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I. What is a species?
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This paper presents a combinatorial theory of formal power series. The
combinatorial interpretation of formal power series is based on the concept of
species of structures. A categorical approach is used to formulate it. A new proof of
Cayley’s formula for the number of labelled trees is given as well as a new
combinatorial proof (due to G. Labelle) of Lagrange’s inversion formula. Polya’s
enumeration theory of isomorphism classes of structures is entirely renewed.
Recursive methods for computing cycle index polynomials are described. A
combinatorial version of the implicit function theorem is stated and proved. The
paper ends with general considerations on the use of coalgebras in combinatorics.
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INTRODUCTION

L’utilite des series formelles dans les calculs combinatoires est bien etablie.

_(Bender et Goldman [1], Doubilet et al. 8], Foata et

Schiitzenberger [12], Garsia et Joni [13], Gessel [14]). La premiére inter-
prétation (probabiliste) de la substitution des séries de puissances remonte a
Watson (Kendall [18]) (dans la théorie de processus en cascade).

Dans cette théorie, les objets combinatoires
correspondant aux séries formelles sont les especes de structures. L’accent est
mis sur le transport des structures plutét que sur leurs proprietés. Ce point
de vue n’est pas sans évoquer celui d’Ehresmann [9] et contraste avec celui
de Bourbaki [2]. Aux opérations combinatoires sur les series formelles

For those interested in an English translation, see Brent Yorgey’s project https://github.com/byorgey/series-formelles, which is still
a work-in-progress but includes a good chunk of the paper, together with some commentary and beautiful diagrams.
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correspondent des operations sur les especes de structures.

Il en resulte une sorte d’algebre combinatoire analogue a ’algebre
\

|23] (les théories antérieures utilisant surtout la théorie des

ensembies ordonnes et des partitions). De pius, elle met en évidence ie fait

fondamental qu’un tres grand nombre de bijections construites sont

naturelles, cC’est-a-dire qu’elles ne dépendent pas d’un systeme de coor-
donnees introduit au moyen d’une énumeération arbitraire.

Le travail contient quelques innnovations combinatoires comme le concept

de wvertébré et une nouvelle démonstration du résultat de Cayley [ . ]



Deﬁniﬁon (version Joyal 1986)

A (symmetric) species is a functor S : B — Sef

where B is the category of finite sets and bijections

where Set is the category of sets and functions

Unpacking the definition: not necessarily finite
/
1. for any finite set A, a set S[A] of "structures on A"

2. for any bijection f: A = B, a function S[f] : S[A] = S[B]
3. such that S[g o ] = S[g] ° S[f] and S[id] = id

an immediate consequence is that S[f] : S[A] = S[B]

Intuition: family of combinatorial objects carrying a finite set of labels,
invariant under Fe/abe//fng. (cf. Flajolet & Sedgewick’s "labelled classes")



The groupoid of elements of a species

To any functor T: € — Set may be associated a category of elements el(T)
equipped with a canonical projection functor el(T) = €. The definition of el(S)
reduces to the following in the case of a species S : B — Set:

e objects are pairs (A,s) where A is a finite set and s € S[A] a structure on A

» morphisms (A,s) = (B,t) are bijections f : A = B such that S[f](s) = t

For a species, el(S) is always a groupoid = category where every morphism
is invertible, and the connected components of this groupoid may be seen as
equivalence classes of structures modulo relabelling.

Conversely, one can also recover the functor S : B = Set from the functor
el(S) = B, and this fibrational perspective on species is at times helpful.



Some examples of species

 G[A] = simple graphs = irr. sym. relations R € A x A; G[f] = R » {(R)
e P[A] = bijections @ : A= A; P[f] = @ - fo@of!
o E[A] = {*}: E[f] = trivial
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From (finitary) species to generating functions

A species S : B = Set is said to be finitary if Card S[A] < « for all A.
In that case, we can associate to S an exponential generating function:

S(x) =" Card S[n] %
n>0 .

The formula may be justitied conceptually as computing the "groupoid cardinality"
of each connected component of el(S).

Examples:

(e x" x" 1 x" .
G(x):ZQ( 1)/2ﬁ P(x):Zn!g: E(x) = e

n>0 . n>0 . n >0
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The category of species

note this is

Species can themselves be organized into a category Esp with morphisms ' equivalent to:

@ : S = T given by natural transformations, that is, fami

@[A] : S[A] = T[A] such that T[] o @[A] = @[B] o S[f] for a

Often, though not always, identities on generating functions can be lifted to

natural isomorphisms of the corresponding species.

ies of functions

| {. A = B.

el(S) — el(T)

NV
B

counterexample (Joyal): L(x) = P(x) but L & P, where L[A] = linear orders on A.

But...the power of the approach relies on the fact that species live inside a

category that includes many non-invertible morphisms!
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Categorifying operations on generating functions

Coproducts in Esp yield sums of egfs:

(5+ NIAI =5[Al W T[A]l s+ 1)(2)
O[A] = O 0(z)

S(x)+ T(x)
0

A convolution tensor product on Esp yields multiplication of egfs:
S® TA]={BCst) | A=Buw C,s &€ S[B], t € T[C]} (S ® T)(x) = S(z)T(x)
Al ={* | A= O} 1(z) =1

Esp also has categorical products, which yield the "Hadamard product" of egfs:

(S & T)[A] = S[A] x T[A] (S&T)(x) =Y sptnx™  where s, = [2"|S(x),t, = [z"]T(x)

n>0
(the unit is the terminal species E)



Composition and differentiation

Esp has yet another monoidal structure, capturing composition of egfs:

(S o T)A — {((Ab)bEB/S/(Tb)bEB) ‘ A — L'lJbEB Ab/ S E S[B], Vb E B er E T[Ab] }

XAl ={f | f:A={
Al=1f] oy (SoT)(x)=S(T(x)  X(z)==z

Observe that this monoidal product is not symmetric.

The derivative of a species is defined as follows:
STA] = S[A ¥ {*}] S'(x) = 0:5(x)

Many laws of differentiation lift to natural isomorphisms...
0 X=1 EF=E S+T)=S5+T
S®T+6S®T) SeeT))=(STST

IR

I
S®T)
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Monoidal closed structure

Interestingly, the cartesian product, the symmetric tensor product, and the
non-symmetric composition product all have right closures:

In genera
they can

84S 4 5=- -®S5 4 S5—-  -o5 - 5>

these do not correspond to simple operations on egts, but sometimes

ne simplified. In particular we have the following nice identity:

X—5=5
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Relative species and multivariate gfs

The base category B somehow possesses a lot of "innate knowledge" of
egfs, but may be replaced by other categories to categority other kinds of
generating functions. For example, ordinary generating functions

are categorified by ordered species, defined as functors S: € — Set

on the groupoid of linearly ordered finite sets and order-preserving bijections.

Ordered species are actually an instance of Joyal’s more general notion
of relative species, defined as functors S : el(T) = Set on the category of
elements of another species T. Note that ¢ = el(L) = N.

Similarly one can categority multivariate gfs as functors over a cartesian

product of categories. For example, a functor over € x B yields a bivariate gf
that is ordinary in the first parameter and exponential in the second.
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Functional equations and inductive definitions

In combinatorics, a gf is often specified by a "functional equation”, e.g., the ogf
for strings of balanced parentheses and the egt for rooted non-planar trees:

B(z) =1+ zB(z)? T(z) = zeT®@

In functional programming languages, types are often specified by recursive
equations, e.qg., the type of binary trees with labelled nodes, or of "rose trees":

data Bin a = Leaf | Branch a (Bin a) (Bin a)
data Rose a = Node a [Rose a]

Joyal’s Implicit Species Theorem ties these things together!
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The Implicit Species Theorem 2*

Theorem. Let F(X)Y) be a finitary bivariate species satistying F(0,Y) = n for

some n € N. Then there exists a finitary species S, unigue up to isomorphism,
satisfying S = F(X,S) with S(0) = n.

Examples:
L=1+X®L B=1+X®B®B T=X®(E-°T)

N=X2+XON+2@ X*® oax N\

*this nice simple formulation is due to Brent Yorgey, see Theorem 5.4.3 of Combinatorial Species
and Labelled Structures, PhD thesis, University of Pennsylvania, 2014.



2. What is an operad?
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ldea, origins, and applications

From https://ncatlab.org/nlab/show/operad:

An operad is a gadget used to describe algebraic structures in symmetric monoidal categories.
It 1s

e a bunch of abstract operations of arbitrarily many arguments;
e equipped with a notion of how to compose these;

e subject to evident associativity and unitality conditions.

Originally introduced by Peter May (1972) for motivations in algebraic topologuy.

Have found applications in category theory, combinatorics, CS, etc, see textbooks:

Tom Leinster, Higher Operads, Higher Categories, 2004

Miguel A. Méndez, Set Operads in Combinatorics and Computer Science, 2015
Donald Yau, Operads of Wiring Diagrams, 2018

Samuele Giraudo, Nonsymmetric Operads in Combinatorics, 2018
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Definition

Super slick version: an operad is a monoid in (Esp, ©, X)!

That is, an operad is a species T equipped with a pair of morphisms

S

TolT->T X=>T

atisfying associativity and unitality laws.

Working in Esp (the category of B-species) gives us symmetric operads, but

f
:

ne same definition works in different categories of species to recover different
avors of operads. In particular, planar (= non-symmetric) operads can be

C

efined as monoids in the category of (-species.
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Paradigmatic example: trees w/labelled leaves
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Free operads

The free operad over a species S is the initial algebra for the functor

R X+S50oR

and hence satisfies Tc = X +S o Tc. The operations of T¢ can be seen as trees
with labelled leaves and with nodes labelled by structures in S.

Even it S is finitary, T¢ need not be (e.g., take S = 1 + X2). However, it can
be made finitary by introducing an extra variable tracking nodes...

Te=X+Z® (ST
resulting in a corresponding functional equation for the bivariate gf:

Ts(z,x) =x+2-S(Ts(z,x))



Colored operads = multicategories

A classical operad only keeps track of the arities of operations.

But there is also a "co

ored" version of operads, where each operation is

assigned a list of inpu

- colors and a unique output color, and composition

requires that the colors match.

Another name for a colored operad is a multicategory.

A multicategory is just
have multiple inputs.

mon
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like a category, except that the morphisms can
Indeed, there is the following analogy:

oid : category :: operad :: multicategory
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Multicategories & sequent calculus

There is a close relationship between multicategories and sequent calculi
for intuitionistic logics. Indeed, this was one of Joachim Lambek’s
inspirations for defining multicategories!

MULTICATEGORIES REVISITED 221

3. MULTICATEGORIES

I had pointed out in 1961 that Gentzen’s sequent calculus was essentially the same
as Bourbaki’s (1958) method of bilinear maps. For argument’s sake, let us assume we are
dealing with R — R-bimodules for a given ring R. Bourbaki had described a canonical
bilinear map AB — A ® B which induced a natural isomorphism between bzlznear maps
AB — C and lznear maps A ® B — C. This was exploited to obtain all properties of

the tensor product.

[...]

Once the analogy between the methods of Gentzen and Bourbaki has been realized,
it 1s quite natural to ask that the sequents in the Gentzen style presentation of the
syntactic calculus be interpreted as some kind of multilinear maps. This was done in my
1968 paper, to be followed by a formal definition of “ multicategories” in 1969.



3. What is a closed multicategory?
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Definition

A multicategory is said to be closed if for any pair of objects ("colors") A and B,
there is an object A—B equipped with a binary morphism

app : A—B,A— B
such that for any (n+1)-ary morphism

f:A1,..,An ,A—>B

there exists a unique n-ary morphism

lam(f) : A1, ..., An = A—B

such that app °1 lam(f) = 1.
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Examples of closed multicategories

Any monoidal closed category. In particular:

Set = the multicategory of sets and n-ary functions.
(A closed cartesian multicategory.)

Vec = the multicategory of vector spaces and multilinear maps.
(A closed symmetric multicategory.)

Also, the multicategory of species, defined in three different ways!

The paradigmatic example: typed lambda calculus.
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Free closed multicategories

(c = cartesian, s = symmetric, p = planar)

The free closed (c/s/p-)multicategory over a set S may be constructed as follows:

» objects are the elements of S, viewed as types;
» morphisms Az, ..., An = B are =g, classes of typed (g/l/o-)A-terms

x1:A1, ..., xn:An = 1:B: (g = general, | = linear, o = ordered)
» composition is defined by substitution.

Alternatively, it may be constructed directly from terms in normal form,
with composition defined by normalizing substitution. This is nicer since
these normal forms admit a simple inductive description!

In particular, we can enumerate morphisms in free closed multicategories
using cut-free sequent calculi, a la Lambek.



A puzzling fact

Let M be the free closed planar multicategory over {*}.

Write M[n] for the set of morphisms A1, ..., Ak = * in M where the
A1 ... Ak contain a total of 2n+1 occurrences of *.

Let m, = Card M[n].
Fact: m, is the number of rooted planar maps on 2n+1 darts.
This is a consequence of ZG 2015, but we did not give a good explanation.

Can the new bijection by Wenijie Fang (2022) [talk this afternoon!] provide
a path towards a proper understanding of this fact?
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Food for thought

Let T be the restriction of M to first-order types.
order(*) = 0

Let t = Card T[nl. order(A—B) = max(1 + order(A), order(B))

Fact: 1 is the number of rooted planar trees on 2n+l darts.

The prooft is easy. Interestingly, the type of +:A can be seen as encoding
a tree by a tukasiewicz path.

Can this easy fact and the puzzling fact be given a unified explanation?



