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What is the A-calculus?

e A universal system of computation

e Its terms are formed using the following grammar

x | Ax.t|(s t)
varim )

abstraction |
represents an anonymous function

_ application |
feeding an argument t to a function s

e \We're interested in terms up to x-equivalence:

0.6
0.6

(Ax.xx) (Ax.xx) = (Ay.yy) (Ax.xx) # (Ay.ya)(Ax.xx)
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(ox-converting T if necessary, to avoid capturing variables of To)
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Computing with the A-calculus

® Substitution rule:
Tl [\) — TQ]

“replace free occurences of v in Ty with T5"

(ox-converting T if necessary, to avoid capturing variables of To)

e Examples of substitutions

o (Ax.(x y))ly :=x] # (Ax.(x x))
® (Ax.(x y)ly :=x] = Az.(zy))ly :=x] = (Az.(z x))

e Dynamics of the A-calculus: [3-reductions

(A-terms together with (3-reduction are enough to encode any computation!)

(Ax.t;) to) B ty[x := t,]

e Examples of reductions
o ((Ax.x)y) B, xlx =yl =y

o (.((Ayxy) w) B (Ay.(x y)ly :=ul = (Ax.(x u))

o (Mx.(x x))(Ay.(y y)) = (My.(y y) Ay.(y y)) £ (Ax.(x X)) (My.(y y))
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More on [3-reductions
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e An occurence of the ((Ax.t1) to) “pattern” is called a [3-redex:

[(Ax 7\9 y x))

® A term with no beta-redices (redexes?) is called a normal form

(Wx.((Ay.(y x)) %)) (@ b)) B (Ax.(x x))(a b) 5 (a b)(a b)

nnnnn | form!

® [3-reduction is quite complicated:
® Reducing a redex can create new redices!

(Ax.(x 2)) (\y) = (Ayy) 2)

e Terms may never reach a normal form, their size might even increase!
((Ax.(x x))(Ax.(x x x))) LA (Ax.(x x x))(Ax.(x x x))(Ax.(x x X))

® Order in which redices are reduced matters!

(Ax.z) (M. (x x))(Ax.(x )7 (Ax.z)((x x)[x = (Ax.(x x))]) =

S~ z[x = (Axx x)(Ax.x X)] =z 4G
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Previous work on the reduction of A-terms

e Asymptotically almost all A-terms are strongly normalizing.
[DGKRTZ13]

For terms expressed in the previously-presented syntax
and size defined recursively as:

x|=10,|(a b)|=1+4|al+|b

CAx.tl=1 4|t

e Asymptotically almost no A-term is strongly normalizing.
[DGKRTZ13,BGLZ16]

For terms expressed using de Bruijn indices or combinators
(together with appropriate size functions)

Parameter sensitive to the definition of the syntax
and the size of terms!

® Almost every simply-typed A-term has a long [3-reduction sequence
[SAKT17]
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Subfamilies of A-terms

General terms: no restrictions on variable use
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Subfamilies of A-terms

General terms: no restrictions on variable use

""""""""""""""""""""""""""""""""""""""""""""""

Ax.Ay.x (y a) (Ax.xx)(Ay.yy)

, j unused abstraction \ /
 free variable

var. used twice

Affine Terms: bound variables occur at most once

""""""""""""""""""""""""""""""""""""""""

AX.AY.y

Linear Terms: bound variables occur exactly once

""""""""""""""""""""""""""""""""""""

________________________________________________________________

______________________________________________________________________

__________________________________________________________________________________
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[3-reducing closed linear terms
e Closed linear lambda calculus is strongly normalising

® Repeated [3-reduction is guaranteed to terminate, there exists
a unique normal form, and reduction order doesn’'t matter!

e No longer Turing-complete, many interesting connections
with complexity theory (e.g PTIME-completeness [M04])

e How many [3-reduction steps, on average, does one need to
reach a normal form starting from a random A-term?

A lower bound is given by the number of [3-redices!

This motivates the central question of this work:

What is the number of 3-redices in a'random linear A-term?

asymptotically! / /

seq. of random variables! uniform distribution
on the set of terms of size n
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What are maps?

We're interested in unrestricted genus, restricted vertex degrees
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String diagrams! [BGJ13, Z16]
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Why should you, a logician, be interested in maps?

String diagrams! [BGJ13, Z16] (Ay.Az.(y Aw.w)z))(Au.Av.a u)

-
- ~
L4

---------

‘\ o" . o" \
\q = (s t)

® Free var <+ unary vertex

order matters!

e Unused A <+ binary vertex
e Identity-subterm <« loop

® Closed subterm <« bridge
® 7t subterms <+ # edges

Closed linear terms < trivalent maps
Closed affine terms <> (2,3)-valent maps
Established in [BGJ13, BGGJ13]
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Why should you, a combinatorialist, be interested in A-terms?

Decomposing (closed) rooted trivalent maps [BGJ13]

and open linear terms!

-----

u
.........
Same

~
.......

edges

&

T(z)=z% + zT(z)?

(

subterms

lin.term = AXX (S 't)
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Some of our previous results: limit distributions

# bridges = # closed subterms

®
one bridge <+ no bridge

AXAY.(y AzAw.zw)x  X3° = Poisson(1)

12 D
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[3-reduction as map rewriting

Ax.(Ay.y(Az.Aw.zw) ) ((Au.u)x)

- — M (Ayy(AzAaw.zw))x)
C _e AXX (AzZAW.ZW)
13 E
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Our workflow:

1) Track evolution of parameter during an appropriately chosen
decomposition of closed linear terms/trivalent maps.

_—

There's a lot, based on: differential equations, exponential Hadamard products, etc

-
resulting OGFs are purely formal, which makes them difficult to analyse!

‘ crucial ingredient: coefficients are growing rapidly

2) Find appropriate tools to deal with their analysis.

® Bender's theorem for compositions F(z, G(z))

® Coefficient asymptotics of Cauchy products
n

[Zn] (A . B) — Z akbn_k
k:TLO
first order asymptotics given by k = ngand k = n 14 I
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no redex applications

- "
/_T‘ -
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* \ S
<
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-----
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Mean number of [3-redices in closed terms
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Mean number of [3-redices in closed terms
e Tracking redices during the decomposition
Abstractions, subcase 1.2

#ways to do this
\tJA — |tlg

)

number of abstractions in t

+1
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Mean number of [3-redices in closed terms
e Tracking redices during the decomposition
Abstractions, subcase 1.3

.- #ways to do this
0 1] — [ty
/\
number ofjsubterms in t = size of t
+0
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Mean number of [3-redices in closed terms
eBuilding the specification of the OGF

t[41 2lt|—1
o [th = L ] — [ty = 24
o 10, To = ) [tlgz!tir'tle
telp
.zaZT30+To =y |t|3+1z\t\v\t|[3

teTy

220, To—T, 21t]=1_|t|,, |t
o 0 0
3 _ZtETo 3 2 VP
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Mean number of [3-redices in closed terms
e Translating to a differential equation and pumping

Tg=—z (zz(r +1)(1+(r—1)zT)(r—1)0, Ty
(14z(r—1)T)23(v+5)9, Ty z3(r—1)°TZ¢  4z22(r—1)Ty Tg)

3 3 3 Zz— g
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Mean number of [3-redices in closed terms
e Translating to a differential equation and pumping

—z (Z(r+1)(1+ (r—1)zT)(r— 1), To

(14z(r—1)T)23(v+5)9, Ty z3(r—1)°TZ¢  4z22(r—1)Ty B T2)
3 3 3 z— g

A plot of the dist. of redices for terms/maps of size n =119

To =

Writing the size as n = 3k + 2, we have:
Mean ~
29k

H#terms
& i
}
iy
o

Variance ~ 250

15 J

20

Oc-+-00 . : .
0 3 10 15
#redices



Three special kinds of 3-redices

16 A



Three special kinds of 3-redices

e Consider the following three families of redices

(Ax.Cl(x u)])(Ay.tz) ((Ax.Ay.t1)t2)t3
(}\X.X) (Ay.tl)tz

16 B



Three special kinds of 3-redices

e Consider the following three families of redices

(Ax.Cl(x u)])(Ay.tz) ((Ax.Ay.t1)t2)t3
(}\X.X) (Ay.tl)tz

e A reduction step applied to any of these leaves the number
of redices invariant.

16 C



Three special kinds of 3-redices

e Consider the following three families of redices

(Ax.Cl(x u)])(Ay.tz) ((Ax.Ay.t1)t2)t3
(}\X.X) (Ay.tl)tz

e A reduction step applied to any of these leaves the number
of redices invariant.

e [hese are the only patterns with this property.
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Three special kinds of 3-redices

e Consider the following three families of redices

(Ax.Cl(x w)])(Ay.t2) ((Ax.Ay.t1)t2)ts
(}\X.X) (}\y.tl)tz
e A reduction step applied to any of these leaves the number

of redices invariant.

e [hese are the only patterns with this property.

e Can be used to give a lower bound on number of steps
to reach normal form:

#steps = [tg+tlpr + [tlp, + [thy,
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Enumerating p;-patterns

e Tracking the creation/destruction of patterns during the
recursive decomposition:
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Enumerating p;-patterns

e Tracking the creation/destruction of patterns during the
recursive decomposition:

Cuts destroying a pi-pattern:
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Enumerating p;-patterns

e Tracking the creation/destruction of patterns during the
recursive decomposition:

Cuts creating a pi-pattern:

Thus we also need to keep track of:
C1[Ax.Col(ty X)) (Ay.t2)]  Cil(Ax.x)(Ay.t2)]
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Enumerating p;-patterns

e Tracking the creation/destruction of patterns during the
recursive decomposition:

Applications creating p; and auxilliary patterns:

Thus, for an app. of the form (1; Ay.t;) we need to consider
how 1; was formed.
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Enumerating p;-patterns
e T hus we have the following equations:

L=A+A

AN=224+22*S, + (v—u+4(1—u))z3S, + (u—v+4(1—-v))z3S,

A=2z5+(u—1)z(z*S, + (v—u+2(1 —-u))z’S, +2(1 —v)z3S,) - A
+(v—1z(22+2*S, + (u—v+2(1 —v))z3S, +2(1 —u)z3S,) - A
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Enumerating p;-patterns

e T hus we have the following equations:

L=A+A

AN=224+22*S, + (v—u+4(1—u))z3S, + (u—v+4(1—-v))z3S,

A=2z5+(u—1)z(z*S, + (v—u+2(1 —-u))z’S, +2(1 —v)z3S,) - A
+(v—1)z(z2 +2*S, + (u—v+2(1 —Vv))z3S, +2(1 —u)z3S,) - A

e Extracting the mean:

ausluzl,v:l
— (2250,,S +22%0,.,S +270,S +22°(0,5)2 — 5230, S + 230, S) lu—1v—1
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Enumerating p;-patterns

e T hus we have the following equations:

L=A+A

AN=224+22*S, + (v—u+4(1—u))z3S, + (u—v+4(1—-v))z3S,

A=2z5+(u—1)z(z*S, + (v—u+2(1 —-u))z’S, +2(1 —v)z3S,) - A
+(v—1)z(z2 +2*S, + (u—v+2(1 —Vv))z3S, +2(1 —u)z3S,) - A

e Extracting the mean:

aus|u:1,v:1 bijection needed!
= (22S804,S +22%0,,S +270,S + 22°(0,5)? — 52%0.,S + 2°05,S) lu—1,v—1
° °

pointed at abstraction

pointed at pi-pattern
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Enumerating p;-patterns

e Finally we obtain a mean number of occurences:

X, ~ ¢
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Enumerating pi-patterns and p»-patterns

e Finally we obtain a mean number of occurences:

CUXp, ) ~ %

e Analogously, we have a mean number of occurences for p»:

ﬂ[ng] ~ 1

48

Both are asymptotically constant in expectation!
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Enumerating ps-patterns

e As before, we'll also need to enumerate auxilliary patterns:

(Ax.Ay.t1) (Ax.Ay.t1) t2 t3
()\X.}\y.tl) to
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Enumerating ps-patterns

e As before, we'll also need to enumerate auxilliary patterns:

(Ax.Ay.t1) (Ax.Ay.t1) t2 t3
()\X.}\y.tl) to

e However we run into a problem:

Pointing inside p3

Pointing inside (Ax.Ay.t;)
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Enumerating ps-patterns

e Generatingfunctionology fails, we revert to more elementary
methods:

E(Xm) — E/\n(xm) ' ||/L\:|‘ | EAn(Xm) . Anl
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Enumerating ps-patterns

e Generatingfunctionology fails, we revert to more elementary

methods: | .
asymptotically negligible

E(Xp,) = En, (Xp,) - 22l 4 B (Xp,) - 22]
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Enumerating ps-patterns

e Generatingfunctionology fails, we revert to more elementary

methods: | .
asymptotically negligible

E(Xp,) =B, (Xp,) - 22l 4 B (Xp,) - 22]
-/

'mzrgic: linear over families of all possible abstractions created via cuts from a fixed term!

N

A gl a _Vn—?)
Yn=2nY";,_ 3—6Y' 3+2'n_3

where: X, is the sum of X,,, , over families of abs.,

Y, is the same for the pattern (Ax.Ay.t;) t,, and
Y’ is the same for Y/ =Y, — X,,
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Enumerating ps-patterns

e Finally, using the asymptotic mean for Z,,, counting occurences
of the Ax.Ay.t; pattern, we have:
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Enumerating ps-patterns

e Finally, using the asymptotic mean for Z,,, counting occurences
of the Ax.Ay.t; pattern, we have:

e T herefore, for the number W,, of steps required to reduce
a term of size n = 3k + 2 to its 3-normal form, we have:

B[Xn] > 55

which is quite close to Noam’s conjecture of E[W,,| = =!

~N|&
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Enumerating ps-patterns

e Finally, using the asymptotic mean for Z,,, counting occurences
of the Ax.Ay.t; pattern, we have:

e T herefore, for the number W,, of steps required to reduce
a term of size n = 3k + 2 to its 3-normal form, we have:

B[X,] > 2

which is quite close to Noam’s conjecture of E[W,,| = =!

~l7

hank you for your patience!

18 H
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