
A quick introduction to species, operads,
and closed multicategories

Noam Zeilberger

LambdaComb kickoff mee�ng*

11 April 2022

*h�ps://www.lix.polytechnique.fr/LambdaComb/kickoff.html

1

1. What is a species?

2

Origins

3

Origins

For those interested in an English translation, see Brent Yorgey's project https://github.com/byorgey/series-formelles, which is still
a work-in-progress but includes a good chunk of the paper, together with some commentary and beautiful diagrams.

4

Origins

[...]

5

Definition

A (symmetric) species is a functor S : ℬ → Set

where ℬ is the category of finite sets and bijections
where Set is the category of sets and functions

(version Joyal 1986)

Unpacking the definition:

1. for any finite set A, a set S[A] of "structures on A"

2. for any bijection f : A ≅ B, a function S[f] : S[A] → S[B]

3. such that S[g ∘ f] = S[g] ∘ S[f] and S[id] = id

Intuition: family of combinatorial objects carrying a finite set of labels,
invariant under relabelling.

not necessarily finite

(cf. Flajolet & Sedgewick's "labelled classes")

an immediate consequence is that S[f] : S[A] ≅ S[B]

6

The groupoid of elements of a species

To any functor T : 𝒞 → Set may be associated a category of elements el(T)
equipped with a canonical projection functor el(T) → 𝒞. The definition of el(S)
reduces to the following in the case of a species S : ℬ → Set:

• objects are pairs (A,s) where A is a finite set and s ∈ S[A] a structure on A

• morphisms (A,s) → (B,t) are bijections f : A ≅ B such that S[f](s) = t

For a species, el(S) is always a groupoid = category where every morphism
is invertible, and the connected components of this groupoid may be seen as
equivalence classes of structures modulo relabelling.

Conversely, one can also recover the functor S : ℬ → Set from the functor
el(S) → ℬ, and this fibrational perspective on species is at times helpful.

7

Some examples of species

→
el(G) el(P)

ℬ(note that el(E) ≅ ℬ)

• E[A] = {*}; E[f] = trivial

• G[A] = simple graphs = irr. sym. relations R ⊆ A × A; G[f] = R ↦ f(R)

→

• P[A] = bijections φ : A ≅ A; P[f] = φ ↦ f∘φ∘f⁻¹

8

From (finitary) species to generating functions

A species S : ℬ → Set is said to be finitary if Card S[A] < ∞ for all A.
In that case, we can associate to S an exponential generating function:

The formula may be justified conceptually as computing the "groupoid cardinality"
of each connected component of el(S).

Examples:

9

The category of species

Species can themselves be organized into a category Esp with morphisms
φ : S → T given by natural transformations, that is, families of functions
φ[A] : S[A] → T[A] such that T[f] ∘ φ[A] = φ[B] ∘ S[f] for all f : A ≅ B.

Oen, though not always, identities on generating functions can be lied to
natural isomorphisms of the corresponding species.

counterexample (Joyal): L(x) = P(x) but L ≇ P, where L[A] = linear orders on A.

But...the power of the approach relies on the fact that species live inside a
category that includes many non-invertible morphisms!

el(S) → el(T)

ℬ
→ →

note this is
equivalent to:

10

Categorifying operations on generating functions

Coproducts in Esp yield sums of egfs:

(S + T)[A] = S[A] ⊎ T[A]
0[A] = ∅

Esp also has categorical products, which yield the "Hadamard product" of egfs:

(S ⊗ T)[A] = {(B,C,s,t) ∣ A = B ⊎ C, s ∈ S[B], t ∈ T[C]}

1[A] = {* ∣ A = ∅}

(S & T)[A] = S[A] × T[A]
(the unit is the terminal species E)

A convolution tensor product on Esp yields multiplication of egfs:

11

Composition and differentiation

Esp has yet another monoidal structure, capturing composition of egfs:

(S ∘ T)[A] = {((Ab)b∈B,s,(tb)b∈B) ∣ A = ⨄b∈B Ab, s ∈ S[B], ∀b ∈ B. tb ∈ T[Ab] }

X[A] = {f ∣ f : A ≅ {*}}

The derivative of a species is defined as follows:

S'[A] = S[A ⊎ {*}]

Observe that this monoidal product is not symmetric.

Many laws of differentiation li to natural isomorphisms...

 1' ≅ 0 X' ≅ 1 E' ≅ E (S + T)' ≅ S' + T'
(S ⊗ T)' ≅ (S' ⊗ T) + (S ⊗ T') (S ∘ T)' ≅ (S' ∘ T) ⊗ T'

12

Monoidal closed structure

Interestingly, the cartesian product, the symmetric tensor product, and the
non-symmetric composition product all have right closures:

X ⊸ S ≅ S'

-&S ⊣ S⇒- -⊗S ⊣ S⊸- -∘S ⊣ S▷-

In general these do not correspond to simple operations on egfs, but sometimes
they can be simplified. In particular we have the following nice identity:

13

Relative species and multivariate gfs

The base category ℬ somehow possesses a lot of "innate knowledge" of
egfs, but may be replaced by other categories to categorify other kinds of
generating functions. For example, ordinary generating functions
are categorified by ordered species, defined as functors S : 𝒪 → Set
on the groupoid of linearly ordered finite sets and order-preserving bijections.

Ordered species are actually an instance of Joyal's more general notion
of relative species, defined as functors S : el(T) → Set on the category of
elements of another species T. Note that 𝒪 ≅ el(L) ≡ ℕ.

Similarly one can categorify multivariate gfs as functors over a cartesian
product of categories. For example, a functor over 𝒪 × ℬ yields a bivariate gf
that is ordinary in the first parameter and exponential in the second.

14

Functional equations and inductive definitions

In combinatorics, a gf is oen specified by a "functional equation", e.g., the ogf
for strings of balanced parentheses and the egf for rooted non-planar trees:

In functional programming languages, types are oen specified by recursive
equations, e.g., the type of binary trees with labelled nodes, or of "rose trees":

data Bin a = Leaf | Branch a (Bin a) (Bin a)
data Rose a = Node a [Rose a]

Joyal's Implicit Species Theorem ties these things together!

15

The Implicit Species Theorem 2*

Theorem. Let F(X,Y) be a finitary bivariate species satisfying F(0,Y) ≅ n for
some n ∈ ℕ. Then there exists a finitary species S, unique up to isomorphism,
satisfying S ≅ F(X,S) with S(0) ≅ n.

Examples:

*this nice simple formulation is due to Brent Yorgey, see Theorem 5.4.3 of Combinatorial Species
and Labelled Structures, PhD thesis, University of Pennsylvania, 2014.

L ≅ 1 + X ⊗ L B ≅ 1 + X ⊗ B ⊗ B T ≅ X ⊗ (E ∘ T)

Λ ≅ X² + X ⊗ Λ² + 2 ⊗ X⁴ ⊗ ∂ₓ Λ

16

2. What is an operad?

17

Idea, origins, and applications

Originally introduced by Peter May (1972) for motivations in algebraic topology.

 Tom Leinster, Higher Operads, Higher Categories, 2004
 Miguel A. Méndez, Set Operads in Combinatorics and Computer Science, 2015
 Donald Yau, Operads of Wiring Diagrams, 2018
 Samuele Giraudo, Nonsymmetric Operads in Combinatorics, 2018

Have found applications in category theory, combinatorics, CS, etc, see textbooks:

From https://ncatlab.org/nlab/show/operad:

18

Definition

Super slick version: an operad is a monoid in (Esp, ∘, X)!

That is, an operad is a species T equipped with a pair of morphisms

T ∘ T → T X → T

satisfying associativity and unitality laws.

Working in Esp (the category of ℬ-species) gives us symmetric operads, but
the same definition works in different categories of species to recover different
flavors of operads. In particular, planar (= non-symmetric) operads can be
defined as monoids in the category of 𝒪-species.

T ∘ T → T X → T

19

Paradigmatic example: trees w/labelled leaves

T ∘ T T

→

20

Free operads

The free operad over a species S is the initial algebra for the functor

Even if S is finitary, TS need not be (e.g., take S = 1 + X²). However, it can
be made finitary by introducing an extra variable tracking nodes...

R ↦ X + S ∘ R

TS ≅ X + Z ⊗ (S ∘ TS)

resulting in a corresponding functional equation for the bivariate gf:

and hence satisfies TS ≅ X + S ∘ TS. The operations of TS can be seen as trees
with labelled leaves and with nodes labelled by structures in S.

21

Colored operads = multicategories

A classical operad only keeps track of the arities of operations.

But there is also a "colored" version of operads, where each operation is
assigned a list of input colors and a unique output color, and composition
requires that the colors match.

Another name for a colored operad is a multicategory.

A multicategory is just like a category, except that the morphisms can
have multiple inputs. Indeed, there is the following analogy:

monoid : category :: operad :: multicategory

22

Multicategories & sequent calculus

There is a close relationship between multicategories and sequent calculi
for intuitionistic logics. Indeed, this was one of Joachim Lambek's
inspirations for defining multicategories!

[...]

23

3. What is a closed multicategory?

24

Definition

A multicategory is said to be closed if for any pair of objects ("colors") A and B,
there is an object A⊸B equipped with a binary morphism

such that for any (n+1)-ary morphism

app : A⊸B, A → B

f : A₁, ..., Aₙ , A → B

there exists a unique n-ary morphism

lam(f) : A₁, ..., Aₙ → A⊸B

such that app ∘₁ lam(f) = f.

25

Examples of closed multicategories

Any monoidal closed category. In particular:

Vec = the multicategory of vector spaces and multilinear maps.
(A closed symmetric multicategory.)

Also, the multicategory of species, defined in three different ways!

Set = the multicategory of sets and n-ary functions.
(A closed cartesian multicategory.)

The paradigmatic example: typed lambda calculus.

26

Free closed multicategories

The free closed (c/s/p-)multicategory over a set S may be constructed as follows:

• objects are the elements of S, viewed as types;
• morphisms A₁, ..., Aₙ → B are ≡βη classes of typed (g/l/o-)λ-terms
 x₁:A₁, ..., xₙ:Aₙ ⊢ t:B;
• composition is defined by substitution.

(c = cartesian, s = symmetric, p = planar)

(g = general, l = linear, o = ordered)

Alternatively, it may be constructed directly from terms in normal form,
with composition defined by normalizing substitution. This is nicer since
these normal forms admit a simple inductive description!

In particular, we can enumerate morphisms in free closed multicategories
using cut-free sequent calculi, à la Lambek.

27

A puzzling fact

Let M be the free closed planar multicategory over {*}.

Write M[n] for the set of morphisms A₁ , ... , Aₖ → * in M where the
A₁ ... Aₖ contain a total of 2n+1 occurrences of *.

Let mn = Card M[n].

Fact: mn is the number of rooted planar maps on 2n+1 darts.

This is a consequence of ZG 2015, but we did not give a good explanation.

Can the new bijection by Wenjie Fang (2022) [talk this aernoon!] provide
a path towards a proper understanding of this fact?

28

Food for thought

Let T be the restriction of M to first-order types.
order(*) = 0
order(A⊸B) = max(1 + order(A), order(B))

where

Let tn = Card T[n].

Fact: tn is the number of rooted planar trees on 2n+1 darts.

The proof is easy. Interestingly, the type of t:A can be seen as encoding
a tree by a Łukasiewicz path.

Can this easy fact and the puzzling fact be given a unified explanation?

29

