,N/J× K)

but consider the polynomial functor

JPK(X) = X2

which has two automorphisms

1 2 1 1

1 2 1 1

τ id
⌟

The equivalence fails:

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

(two elements on the left, one on the right because 0 is initial) 19

Fixing the cartesian closed structure

The failure of the equivalence

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

can be interpreted as being due to the fact that 2 ∈ N/1 has no non-trivial
isomorphism.

This suggests moving to groupoids!

More precisely, we should replace N by the groupoid B of all symmetric groups.

20

Fixing the cartesian closed structure

The failure of the equivalence

PolyFun(0 ⊔ 1, 1) ̸≃ PolyFun(0,N/1× 1)

can be interpreted as being due to the fact that 2 ∈ N/1 has no non-trivial
isomorphism.

This suggests moving to groupoids!

More precisely, we should replace N by the groupoid B of all symmetric groups.

20

Polynomial functors in groupoids

The notion of polynomial functor generalizes in any locally cartesian closed
category.

...but the category Gpd is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy
(slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable
2-categorical sense.

21

Polynomial functors in groupoids

The notion of polynomial functor generalizes in any locally cartesian closed
category.

...but the category Gpd is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy
(slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable
2-categorical sense.

21

Polynomial functors in groupoids

The notion of polynomial functor generalizes in any locally cartesian closed
category.

...but the category Gpd is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy
(slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable
2-categorical sense.

21

Polynomial functors in groupoids

The notion of polynomial functor generalizes in any locally cartesian closed
category.

...but the category Gpd is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy
(slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable
2-categorical sense.

21

Polynomial functors in groupoids

Given a polynomial P
E B

p

the induced polynomial functor

JPK : Gpd→ Gpd

X 7→
∫ b∈B

Eb

where Eb is the homotopy fiber of p at b and∫ b∈E
Eb =

∑
b∈π0(B)

Xb/Aut(b)

where the quotient is to be taken homotopically...

22

Part II

Formalization in Agda

23

Homotopy type theory

There is a framework in which everything is constructed up to homotopy for free:
homotopy type theory.

Let’s formally develop the theory of polynomials in this setting.

24

Some notations

Notations:

• Type: the type of all types

• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)

25

Some notations

Notations:

• Type: the type of all types
• t ≡ u: equality between terms t and u

• A ≃ B: equivalence between types A and B

Axiom:

• univalence: (A ≡ B) ≃ (A ≃ B)

Homotopy levels (type = space):

• propositions: is-prop A = (x y : A) → x ≡ y

• sets: is-set A = (x y : A) → is-prop (x ≡ y)

• groupoids: is-groupoid A = (x y : A) → is-set (x ≡ y)
25

Formalizing polynomials

A polynomial is
I E B Js p t

We are tempted to formalize it as

record Poly (I J : Type) : Type1 where

field

B : Type

E : Type

t : B → J

p : E → B

s : E → I

but this is not very good because operations on those involve many handling of
equalities 26

Formalizing polynomials

A polynomial is
I E B Js p t

We formalize it as a container:

record Poly (I J : Type) : Type1 where

field

Op : J → Type

Pm : (i : I) → {j : J} → Op j → Type

26

Formalizing polynomials

A polynomial is
I E B Js p t

We formalize it as a container:

record Poly (I J : Type) : Type1 where

field

Op : J → Type

Pm : (i : I) → {j : J} → Op j → Type

The identity is

Id : Poly I I

Op Id i = ⊤
Pm Id i {j = j} tt = i ≡ j 26

Formalizing polynomials

A polynomial is
I E B Js p t

We formalize it as a container:

record Poly (I J : Type) : Type1 where

field

Op : J → Type

Pm : (i : I) → {j : J} → Op j → Type

We sometimes write

I ⇝ J = Poly I J

26

Composing polynomials

The polynomial functor induced by a polynomial P is

J_K : I ⇝ J → (I → Type) → (J → Type)

J_K P X j = Σ (Op P j) (λ c → (i : I) → (p : Pm P i c) → (X i))

The composite of two functors is

· : I ⇝ J → J ⇝ K → I ⇝ K

Op (P · Q) = J Q K (Op P)

Pm (_·_ P Q) i (c , a) = Σ J (λ j → Σ (Pm Q j c) (λ p → Pm P i (a j p)))

27

Composing polynomials

The polynomial functor induced by a polynomial P is

J_K : I ⇝ J → (I → Type) → (J → Type)

J_K P X j = Σ (Op P j) (λ c → (i : I) → (p : Pm P i c) → (X i))

The composite of two functors is

· : I ⇝ J → J ⇝ K → I ⇝ K

Op (P · Q) = J Q K (Op P)

Pm (_·_ P Q) i (c , a) = Σ J (λ j → Σ (Pm Q j c) (λ p → Pm P i (a j p)))

27

Morphisms of polynomials

The type of morphisms between two polynomials is

record Poly→ (P Q : Poly I J) : Type where

field

Op→ : {j : J} → Op P j → Op Q j

Pm≃ : {i : I} {j : J} {c : Op P j} → Pm P i c ≃ Pm Q i (Op→ c)

28

A bicategory

Theorem
We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem
We can build a bicategory of groupoids, polynomials in groupoids and their
morphisms.

29

A bicategory

Theorem
We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem
We can build a bicategory of groupoids, polynomials in groupoids and their
morphisms.

29

Products

Theorem
This bicategory is cartesian.

The product is ⊔ on objects, left projection is

projl : (I ⊔ J) ⇝ I

Op projl i = ⊤
Pm projl (inl i) {i'} tt = i ≡ i'

Pm projl (inr j) {i'} tt = ⊥

and pairing is

pair : (I ⇝ J) → (I ⇝ K) → I ⇝ (J ⊔ K)

Op (pair P Q) (inl j) = Op P j

Op (pair P Q) (inr k) = Op Q k

Pm (pair P Q) i {inl j} c = Pm P i c

Pm (pair P Q) i {inr k} c = Pm Q i c

30

Products

Theorem
This bicategory is cartesian.

The product is ⊔ on objects, left projection is

projl : (I ⊔ J) ⇝ I

Op projl i = ⊤
Pm projl (inl i) {i'} tt = i ≡ i'

Pm projl (inr j) {i'} tt = ⊥

and pairing is

pair : (I ⇝ J) → (I ⇝ K) → I ⇝ (J ⊔ K)

Op (pair P Q) (inl j) = Op P j

Op (pair P Q) (inr k) = Op Q k

Pm (pair P Q) i {inl j} c = Pm P i c

Pm (pair P Q) i {inr k} c = Pm Q i c

30

Defining the exponential

In order to define the 1-categorical closure, the plan was:

Set ⇝ Setfin ⇝ N

For the 2-categorical closure the plan is

Gpd ⇝ Gpdfin ⇝ B

Here, B is the groupoid with n ∈ N as objects and Σn as automorphisms on n.

31

Defining the exponential

In order to define the 1-categorical closure, the plan was:

Set ⇝ Setfin ⇝ N

For the 2-categorical closure the plan is

Gpd ⇝ Gpdfin ⇝ B

Here, B is the groupoid with n ∈ N as objects and Σn as automorphisms on n.

31

Finite types

We write Fin n for the canonical finite type with n elements:
its constructors are 0 to n-1.

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} (i : Fin n) → Fin (suc n)

32

Finite types

We write Fin n for the canonical finite type with n elements:
its constructors are 0 to n-1.

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} (i : Fin n) → Fin (suc n)

32

Finite types

The predicate of being finite is

is-finite : Type → Type

is-finite A = Σ N (λ n → ∥ A ≃ Fin n ∥)

The type of finite types is

FinType : Type1

FinType = Σ Type is-finite

(note that this is a large type)

33

Finite types

The predicate of being finite is

is-finite : Type → Type

is-finite A = Σ N (λ n → ∥ A ≃ Fin n ∥)

The type of finite types is

FinType : Type1

FinType = Σ Type is-finite

(note that this is a large type)

33

Finite types

The predicate of being finite is

is-finite : Type → Type

is-finite A = Σ N (λ n → ∥ A ≃ Fin n ∥)

The type of finite types is

FinType : Type1

FinType = Σ Type is-finite

(note that this is a large type)

33

Finitary polynomials

A polynomial is finitary when, for each operation, the total space of its
parameters is finite:

is-finitary : (P : I ⇝ J) → Type

is-finitary P = {j : J} (c : Op P j) → is-finite (Σ I (λ i → Pm P i c))

34

A small model for finite types

The type of integers is

data N : Type where

zero : N
suc : N → N

Theorem
FinType ≃ B.

35

A small model for finite types

The type B is

data B : Type where

obj : N → B
hom : {m n : N} (α : Fin m ≃ Fin n) → obj m ≡ obj n

id-coh : (n : N) → hom {n = n} ≃-refl ≡ refl

comp-coh : {m n o : N} (α : Fin m ≃ Fin n) (β : Fin n ≃ Fin o) →
hom (≃-trans α β) ≡ hom α · hom β

(this is a small higher inductive type!)

Theorem
FinType ≃ B.

35

A small model for finite types

The type B is

data B : Type where

obj : N → B
hom : {m n : N} (α : Fin m ≃ Fin n) → obj m ≡ obj n

id-coh : (n : N) → hom {n = n} ≃-refl ≡ refl

comp-coh : {m n o : N} (α : Fin m ≃ Fin n) (β : Fin n ≃ Fin o) →
hom (≃-trans α β) ≡ hom α · hom β

(this is a small higher inductive type!)

Theorem
FinType ≃ B.

35

The closure

We define
Exp : Type → Type1

Exp I = I → Type

Theorem
Ignoring size issues, for polynomials we have

(I ⊔ J) ⇝ K ≃ I ⇝ (Exp J × K)

36

The closure

We define
Exp : Type → Type1

Exp I = Σ (I → Type) (λ F → is-finite (Σ I F))

Theorem
Ignoring size issues, for finitary polynomials we have

(I ⊔ J) ⇝ K ≃ I ⇝ (Exp J × K)

36

The closure

We define
Exp : Type → Type1

Exp I = Σ FinType (λ N → fst N → I)

Theorem
Ignoring size issues, for finitary polynomials we have

(I ⊔ J) ⇝ K ≃ I ⇝ (Exp J × K)

36

The closure

We define
Exp : Type → Type

Exp I = Σ B (λ b → B-to-Fin b → A)

Theorem
For finitary polynomials we have

(I ⊔ J) ⇝ K ≃ I ⇝ (Exp J × K)

36

The exponential

Note that

Exp : Type → Type

Exp I = Σ B (λ b → B-to-Fin b → A)

is the free pseudo-commutative monoid!

37

	Polynomials and polynomial functors
	Formalization in Agda

