

Path Sharing and Predicate Evaluation for High-
Performance XML Filtering
YANLEI DIAO
University of California, Berkeley
MEHMET ALTINEL
IBM Almaden Research Center
MICHAEL J. FRANKLIN, HAO ZHANG
University of California, Berkeley
PETER M. FISCHER
University of Heidelberg
__

XML filtering systems aim to provide fast, on-the-fly matching of XML-encoded data to large numbers of
query specifications containing constraints on both structure and content. It is now well accepted that
approaches using event-based parsing and Finite State Machines (FSMs) can provide the basis for highly
scalable structure-oriented XML filtering systems. The XFilter system [Altinel and Franklin 2000] was the first
published FSM-based XML filtering approach. XFilter used a separate FSM per path query and a novel
indexing mechanism to allow all of the FSMs to be executed simultaneously during the processing of a
document. Building on the insights of the XFilter work, we describe a new method, called “YFilter” that
combines all of the path queries into a single Nondeterministic Finite Automaton (NFA). YFilter exploits
commonality among queries by merging common prefixes of the query paths such that they are processed at
most once. The resulting shared processing provides tremendous improvements in structure matching
performance but complicates the handling of value-based predicates.

In this paper we first describe the XFilter and YFilter approaches and present results of a detailed
performance comparison of structure matching for these algorithms as well as a hybrid approach. The results
show that the path sharing employed by YFilter can provide order-of-magnitude performance benefits. We then
propose two alternative techniques for extending YFilter’ s shared structure matching with support for value-
based predicates, and compare the performance of these two techniques. The results of this latter study
demonstrate some key differences between shared XML filtering and traditional database query processing.
Finally, we describe how the YFilter approach is extended to handle more complicated queries containing
nested path expressions.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval --- Information filtering; H.3.4 [Information Storage and
Retrieval]: Systems and Software --- Selective dissemination and information; Performance evaluation.
General Terms: Algorithms, Performance.
Additional Key Words and Phrases: XML filtering, structure matching, path sharing, Nondeterministic Finite
Automaton, content-based matching, predicate evaluation, nested path expressions.

__
This work has been supported in part by the National Science Foundation under the ITR grants IIS0086057 and
SI0122599, and CAREER grant IRI-9501353; by Rome Labs agreement no. F30602-97-2-0241 under DARPA
order number F078, and by Boeing, IBM, Intel, Microsoft, Siemens, and the UC MICRO program.
Authors' addresses: Yanlei Diao, Michael J. Franklin, Hao Zhang, EECS, University of California, Berkeley,
CA, 94720, email: { diaoyl, franklin, nhz} @cs.berkeley.edu; Mehmet Altinel, IBM Almaden Research Center,
San Jose, CA, 95120, email: maltinel@us.ibm.com; Peter M. Fischer, Institute of Computer Science, University
of Heidelberg, Heidelberg, Germany, email: peter.fischer@ informatik.uni-heidelberg.de.

@ ACM, 2003. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version will be published in ACM TODS, December 2003.

1. INTRODUCTION

The emergence of XML as a common mark-up language for data interchange has
spawned significant interest in techniques for filtering and content-based routing of XML
data. In an XML filtering system, continuously arriving streams of XML documents are
passed through a filtering engine that matches documents to queries and routes the
matched documents accordingly. Queries in these systems are expressed in a language
such as XPath 1.0 [Clark and DeRose 1999], which is used to specify constraints over
both structure (using path expressions) and content (using value-based predicates).

In the past few years, there have been a number of efforts to build efficient large-scale
XML filtering systems. While most of these systems support both structure and value
matching to some extent, they have tended to emphasize either the processing of path
expressions (e.g., XFilter [Altinel and Franklin 2000], CQMC [Ozen et al. 2001],
WebFilter [Pereira et al. 2001], XTrie [Chan et al. 2002], Index-Filter [Bruno et al. 2003],
and [Green et al. 2003]), or the processing of value-based predicates (e.g., TriggerMan
[Hanson et. al 1999], NiagaraCQ [Chen et al. 2000], and Le Subscribe [Fabret et al.
2001]). One recent project, called MatchMaker [Lakshmanan and Parthasarathy 2002],
has addressed both issues but has focused on disk-oriented solutions with performance
characteristics that differ significantly from these other systems.

The work we present in this paper is motivated by the realization that efficient and
scalable matching of path expressions lays the foundation for high-performance XML
filtering. In particular, we show that shared processing for structure matching is a key
technique for high-performance XML filtering. Given a shared path matching engine, a
further challenge is the processing of predicates within such an engine. Thus, a second
focus of our work is on the integration of predicate processing with shared structure
matching.

1.1 Structure Matching

For structure matching, a useful approach has been to adopt some form of Finite State
Machine (FSM) to represent path expressions in which location steps of path expressions
are mapped to machine states. Arriving XML documents1 are then parsed with an event-

based parser; the events raised during parsing are used to drive the FSMs through their
various transitions. A query is said to match a document if during parsing, an accepting

state for that query is reached. This approach to XML filtering was first used in the
XFilter system [Altinel and Franklin 2000]2.

In the filtering context, large numbers of queries representing the interests of the user
community are stored and must be checked upon the arrival of a new document. In order
to process these queries efficiently, XFilter employs a dynamic index over the states of

1 In this paper we refer to incoming XML data items generically as “documents” . Such documents, however,
may also be XML-encoded messages or database tuples.
2 An FSM-based approach for processing of individual queries (as opposed to filtering for large numbers of
queries) was developed independently around this same time in the XScan system [Ives et al. 2000].

the query FSMs and includes optimizations that reduce the number of path expressions
that must be checked for a given document.

In large-scale systems there is likely to be significant commonality among user
interests, which could result in redundant processing in XFilter. CQMC [Ozen et al.
2001] improved upon XFilter by building an FSM for a set of queries identical in
structure. XTrie [Chan et al. 2002] further supports shared processing of certain common
sub-strings of the path expressions. In this paper, we present an approach called YFilter,
that exploits sharing even more aggressively by using a single combined FSM to
represent all path expressions. The combined FSM naturally supports the sharing of
processing for all common prefixes among path expressions.

We implement this combined FSM as a Nondeterministic Finite Automaton (NFA).
The NFA-based implementation has several practical advantages including: 1) a
relatively small number of machine states required to represent even large numbers of
path expressions, 2) the ability to support complicated document types (e.g., with
recursive nesting) and queries (e.g., with multiple wildcards and ancestor-descendent
axes), and 3) incremental construction and maintenance. The NFA-based shared path
matching approach can result in order of magnitude performance improvements over the
FSM-per-query approach of XFilter.

Query specifications can specify additional structural constraints by including nested
path expressions on elements in location steps. These nested paths reference other
elements in the same document. To support nested path processing, we extend YFilter
using a technique we call decomposition that exploits the NFA-based path sharing.

1.2 Predicate Processing

Structure matching is only one part of the XML filtering problem. Query specifications
can also include value-based predicates on the elements of path expressions. Such
predicates are applied to address attributes or text data of those elements.

For value-based predicates, one could extend the NFA by including predicates as
labels on additional transitions between states. Unfortunately, such an approach would
result in a potentially huge increase in the number of states in the NFA, and would also
destroy the sharing of path expressions, the primary advantage of using an NFA.

For this reason, we have investigated several alternative approaches to combining
structure-based and value-based filtering in YFilter. Similar to traditional relational query
processing, the placement of predicate evaluation in relation to the other aspects of query
processing can have a major impact on performance. Relational systems use the heuristic
of “pushing” cheap selections as far as possible down the query plan so that they are
processed early in the execution. Following this intuition, we have developed an
approach called “ Inline” , that processes value-based predicates as soon as the relevant
state is reached during structure matching. Similar approaches have been reported in
[Ozen et al. 2001] to support predicate evaluation in the execution of individual FSMs, or
proposed in [Chan et al. 2002] as an extension to its path matching algorithm. In addition,
we have developed an alternative approach, called Selection Postponed (SP), that waits

until an accepting state is reached during structure matching, and only at that point,
applies all the value-based predicates for the corresponding matched queries.

1.3 Contributions and Overview

The contributions of this paper include the following:

• We provide an overview of XFilter, an initial FSM-based XML filtering approach,
which has become an important point of comparison for XML filtering systems (e.g.
[Pereira et al. 2001], [Chan et al. 2002], [Green et al. 2003]).

• We describe a novel path matching approach, called YFilter, which shares
processing work for multiple queries by building a single NFA over all path
expressions.

• We present results of a detailed performance study that investigates the impact of
shared path matching on performance and scalability using XFilter, YFilter, and a
hybrid approach that does more sharing than XFilter but less than YFilter.

• We propose and evaluate two alternative methods for value-based predicate
processing in YFilter: Inline and Selection Postponed (SP). The performance results
show that contrary to intuition from traditional database systems, the delayed
predicate processing of SP outperforms the eager processing of Inline by a wide
margin. This study is, to our knowledge, the first study focused on alternative
approaches to combined structure and value-based filtering.

• Finally, we describe how to use YFilter to handle nested path expressions in a way
that allows them to also exploit shared processing.

The remainder of the paper is organized as follows. Section 2 provides background on
XML filtering and sketches the basic system design. Section 3 describes the XFilter and
YFilter algorithms and outlines a hybrid approach for path matching. Section 4 presents
the results of a detailed performance comparison of these techniques. Section 5 describes
the Inline and SP alternatives for value-based predicates and compares their performance.
Section 6 presents our solution to nested path processing and evaluates its performance.
Section 7 surveys related work. Section 8 presents our conclusions.

2. BACKGROUND

In this section we first present a high-level overview of an XML filtering system. We
then describe a subset of the XPath language that we use to specify user interests in this
work. Finally, we describe the main components of our solutions.

2.1 Overview of a Filtering System

A filtering system delivers documents to users based on their expressed interests. Figure
1 shows the context in which a filtering system operates. There are two main sets of
inputs to the system: user profiles and document streams.

User profiles describe the information preferences of individual users. These profiles
may be created by the users themselves, e.g., by choosing items in a Graphical User
Interface, or may be created automatically by the system using machine learning

techniques. The user profiles are converted into a format that can be efficiently stored
and evaluated by the filtering system. These profiles are effectively “standing queries” ,
which are applied to all incoming documents. Hereafter, we will use profiles and queries
interchangeably.

The other key inputs to a filtering system are the document streams containing
continuously arriving documents from data sources. These documents are to be filtered
and delivered to users or systems in a timely fashion. Filtering is performed by matching
each arriving document against all of the user profiles to determine the set of interested
users. The document is then delivered to this set of users. In our system, documents are
processed one-at-a-time. That is, incoming documents are placed in a queue; a document
is removed from the queue and processed in its entirety (i.e., matched with all relevant
queries) before processing is initiated for the next document.

As filtering systems are deployed on the Internet, the number of users for such
systems can easily grow into the millions. A key challenge in such an environment is to
efficiently and quickly search the huge set of user profiles to find those for which the
document is relevant. Our work is aimed at solving this very problem.

2.2 Data Encoding and Profile Language

We focus on filtering XML documents. XML is rapidly gaining popularity as a
mechanism for sharing and delivering information among businesses, organizations, and
users on the Internet. It is also achieving importance as a means for publishing
commercial content such as news items and financial information.

XML provides a mechanism for tagging document content in order to better describe
its organization. It allows the hierarchical organization of a document as a root element
that includes sub-elements; elements can be nested to any depth. In addition to sub-
elements, elements can contain data (e.g., text) and attributes. A general set of rules for a
document’s elements and attributes can be defined in a Document Type Definition
(DTD). It is important to note, however, that the filtering techniques we describe in this
paper do not require DTDs and do not exploit them if present.

We use a subset of the XPath 1.0 [Clark and DeRose 1999] for expressing user
profiles as queries over XML documents. XPath is a language for addressing parts of an
XML document that was designed for use by both the XSL Transformations (XSLT)
[Clark 1999] and XPointer [DeRose et al. 1999] languages. XPath provides a flexible

Data Source

Data Source

Data Source

Document
streams

User
profiles

Filtered
documents

Filtering
system

Figure 1: Overview of a filtering system

way to specify path expressions. It treats an XML document as a tree of nodes; XPath
expressions are patterns that can be matched to nodes in the XML tree. The evaluation of
an XPath pattern yields an object whose type can be a node set (i.e., an unordered
collection of nodes without duplicates), a boolean, a number, or a string.

Paths can be specified as absolute paths from the root of the document tree or as
relative paths from a known location (i.e., the context node). A query path expression
consists of a sequence of one or more location steps. Each location step consists of an
axis, a node test and zero or more predicates. An axis specifies the hierarchical
relationship between the nodes. We focus on two common axes: the child operator “ /”
(i.e., nodes at adjacent levels), and the descendent operator “ //” (i.e. nodes separated by
any number of levels). In the simplest and most common form, a node test is specified by
an element name. For example, query q1 in Figure 2 addresses all msrp element
descendants of all product elements that are children of a top-level catalog element in the
document. XPath also allows the use of a wildcard operator (“ * ”), which matches any
element name, as a name test at a location step.

Each location step can also include one or more predicates to further refine the
selected set of nodes. A predicate, delimited by ‘ [’ and ‘]’ symbols, is applied to the
element addressed at a location step. All the predicates at a location step must evaluate to
TRUE in order to fulfill the evaluation of the location step.

Predicates can be applied to the text data, the attributes, or the positions of the
addressed elements. In this paper, we refer to such predicates as value-based. Query q2
in Figure 2 gives an example of such a predicate. In addition, predicates may also include
other path expressions, which are called nested paths. Relative nested paths are evaluated
in the context of the element node addressed in the location step where they appear. For
example, query q3 in Figure 2 selects name elements of product elements with an msrp of
less than 300. Here, the path expression “ price/msrp” in the predicate is evaluated
relative to the product elements.

In this work, we use XPath to select entire documents rather than parts of documents.
That is, we treat an XPath expression as a predicate applied to documents. If the XPath
expression matches at least one element of a document then we say that the document
satisfies the expression. For the example in Figure 2, the sample XML document shown

<?xml version="1.0"?>
<catalog>
 <product id="Kd-245">
 <name> Color Monitor </name>
 <price currency="USD">
 <msrp> 310.40 </msrp>
 </price>
 </product>
</catalog>

q1: /catalog/product//msrp

q2: //product/price[@currency =
“USD”]/msrp

q3: //product[price/msrp<300]/name

Figure 2: Three XPath queries and a sample XML document

satisfies the first two queries, but not the third. An alternative to using XPath would be to
use an XML query language such as XQuery [Chamberlin et al. 2002]. We chose to use
XPath in our work because we did not need the full functionality of such a query
language for our document filtering purposes. Our ongoing work is investigating the use
of YFilter for processing XQuery statements, but that work is beyond the scope of this
paper.

2.3 FILTER SYSTEM COMPONENTS

The basic components of our XML Filtering systems are shown in Figure 3. They are:

XPath parser: The XPath parser takes queries written in XPath, parses them, and
sends the parsed profiles to the filtering engine. New profiles can be added to a running
filtering engine only when the engine is not actively engaged in processing a document.

Event-based XML parser: When an XML document arrives at the system, it is run
through the XML parser. We use a parser based on the SAX interface, which is a
standard interface for event-based XML parsing [Sax Project 2001]. Figure 4 shows an
example of how a SAX event-based interface breaks down the structure of the sample
XML document from Figure 2 into a linear sequence of events. “Start document” and
“end document” events mark the beginning and the end of the parse of a document. A
“start element” event carries information such as the name of the element, its attributes,
etc. A “characters” event reports a string that is not inside any XML tag. An “end
element” event corresponds to an earlier “start element” event by specifying the element
name and marks the close of that element in the document.

To use the SAX interface, the system receiving the events must implement handlers to
respond to different events. For our filtering systems, these events are used to drive the
profile matching process. An additional advantage of using an event-based parser is that
profile matching can start long before the parse of a document is complete. This is crucial
to timely delivery if the document is long and parsing takes a fairly large amount of time.

Filtering engine: At the heart of the system, the filtering engine takes the parsed
profiles from the XPath parser and converts them to an internal representation. It also
receives and reacts to events from the XML parser. These events call back the

XML parser
(SAX based)

XPath parser

Filtering
Engine

Data
Dissemination

 parsed profiles

events

matched profiles

Filtering
engine profile

representation

+

index

Execution
algorithm

parsed profiles

events

matched
profiles

User profiles
(XPath queries)

XML
documents

Filtered data

Figure 3: Architecture of a filtering system

corresponding handlers implemented by the filtering engine, which perform the matching
of documents against profiles.

Given the large number of profiles we wish to support, a brute force strategy of
checking each profile will not scale. As has been pointed out in earlier work on
information filtering (e.g., [Yan and Garcia-Molina 1994]), the key to scalability lies in
the observation that filtering is the inverse problem of querying a database: In a
traditional database system, a large set of data is stored persistently. Queries, coming one
at a time, search the data for results. In a filtering system, a large set of queries is
persistently stored. Documents, coming one at a time, drive the matching of the queries.
In a traditional database, indexes enable the data to be searched without having to
sequentially scan it. Likewise for filtering systems, indexing the queries can enable
selective matching of incoming documents to queries.

The XFilter system extends this intuition to deal with the additional complexities
introduced by hierarchically-structured documents and path-based queries over them.
XFilter represents each path expression as a finite state machine (FSM). Events received
from the parser naturally drive the transitions in those FSMs. XFilter uses a dynamic
index structure on the machine states in order to reduce the number of FSMs (i.e.,
queries) that must be examined for each parsing event. Building on lessons gained from
the study of XFilter, we have more recently developed a much more efficient approach,
which we call YFilter. YFilter combines all of the queries into a single, nondeterministic
finite automaton in order to allow the sharing of processing for query paths with common
prefixes. The implementation of YFilter essentially consists of a tree of hash indexes,
thus directly integrating the necessary index into the filtering structure. XFilter and
YFilter are described in detail in the following section.

Dissemination component: Once the matching profiles have been identified for a
document, the document must be sent to the appropriate users. Our current
implementations simply use unicast delivery to send the entire document to each
interested user. Ongoing work involves the integration of a variety of delivery
mechanisms (e.g., those described in [Aksoy et al. 1998; Altinel et al. 1999]), and the

start document
start element: catalog
start element: product
start element: name
characters: Color
characters: Monitor
end element: name
start element: price
start element: msrp
characters: 310.40
end element: msrp
end element: price
end element: product
end element: catalog
end document

Figure 4: SAX API example

delivery of partial documents. These issues are beyond the scope of this current paper, so
they are not addressed further here.

3. PROCESSING PATH EXPRESSIONS

In this section we describe FSM-based approaches to XML filtering, focusing on the way
they achieve structure-based matching for large numbers of path expressions. We begin
with XFilter, our initial approach based on indexing multiple FSMs. We then describe
YFilter, which shares work for path expressions by combining them into a single NFA-
based machine. At the end of this section, we outline a hybrid approach as a middle point
between XFilter and YFilter with respect to the amount of sharing exploited. This hybrid
approach is used in our study to help quantify the performance impact of improved
shared path matching.

3.1 XFilter: Filtering Using Indexed FSMs

Filtering XML documents using a structure-oriented path language such as XPath raises
several problems: (1) Checking the sequencing of the elements in a path expression; (2)
Handling wildcards and descendant operators in path expressions; and (3) Evaluating
nested paths that are applied to element nodes. Here we focus on the first two problems,
and postpone the discussion of our solution to handling nested paths until Section 6,
because it shares a common mechanism with one of our approaches to value-based
predicate evaluation.

XFilter’s solution to the first two problems is based on the observation that any single
path expression written using the axes (“ /” , “ //”) and node tests (element name or “ *”)
can be transformed into a regular expression. Thus, there exists a Finite State Machine
(FSM) that accepts the language described by such a path expression [Hopcroft and
Ullman 1979]. XFilter converts each XPath query to a Finite State Machine (FSM). The
events that drive the execution of the filtering engine are generated by the XML parser.
In the XFilter execution model, a profile is considered to match a document when the
final state of its FSM is reached. In this section, we present an overview of XFilter.
More details can be found in [Altinel and Franklin 2000].

3.1.1 Internal Profile Representation

The main structures for profile representation in XFilter are depicted in Figure 5(a). Each
XPath query is decomposed into a set of path nodes by the XPath parser. These path
nodes represent the element nodes in the query and serve as the states of the FSM for the
query. Path nodes are not generated for wildcard (“ *”) nodes. A path node contains the
following information:

QueryId: A unique identifier for the path expression to which this path node belongs
(generated by the XPath Parser).

Position: A sequence number that determines the location of this path node in the
order of the path nodes for the query. The first node of the path is given position 1, and
the following nodes are numbered sequentially.

RelativePos: An integer that describes the distance in document levels between this
path node and the previous (in terms of position) path node. This value is set to 0 for the
first node if it does not contain a descendant (“ //”) operator. A node that is separated from
the previous one by such an operator is flagged with a special RelativePos value of -1.
Otherwise, the RelativePos value of a node is set to 1 plus the number of wildcard nodes
between it and its predecessor node.

Level: An integer that represents the level in the XML document at which this path
node should be checked. Because XML does not restrict element types from appearing at
multiple levels of a document and because XPath allows queries to be specified using
“ relative” addressing, it is not always possible to assign this value during query parsing.
Thus, unlike the previous three items, this information can be updated during the
evaluation of the query.

The level value is initialized as follows: If the node is the first node of the query and
it specifies an absolute distance from the root (i.e., it is either applied to the root node or
is a fixed number of wildcard nodes away from the root node), then the level for that
node is set to 1 plus its distance from the root. If the RelativePos value of the node is -1,
then its level value is also initialized to -1. Otherwise, the level value is set to 0.

NextPathNodeSet: Each path node also contains a pointer to the next path node of
the query to be evaluated.

3.1.2 Index Construction

To achieve high performance for structure filtering, XFilter contains an inverted index
[Salton 89], called the Query Index, on all the XPath queries. It is used to efficiently
match a document to individual queries. The Query Index is built over the states of the
query FSMs. As shown in Figure 5(b), the Query Index is organized as a hash table based
on the element names that appear in the XPath expressions. Associated with each unique
element name are two lists of path nodes: the candidate list and wait list.

Candidate lists identify the path nodes corresponding to the states that the FSM
execution is attempting to match at a particular moment. Wait lists contain path nodes

Figure 5: Path node decomposition and the corresponding QueryIndex

Q1 = / a / b // c

Q1
1

0
1

Q1-1

Q1
2
1

0

Q1-2

Q1
3

-1

Q1-3

-1

Q5 = / a / * / * / c // e

Q5

1

0
1

Q5-1

2
3

0

Q5-2

Q5

3

Q5-3

Q5

-1

-1

Q2 = // b / * / c / d

Q2

1

Q2-1

-1

Q2
2
2

Q2-2

0

Q2

3

Q2-3

0
1

-1

Q3-1 Q3-2 Q3-3

Q3 = / */a / c // d

Q3

0

1

2

Q3
2
1

0

Q3
3

-1
-1

Q4 = b / d / e

Q4
1

Q4-1

Q4
2
1

0

Q4-2

Q4
3

0

Q4-3

1-1
-1

Corresponding Path Nodes
a) Example Queries and

CL: Candidate List
WL: Wait List

Element Hash Table

CL

WL

CL

WL

CL

WL

CL

WL

CL

WL

d

e

b

c

a

Q4-3 Q5-3

Q2-3 Q3-3 Q4-2

Q1-3 Q2-2 Q3-2

Q1-2

Q2-1 Q4-1

Q3-1 Q5-1Q1-1

Q5-2

Query Id

Position

Relative Pos

Level

b) Query Index

that are subsequent to the nodes in the candidate lists. The contents of the candidate lists
constantly change as parsing events drive the execution of the FSMs.

The initial distribution of the path nodes to the lists (i.e., which node of each XPath
query is initially placed on a candidate list) is an important contributor to the performance
of the XFilter system. We have developed two such placement techniques. Figure 5(b)
shows the most straightforward case, where the path nodes for the initial states are placed
on the Candidate Lists. For many situations, however, such an approach can be
inefficient, as the first elements in the queries are likely to have poorer selectivity due to
the fact that they address elements at higher levels in the documents where the sets of
possible element names are smaller. In the resulting Query Index, the lengths of the
candidate lists would become highly skewed, with a small number of very long candidate
lists that do not provide much selectivity. Such skew hurts performance as the work that
is done on the long lists may not adequately reduce the number of queries that must be
considered further.

Based on the above observation, we developed the List Balance method for choosing
a path node to initially place in a candidate list for each query. This simple method
attempts to balance the initial lengths of the candidate lists. When adding a new query to
the index the element node of that query whose entry in the index has the shortest
candidate list is chosen as the “pivot” node for the query. This pivot node is then placed
on its corresponding candidate list, making it the first node to be checked for that query
for any document.

This approach, in effect, modifies the FSM of the query so that its initial state is the
pivot node. We accomplish this by representing the portion of the FSM that precedes the
pivot node as a “prefix” that is attached to that node. When the pivot node is activated,
the prefix of the query is checked as a precondition in the evaluation of the path node. If
this precondition fails, the execution stops for that path node. In order to handle prefix
evaluation, List Balance uses a stack that keeps track of the traversed element nodes in
the document. We use this stack for fast forward execution of the portion of FSM
corresponding to the prefix.

Figure 6 shows example path nodes and a modified Query Index for the List Balance
algorithm. Notice that the lengths of the candidate lists are the same for each entry of the
Query Index. The tradeoff of this approach is the additional work of checking prefixes for
the pivot nodes when activated. As experimental results in [Altinel and Franklin 2000]
show, this additional cost is far outweighed by the benefits of List Balance.

3.1.3 Execution algorithm

When a document arrives at the filtering engine, it is run through an XML Parser that
reports parsing events to the application through callbacks, and the events are used to
drive the profile matching process. For XFilter, we implemented the following two
callback functions for the parsing events. Both of the handlers are passed the name and
document level of the element for (or in) which the parsing event occurred. Additional
handler-specific information is also passed as described below.

Start Element Handler: An start element event calls this handler, passing in the
name and level of the element encountered as well as any XML attributes and values that
appear in the element tag. The handler looks up the element name in the Query Index and
examines all the nodes in the candidate list for that entry. For each node, it performs a
level check. The purpose of the level check is to make sure that the element appears in
the document at a level that matches the level expected by the query. If the path node
contains a non-negative level value, then the two levels must be identical in order for the
check to succeed. Otherwise, the level for the node is unrestricted, so the check succeeds
regardless of the element level.

If the check succeeds, then the node passes. If this is the final path node of the query
(i.e., its final state) then the document is deemed to match the query. Otherwise, if it is
not the final node, then the query is moved into its next state. This is done by copying the
next node for the query from its wait list to its corresponding candidate list (note that a
copy of the promoted node remains in the wait list). If the RelativePos value of the
copied node is not -1, its level value is also updated using the current level and its
RelativePos values to do future level checks correctly.

Note that in the most basic case, there is only one copy of a path node in its candidate
list during the evaluation of a query. However, when the same element name appears in a
nested manner at different levels of the input document and a path node related to this
element name corresponds to a “ //” location step, matching of the nested elements with
this path node will cause multiple promotions of its subsequent path node. In such cases,
multiple copies of the subsequent path node can exist in its corresponding candidate list
to reflect different document levels where it can be matched.

End Element Handler: When an end element tag is encountered, the path nodes
promoted when the corresponding start element tag was encountered are deleted from the
candidate lists in order to restore those lists to the state before reading this element. This
“backtracking” is necessary to handle the case where multiple elements with the same
name appear at different levels in the document.

Q2 = // b / * / c / d

Q2

1

1

Q2-1

-1

Q2
2
2

Q2-2

0

Q2

3

Q2-3

0
1

Q5 = / a / * / * / c // e

Q5

1

a,c

Q5-1

-1
-1

Q1 = / a / b // c

Q1
1

0
1

Q1-1

Q1
2
1

0

Q1-2

Q1
3

-1

Q1-3

-1

Position

Relative Pos

Level

Query Id

Corresponding Path Nodes
a) Example Queries and

Q1-2

Q3-1

Q4-1

CL: Candidate List
WL: Wait List

CL

WL

CL

WL

CL

WL

CL

WL

CL

WL

d

e

b

c

a

Q4-2

Q2-3 Q3-2

Q1-3 Q2-2

Q2-1

Q1-1

Q5-1

Element Hash Table

Q3 = / * / a / c // d

Q3
1
1

1

Q3
2

-1

Q3-1

a
Q3-2

-1

Q4 = b / d / e

Q4
1

1
1

Q4
2
1

0

Q4-2

Q4-1

b

Prefix

b) Query Index

Figure 6: Path nodes and QueryIndex in List Balance

3.2 YFilter: An NFA-based Approach Exploiting Path Sharing

XFilter demonstrates how by using an index on profiles, one scan of a document can be
used to drive the simultaneous execution of all candidate profiles. As stated previously,
however, XFilter fails to exploit commonality that exists among the path expressions
(recall that XFilter builds an FSM for each query). For large-scale filtering of XML data,
exploiting such commonality can greatly reduce redundant processing. Thus, we propose
a new filtering approach that follows the event-driven philosophy of XFilter, but in
addition, shares processing among path expressions to eliminate redundant work.

3.2.1 Profile Representation: A Combined NFA with an Output Function

In the new model, rather than representing each query as an FSM individually, we
combine all queries into a single Nondeterministic Finite Automaton (NFA). The labels
of the transitions of this machine form a trie over the location steps of the path
expressions. As such, the common prefixes of the paths are represented only once in the
structure. In addition, the machine employs a stack-based mechanism to cope with non-
determinism and support backtracking in the structure.

Figure 7(b) shows an example of such an NFA representing the eight queries shown
in Figure 7(a) (for comparison purposes, Figure 7(c) shows the eight FSMs and the query
index that would be used in basic XFilter). A circle denotes a state. Two concentric

Figure 7: XPath queries and their representation in YFilter and XFilter

Q1=/a/b
Q2=/a/c
Q3=/a/b/c
Q4=/a//b/c
Q5=/a/* /c
Q6=/a//c
Q7=/a/* /* /c
Q8=/a/b/c

{Q1}

{Q3, Q8}

{Q2}

{Q4}

{Q6}

{Q5}

{Q7}

c

a

a c

a

 a

*

c

*

ε

a

a

c
b

*

c
ab a

c

(a) XPath queries (b) A corresponding NFA (YFilter)

(c) Path nodes of the queries and the Index (XFilter)

Q3 = / a / b / c

Q3
2
1
0

 Q3
1
0
1

 Q3
3
1
0

Q4 = / a // b / c

Q4
2
-1
-1

 Q4
1
0
1

 Q4
3
1
0

 Q1
1
0
1

Q1 = / a / b

Q1
2
1
0

Q2 = / a / c

Q2
2
1
0

 Q2
1
0
1

Q1-1 Q1-2 Q2-1 Q2-2 Q3-1 Q3-2 Q3-3 Q4-1 Q4-2 Q4-3

Query ID

Position

Relative Pos

Level

Q5 = / a / * / c

Q5
2
2
0

 Q5
1
0
1

Q6 = / a // c

Q6
2
-1
-1

 Q6
1
0
1

Q7 = / a / * / * / c

Q7
2
3
0

 Q7
1
0
1

Q8 = / a / b / c

Q8
2
1
0

 Q8
1
0
1

 Q8
3
1
0

 Q5-1 Q5-2 Q6-1 Q6-2 Q7-1 Q7-2 Q8-1 Q8-2 Q8-3

a

b

c

Q1-1 Q2-1 Q3-1 Q4-1 Q5-1

 Q6-1 Q7-1 Q8-1

CL

 Q1-2 Q3-2 Q4-2 Q8-2
WL

CL

CL

WL

 Q2-2 Q3-3 Q4-3 Q5-2 Q6-2

Q7-2 Q8-3

WL

circles denote an accepting state; such states are also marked with the IDs of the queries
they represent. A directed edge represents a transition. The symbol on an edge represents
the input that triggers the transition. The special symbol “ *” matches any element. The

symbol “ε” is used to mark a transition that requires no input. In the figure, shaded circles
represent states shared by queries. Note that the common prefixes of all the queries are
shared. Also note that the NFA contains multiple accepting states. While each query in
the NFA has only a single accepting state, the NFA represents multiple queries. Identical
(and structurally equivalent) queries share the same accepting state (recall that at this
point in the discussion, we are not considering predicates).

This NFA can be formally defined as a Moore Machine [Hopcroft and Ullman 1979].
The output function of the Moore Machine here is a mapping from the set of accepting
states to a partitioning of identifiers of all queries in the system, where each partition
contains the identifiers of all the queries that share the accepting state.

Some Comments on Efficiency. A key benefit of using an NFA-based implemen-
tation of the combined FSM is the tremendous reduction in machine size it affords. Of
course, it is reasonable to be concerned that using an NFA could lead to performance
problems due to (for example) the need to support multiple transitions from each state. A
standard technique for avoiding such overhead is to convert the NFA into an equivalent
DFA [Hopcroft and Ullman 1979]. A straightforward conversion could theoretically
result in severe scalability problems due to an explosion in the number of states. But, as
pointed out in [Green et al. 2003], this explosion can be avoided in many cases by placing
restrictions on the types of documents (i.e., DTDs) and queries supported, and lazily
constructing the DFA.

Our experimental results (described in Section 4), however, indicate that such
concerns about NFA performance in this environment are unwarranted. In fact, in the
YFilter system, path evaluation (using the NFA) is sufficiently fast, that it is typically not
the dominant cost of filtering. Rather, other costs such as document parsing are in many
cases more expensive than the basic path matching, particularly for systems with large
numbers of similar queries. Thus, while it may in fact be possible to further improve path
matching speed, we believe that the substantial benefits of expressiveness and
incremental maintenance provided by the NFA model outweigh any marginal
performance improvements that remain to be gained by even faster path matching.

3.2.2 Constructing a Combined NFA

Having presented the basic NFA model used by YFilter, we now describe an incremental
process for NFA construction and maintenance. The shared NFA shown in Figure 7 was
the result of applying this process to the eight queries shown in that figure.

The four basic location steps in our subset of XPath are “ /a” , “ //a” , “ /*” and “ //* ” ,
where “a” is an arbitrary symbol from the alphabet consisting of all elements defined in a
DTD, and “*” is the wildcard operator. Figure 8 shows the directed graphs, called NFA

fragments, that correspond to these basic location steps.

Note that in the NFA fragments constructed for location steps with “ //” , we introduce

an ε-transition moving to a state with a self-loop. This ε-transition is needed so that when

combining NFA fragments representing “ //” and “ /” steps, the resulting NFA accurately
maintains the different semantics of both steps (see the examples in Figure 9 below). The
NFA for a path expression, denoted as NFAp, can be built by concatenating all the NFA
fragments for its location steps. The final state of this NFAp is the (only) accepting state
for the expression.

NFAps are combined into a single NFA as follows: There is a single initial state
shared by all NFAps. To insert a new NFAp, we traverse the combined NFA until either:
1) the accepting state of the NFAp is reached, or 2) a state is reached for which there is no
transition that matches the corresponding transition of the NFAp. In the first case, we
make that final state an accepting state (if it is not already one) and add the query ID to
the query set associated with the accepting state. In the second case, we create a new
branch from the last state reached in the combined NFA. This branch consists of the
mismatched transition and the remainder of the NFAp. Figure 9 provides four examples
of this process.

Figure 9(a) shows the process of merging a fragment for location step “ /a” with a
state in the combined NFA that represents a “ /b” step. We do not combine the edge
marked by “a” and the edge marked by “b” into one marked by “a,b” as in a standard
NFA, because the states after edge ‘a’ and edge ‘b’ differ in their outputs, so they cannot
be combined. For the same reason, this process treats the “ *” symbol in the way that it
treats the other symbols in the alphabet, as shown in Figure 9(b).

Figure 9(c) shows the process of merging a “ //a” step with a “ /b” step, while Figure

9(d) shows the merging of a “ //a” step with a “ //b” step. Here we see why we need the ε-

transition in the NFA fragment for “ //a” . Without it, when we combine the fragment with
the NFA fragment for “ /b” , the latter would be semantically changed to “ //b” . The
merging process for “ //*” with other fragments (not shown) is analogous to that for “ //a” .

The “ *” and “ //” operators introduce Non-determinism into the model. “ *” requires
two edges, one marked by the input symbol and the other by “ *” , to be followed. The
descendent operator “ //” means the associated node test can be satisfied at any level at or
below the current document level. In the corresponding NFA model, if a matching

Figure 9: Combining NFA Fragments

(a)

a

b

a

b

(b)

*

b

*

b

(c)

* a

ε

* a

ε

b

b

(d)

*

ε

a

b

* b

ε

* a

ε
 /a :

//a :

/* :

//* :

Figure 8: NFA fragments of
basic location steps

��������	
���

a

* a

ε

*

* *

ε

symbol is read at the state with a self-loop, the processing must both transition to the next
state, and remain in the current state awaiting further input.

It is important to note that because NFA construction in YFilter is an incremental
process, new queries can easily be added to an existing system. This ease of maintenance
is a key benefit of the NFA-based approach.

3.2.3 Implementing the NFA Structure

The previous section described the logical construction of the NFA model. For efficient
execution we implement the NFA using a “hash table-based” approach, which has been
shown to have low time complexity for inserting/deleting states, inserting/deleting
transitions, and actually performing the transitions [Watson 1997].

In this approach, a data structure is created for each state, containing: 1) The ID of the
state, 2) type information (i.e., if it is an accepting state or a //-child as described below),
3) a small hash table that contains all the legal transitions from that state, and 4) for
accepting states, an ID list of the corresponding queries.

The transition hash table for each state contains [symbol, stateID] pairs where the
symbol, which is the key, indicates the label of the outgoing transition (i.e., element

name, “ *” , or “ε”) and the stateID identifies the child state that the transition leads to.

Note that the child states of the “ε” transitions are treated specially. Recall that such

states have a self-loop marked with “ *” (see Figure 8). For such states (called “ //-child”
states) we do not index the self-loop. As described in the next section, this is possible

because transitions marked with “ε” are treated specially by the execution mechanism.

3.2.4 Executing the NFA

Having walked through the logical construction and physical implementation we can now
describe the execution of the machine. Following the XFilter approach, we chose to
execute the NFA in an event-driven fashion. As an arriving document is parsed, the
events raised by the parser callback the handlers and drive the transitions in the NFA. The
nesting of XML elements requires that when an “end-of-element” event is raised, NFA
execution must backtrack to the states it was in when the corresponding “start-of-
element” was raised. A stack mechanism is used to enable the backtracking. Since many
states can be active simultaneously in an NFA, the run-time stack mechanism must be
capable of tracking multiple active paths. Details are described in the following handlers.

Start Document Handler: When an XML document arrives to be parsed, the
execution of the NFA begins at the initial state. That is, the common initial state is
pushed to the runtime stack as the active state.

Start Element Handler: When a new element name is read from the document, the
NFA execution follows all matching transitions from all currently active states, as
follows. For each active state, four checks are performed.

1) First, the incoming element name is looked up in the state’s hash table. If it is
present, the corresponding stateID is added to a set of “ target states” .

2) Second, the “ *” symbol is looked up in the hash table. If it exists, its stateID is also
added to the set of target states. Since the “*” symbol matches any element name, a
transition marked by it is always performed.

3) Then, the type information of the state is checked. If the state itself is a “ //-child”
state, then its own stateID is added to the set, which effectively implements a self-
loop marked by the “ *” symbol in the NFA structure.

4) Finally, to perform an ε-transition, the hash table is checked for the “ε” symbol, and
if one is present, the //-child state indicated by the corresponding stateID is
processed recursively, according to the three rules above.3

After all the currently active states have been checked in this manner, the set of “ target
states” is pushed onto the top of the run-time stack. They then become the “active” states
for the next event. If a state in the target set is an accepting state the identifiers of all
queries associated with the state are collected and added to an output data structure.4

End Element Handler: When an end-of-element is encountered, backtracking is
performed by simply popping the top set of states off the stack.

Finally, it is important to note that, unlike a traditional NFA, whose goal is to find one
accepting state for an input, our NFA execution must find all matching queries. Thus,
even after an accepting state has been reached for a document, the execution must
continue until the document has been completely processed.

An example of this execution model is shown in Figure 10. On the left of the figure
is the index created for the NFA of Figure 7. The number on the top-left of each hash
table is a state ID and hash tables with a bold border represent accepting states. The right
of the figure shows the evolution of the contents of the runtime stack as an example XML
fragment is parsed. In the stack, each state is represented by its ID. An underlined ID
indicates that the state is a //-child.

3.3 A Hybrid Approach

3 Note that this process traverses at most one additional level, since //-child nodes cannot themselves contain an
“ ε” symbol.
4 If predicate processing is not needed, we can also mark the accepting state as “ visited” to avoid processing
matched queries more than once.

An XML fragment: <a> <c> </c>

Figure 10: An example of NFA execution

read <a>

2

1

match Q1

read

3 9 7 6

2

1

read <c>

match Q3 Q8
Q5 Q4 Q6

5 10 12
8 11 6

3 9 7 6

2

1 initial

1

read </c>

3 9 7 6

2

1

read

2

1

read

1

Runtime Stack
{Q1}

{Q3, Q8}

{Q2}

{Q4}

{Q6}

{Q5}

{Q7}

a

1

b

ε
c

*

2

c

3

4

5

8

b

c

6

c 7

11

9

 *

c

10

c

12

13

Index

We have developed a third approach, called “Hybrid” , as a compromise between the
XFilter and YFilter approaches. Hybrid is an improved version of XFilter that exploits
some path sharing, but not as much as YFilter. In Hybrid, queries are decomposed into
substrings containing only “ /” operators (i.e., they are split at “ *” and “ //” operators). The
processing of these substrings is shared, but the processing of the operators between these
substrings is done individually for each query.

Hybrid works as follows. First, each query is parsed into a list containing one node
for each substring of the query. Each node contains five data items (QueryId,
NodePosition, RelativePos, Level, and NextNodePointer), as path nodes in XFilter. The
difference is that RelativePos here specifies the distance in document levels from the end
of the previous substring to the end of this substring. Then, the substrings of all of the
queries are inserted into a single Trie index. Inside the index, a candidate list is allocated
in each index node that represents the end (i.e., the last element) of a substring. Similar to
XFilter, a candidate list here contains nodes representing those substrings that the current
execution attempts to match. Initially, candidate lists only contain the nodes for the first
substrings of queries.

During the execution, input elements drive the navigation in the trie index as in
YFilter, but without any concern for “ * ” and “ //” operators. Each input element initiates a
search from the root of the trie and also continues searches from index nodes that the
navigation reached on the previous input element. As in YFilter, a runtime stack is used
for maintaining the list of index nodes representing the current state and for backtracking.
When an index node with a non-empty candidate list is encountered, all substring nodes
in the list undergo a document level check. For each of those substrings that pass the
level check, the expected level of the end of the next substring in the query is updated in
the node for the next substring, and that substring node is copied to its corresponding
candidate list. In this way, the matching of a substring in the trie index is shared by all
queries containing this substring, but the transitions between two substrings are done on a
query-by-query basis using document level checking as in XFilter.

Independently of our work, Chan et al. developed several algorithms for XML
filtering under the name “XTrie” [Chan et al. 2002]. XTrie uses a “minimal
decomposition” of queries that is identical to the decomposition we use in Hybrid.
Furthermore, Hybrid’s execution model is similar in spirit to the “eager TRIE” version of
XTrie in that matching of substrings is shared among queries and transitions between
substrings are handled on an individual query basis. It is worth noting that “eager TRIE”
is not the best performing approach studied by Chan et al. Other optimizations,
orthogonal to the issue of sharing, have been developed in that work.

4. PERFORMANCE OF STRUCTURE MATCHING

In this section, we examine the performance of path matching in the absence of predicate
evaluation. Recall that our development of YFilter was motivated by the desire to share
processing during path evaluation. As such, the focus of this performance study is on the
impact of such shared processing.

4.1 Algorithms

We compare the performance of XFilter, YFilter, and Hybrid. In the experiments that
follow we use the variant of XFilter with list balance, which was shown to provide better
performance overall than the basic XFilter approach [Altinel and Franklin 2000]. Also,
for both XFilter and Hybrid, we use a simple optimization that is important in some of
our workloads, namely, that identical queries are represented in the system only once. We
did this by pre-processing the queries and collecting the IDs of identical queries in an
auxiliary data structure. This structure is the same as that used by YFilter to manage
query IDs in accepting states. YFilter, of course, does not require such an optimization as
it naturally shares processing of identical queries.

Despite the similarity between Hybrid and XTrie [Chan et al. 2002], we do not claim
to do a direct comparison with that work. However, Chan et al. did compare their
approaches to XFilter with list balance, so as discussed in the next section, it is possible
to gain some insight into the relative performance of our techniques and the variants of
XTrie.

4.2 Experimental Set-up

We implemented the three algorithms (YFilter, XFilter with list balance, and Hybrid)
using Java. All of the experiments reported here were performed on a Pentium III 850
Mhz processor with 384MB memory running JVM 1.3.0 in server mode on Linux 2.4.
We set the JVM maximum allocation pool to 250MB, so that virtual memory and other
I/O-activity had no influence on the results. This was also verified using the Linux
vmstat() command.

4.2.1 Workload Generation

While, as stated previously, the three matching algorithms do not require or exploit DTD
information, we do use DTDs to generate the workloads for our experiments. In this
section, we focus on workloads generated using the NITF (News Industry Text Format)
DTD [Cover 1999] used in previous studies [Altinel and Franklin 2000; Chan et al.
2002]. We also ran experiments using two other DTDs: The Xmark-Auction DTD
[Busse et al. 2001] from the Xmark benchmark, and the DBLP [Ley 2001] bibliography
DTD. Some characteristics of these DTDs are shown in Table 1. Note that all of the
DTDs allow an infinite level of nesting due to loops involving multiple elements.

 NITF Auction DBLP
number of elements names 123 77 36
number of attributes in total 510 16 14
maximum level of nesting allowed infinite infinite infinite

Table 1: Characteristics of three DTDs

Given a DTD, the tools used to run an experiment include a DTD parser, a query

generator, an XML generator, and an event-based XML parser supporting the SAX
interface [Sax Project 2001]. The DTD parser which was developed using a WUTKA
DTD parser [Wutka 2000] outputs parent-child relationships between elements, and
statistical information for each element including the probability of an attribute occurring

in an element (randomly chosen between 0 and 1) and the maximum number of values an
element or an attribute can take (randomly chosen between 1 and 20). The output of the
DTD parser is used by the query generator and the document generator.

We wrote a query generator that creates a set of XPath queries based on the workload
parameters listed in Table 2. The query generator generates random query strings
according to the input DTD and these parameters. In order to remove some semantic
redundancy that may be introduced by this random approach, it performs a simple
rewriting step in which the following rules are applied in the presented order: 1) For each
occurrence of “ //*” in a query, turn it into “ /* //” ; 2) If a query contains multiple
consecutive “ /*//” substrings, only keep the first one; and 3) If “ /* //” occurs at the end of
a query, remove “ //” .

Parameter Range Description

Q 1000 to 500000 Number of queries
D 6 to 10 Maximum depth of XML documents and XPath queries.
W 0 to 1 Probability of a wildcard “*” occurring at a location step
DS 0 to 1 Probability of “ //” being the operator at a location step
Distinct True or False Query strings required to be unique?
P 0 to 20 Number of predicates per query
NP 0 to 3 Number of nested paths per query
RP 2, 3, 5 Max. no. of repeats of an element under a single parent

Table 2: Workload parameters for query and document generation

The query generator can be set to create workloads with or without duplicate queries.
We refer to this later mode as the distinct mode. If duplicates are allowed, the generator is
simply invoked Q times. Otherwise, in distinct mode the query generator is invoked
repeatedly until Q syntactically unique queries are produced. Of course, in such a distinct
workload there may be significant overlap in the query strings but no two strings will be
identical. Note that in most of the experiments reported in this study, the query generator
is used in the distinct mode.

For document generation, we used IBM’s XML Generator [Diaz and Lovell 1999] to
generate the document structure. Two parameters are passed to the generator: maximum
depth D, and RP, which specifies the maximum number of times that an element can be
repeated under a single parent. As a default, RP is limited to 3. Then attributes of
elements were generated according to their probabilities of occurring. The value of an
element or an occurring attribute was randomly chosen between 1 and the maximum
number of values it can take.

For each DTD we generated a set of 200 XML documents. All reported experimental
results are averaged over this set. For each experiment, a set of queries was generated
according to the workload setting. For each algorithm run in an experiment, queries were
preprocessed, if necessary, and then bulk loaded to build the index and other data
structures. Then XML documents were read from disk one after another. The execution
for a document returned a bit set, each bit of which indicates whether or not the
corresponding query has been satisfied. We began a new process for each experiment run

of an algorithm (i.e., 200 documents), to avoid complications from Java’s garbage
collector.

4.2.2 Metrics

Previous work [Altinel and Franklin 2000; Chan et al. 2002] used “ filtering time” as the
primary performance metric, which is the total time to process a document including
parsing and outputting results. Noting that Java parsers have varying parsing costs, we
instead report on a slightly different performance metric we call “multi-query processing
time (MQPT)” . MQPT captures all costs attributable to the filtering algorithms
themselves. It is simply the filtering time minus the document parsing time. That is:

Multi-query processing time (MQPT) = Filtering time – Document parsing time

 Filtering time = Wall clock time from the start of document parsing to the end
of output

MQPT for path matching consists of two components: path navigation and result
collection. The former captures the cost of state transitions driven by received events.
The latter is the cost to collect the identifiers of queries from the auxiliary data structures
and to mark them in the result bit set. Note that when only distinct queries are used in
experiments, the cost of result collection is negligible.

Where appropriate, we also report on other metrics such as the number of transitions
followed, the size of the various machines, and the costs associated with maintenance,
etc.

4.3 Efficiency and Scalability

Having described our experimental environment, we begin our discussion of
experimental results by presenting the MQPT results for the three alternatives as the
number of queries in the system is increased.

4.3.1 Experiment 1: NITF

In this experiment we generated 200 XML documents using the NITF DTD under the
workload (D = 6, RP = 3). The average length of generated documents is 77 in terms of
start-end element pairs. The average level of nesting of elements is 5.45.

We first examine the MQPT for the three algorithms as the number of distinct queries
in the system is increased from 1000 to 150,000 with the probability of “ * ” and “ //”
operators each set to 0.2. With this setting, each query contains approximately one “ *”
operator and one “ //” operator. Recall that in this section we are studying structure
matching only, so there are no predicates on the elements. Predicate processing is studied
subsequently, in Section 5.

The results are shown in Figure 11. As can be seen in the figure, YFilter provides the
significantly better performance than the other two across the entire range of query
populations. XFilter is the slowest here by far, and not surprisingly, Hybrid’s
performance lies between the two.

As the number of queries increases, YFilter exhibits a slight cost increase and levels
off around 30ms when Q is larger than 50,000. In contrast, the processing cost of XFilter
increases dramatically, to 732ms at 100,000 and runs out of memory after this point,
while Hybrid takes 344ms at this point. Thus YFilter exhibits an order of magnitude
improvement for path matching over these other schemes.5

The performance benefits of YFilter come from two factors. The first is the benefit of
shared work obtained by the NFA approach. YFilter is the most effective of the three at
exploiting commonality among similar, but not exactly identical queries, as it can share
all common prefixes of the paths. The second factor is the relatively low cost of state
transitions in YFilter compared to the others, which results from the hash-based
implementation described in Section 3.2. We verified this by comparing the improvement
ratio of YFilter over XFilter in terms of path navigation time with that in terms of the
number of transitions. For example, when Q is 100,000, XFilter makes 7.4 times more
transitions but takes 25.2 times longer to navigate.

The experiment just described, like other XML filtering studies [Altinel and Franklin
2000; Chan et al. 2002; Lakshmanan and Parthasarathy 2002; Green et al. 2003] did not
address the effect of duplicate path queries on the query processing time. Duplicate paths,
however, are likely to exist in a large filtering system. For this reason, we re-ran the
previous experiment with the query generator set to not remove duplicates. Figure 12
shows the MQPT of three algorithms as the number queries in the system is varied from
1,000 to 500,000.

Compared to Figure 11, YFilter still achieves a significant performance improvement
over Hybrid and XFilter, but the differences among the algorithms are not as great. In
particular, XFilter and Hybird seem to scale better, and the cost of YFilter increases.

We measured the number of distinct queries among random queries and report them
in Table 3. It shows the relatively slow increase in the number of distinct queries. Since
all three algorithms represent identical queries only once, they all benefit from the slow
increase, which explains the improved MQPT of Hybrid and XFilter.

Number of random queries (x1000) 1 100 200 300 400 500
Number of distinct queries (x1000) 0.53 15.7 24.2 30.5 35.6 40.0

Table 3: Number of distinct queries out of randomly generated queries
(NITF, D=6, W=0.2, DS=0.2)

We further decompose the MQPT into two component costs: path navigation and
result collection. Results are shown in Figure 13. For each data point, the bars represent
from left to right: YFilter, Hybrid, and XFilter. The cost of path navigation at each data
point is consistent with that for the same number of distinct queries in Figure 11. The cost
of result collection, however, becomes significant. Even though we coded result
collection carefully, e.g. using unsynchronized data structures and avoiding ID instance

5 Note that the performance of XTrie was also compared with that of XFilter [Chan et al. 2002] for a similar
workload. The fastest algorithm studied there, called Lazy Trie, was shown to have only about a 4x
improvement over XFilter.

copies, its cost is still high in this experiment, because a high percentage of path
expressions match each document (34% here for each value of Q compared to less than
10% for most values of Q in the previous experiment using distinct queries). Note that in
Figure 13, the MQPT of YFilter is dominated by the cost of result collection starting from
the point of Q=300,000. At this point, the number of query IDs collected is 9.3 times the
number of state transitions YFilter makes.

The above results for duplicate path queries indicate that experiments using distinct
paths may tend to magnify the differences among filtering algorithms in scenarios where
duplicate queries are likely. To exhibit a significant performance improvement in
practical workloads containing duplicate queries, a filtering algorithm needs to
outperform others by a wide margin, as YFilter outperforms Hybrid and XFilter.

Similarly, for both the distinct and random workloads, document parsing is another
fixed overhead that contributes to overall filtering time (recall that parsing is not included
in MQPT). For example, the Xerces [Apache 1999] parser we used, set in a non-
validating mode, took 168ms on the average to parse a document, completely dominating
the NFA-based execution in both cases. We also tried other publicly available java

0

200

400

600

800

0 50 100 150

Number of Queries (x1000)

M
Q

PT
 (

m
s)

xfilter(lb)

hybrid

yfilter

0

100

200

300

0 100 200 300 400 500

Number of random queries (x1000)

M
Q

P
T

 (
m

s)

xfilter (lb)

hybrid

yfilter

Figure 12: Varying number of queries (with
duplicates) (NITF, D=6, W=0.2, DS=0.2)

Figure 11: Varying number of distinct queries
 (NITF, D=6, W=0.2, DS=0.2)

M
Q

P
T

 (
m

s)

No. of random queries (x1000) (bars left to right: yfilter, hybrid, xfilter(lb))

Figure 13: Component costs for processing queries containing duplicates
(NITF, D=6, W=0.2, DS=0.2)

parsers including Java XML Pack [Sun Microsystems 2001] and Saxon XSLT processor
[Kay 2001] supporting SAX 2.0. Saxon gave the best performance at 81 ms, stil l
substantially more than the NFA navigation cost.6 Thus, while we do not claim that
YFilter is the fastest possible path matching approach, it is clear that its performance for
both these workloads is sufficiently fast that any further improvements in path navigation
time will have at best, a minor impact on overall performance.

4.3.2 Experiment 2: Other DTDs

We also ran experiments using two other DTDs: DBLP and Xmark-Auction. For these
two DTDs, we set the maximum depth D to 8 in order to generate a relatively large set of
distinct queries. The setting of W and DS is the same as the previous experiments and we
report results only for the distinct query workload. Due to their DTD structures, DBLP
tends to generate very short documents, while Xmark-auction tends to produce very long
ones. We adjusted the RP parameter to control the document lengths for our experiments.
For DBLP, RP was set to 5 and the generated documents contain on average, 16 start and
end elements pairs. For Auction, we set RP to 2, obtaining an average document length of
175. The results of these experiments are similar to those obtained using the NITF
workload. Space precludes us from describing these results in detail, so we summarize
them here.

Figure 14 shows the MQPT results for the Xmark-Auction workload as Q is varied
from 1,000 to 100,000. As can be seen in the figure, the trends observed using NITF are
also seen here: YFilter performs substantially better than XFilter and Hybrid is in
between the others. Since documents here are 2.3 times as long as those of NITF, all
algorithms take longer to filter the documents. XFilter, however, is particularly sensitive
to the length of documents because its FSM representation and execution algorithm result
in significant memory management overhead, which in turn invokes garbage collection
much more frequently.

6 We have also experimented with C++ parsers, which are much faster, but even with these parsers we would
expect parsing time to be at best similar to the cost of path navigation with YFilter, particularly if YFilter were
also implemented in C++!

0

200

400

600

800

0 20 40 60 80 100

Number of queries (x1000)

M
Q

P
T

 (
m

s)

xfilter(lb)

hybrid

yfilter

0

100

200

300

400

0 20 40 60 80 100

Number of queries (x1000)

M
Q

P
T

 (
m

s)

xfilter(lb)

hybrid

yfilter

Figure 15: Varying number of distinct queries
(DBLP, D=8, W=0.2, DS=0.2)

Figure 14: Varying number of distinct queries
 (Auction, D=8, W=0.2, DS=0.2)

When the DBLP DTD is used, all algorithms run much faster, as shown in Figure 15.
However, even though the documents used here are very short, YFilter still achieves
substantial performance improvement over XFilter (e.g., 46 times at Q=100,000).

4.4 Experiment 3: Varying the maximum depth

In this experiment, we examine the impact of document depth on the performance of the
three algorithms. Of particular concern is the performance of YFilter, since deep
documents could theoretically cause an exponential blow-up in the number of active
states for NFA execution. We used the NITF DTD in all the following experiments. The
maximum depth was increased from 6 to 10.7 For each D value, we generated 50,000
distinct queries.

As can be seen in Figure 16, the MQPT for all algorithms increases with the
document depth, but YFilter remains the fastest. More importantly, the increase for
YFilter is linear. To provide a better understanding these behaviours, we report the
statistics on documents and queries used in this experiment in Table 4. Note that the
average document depth (i.e., the average depth of all paths in each document) and query
depths do not increase as quickly as D. This is because the DTD dictates that many paths
cannot reach a very deep level. As the maximum repeat RP was fixed to 3 in this
experiment, a larger value of D also caused longer documents (i.e., more start/end
element pairs) to be generated.

Maximum Depth D 6 7 8 9 10
Avg. Document depth 5.45 6.06 6.68 7.28 7.69
Avg. Query depth 5.05 5.70 6.09 6.35 6.53
Avg. Document length 77 107 154 221 271

Table 4: Characteristics of documents and queries as maximum depth varies

7
Note that we stopped increasing D at 10, because we expect that in large scale XML filtering scenarios,

documents even that deep will be quite rare. In other scenarios such as general XML query processing in large
databases, some researchers expect that documents may be more deeply nested. While such scenarios are
beyond the scope of this paper, the interested reader is referred to [Bruno et al. 2003] for a discussion of the
performance of NFA-based solutions in such settings.

0

200

400

600

800

1000

6 7 8 9 10

Maximum Depth
M

Q
P

T
 (

m
s)

xfilter(lb)

hybrid

yfilter

Figure 16: Varying maximum depth (NITF, Q=50,000, W=0.2, DS=0.2)

Given these statistics, the increase in MQPT of the filtering algorithms can be
explained by two factors: the increased document length and the increased document
depth. In the case of YFilter, the number of state transitions made increases 5.9 times as
D is increased from 6 to 10. Much of the increase comes from the simple fact that there
are 3.5 times more start/end element pairs in the documents when D = 10 compared to
when D = 6. Although the increased document depth could theoretically cause
exponential increase in the number of transitions, we did not observe it in this
experiment, because in the NFA execution, most input elements can trigger transitions
only from a limited subset of the active states.

Note that the NITF DTD we use is one of the few complicated DTDs published
online in terms of the number of elements allowed to be recursive (26 out of 123
elements). For this reason, we anticipate YFilter’s performance shown in this experiment
to serve as a good indicator of its sensitivity to the maximum level of element nesting in
most other practical workloads.

4.5 Experiment 4: Varying Non-determinism

In the previous experiments, we kept W and DS (the probability of “ *” and “ //” operators,
respectively) fixed at 0.20. Wildcards and “ //” operators, however, are the sources of non-
determinism in our NFA-based model. Thus, in this set of experiments we investigate
their impact on filtering performance. In order to separate the effects of these two
parameters, we fixed one at 0 while varying the other. Note also that we use a large D
value (10) in order to allow a reasonable number of distinct queries to be generated for all
measured values of W and DS.

Varying W and DS can dramatically impact the properties of the query sets produced
by the query generator. Thus, for these experiments we modified our query generation
technique. We first generated a large set of distinct queries using the setting (D=10, W=0,
DS=0). Then to experiment with different W values, for each query in this set, elements
were replaced with wildcards with probability = W; if due to this process, a query became
identical to an existing one in the query set, the duplicate query was not added to the set.
Query sets for the cases with varying DS were generated similarly.

4.5.1 Varying W

Figure 17 shows the MQPT results when W is varied from 0 to 0.8 with Q = 50,000.8 As
can be seen in the figure, YFilter again significantly outperforms the others. Note also
that it is much less sensitive to this parameter than the other two algorithms. The reason
for YFilter’s low sensitivity to W is explained as follows. As W increases, the size of the
NFA changes slowly, due to the prefix sharing among path expressions. As W is
increased from 0, the NFA grows somewhat because the addition of wildcards adds new
paths to the NFA. As W is further increased, the NFA size actually begins to decrease, as
the queries become more similar to each other. In this experiment, the NFA begins with

8 Note that at W=1 very few distinct queries can be generated, so that case is not shown here.

approximately 82,000 states (when W = 0), and increases to a high of approximately
112,000 when W = 0.4.

In contrast, XFilter’s performance improves with increasing W. Since XFilter does
not store nodes for wildcards, the number of transitions it makes is reduced as wildcards
are added.

In this experiment, the performance of Hybrid demonstrates that it does in fact share
common attributes with both XFilter and YFilter. When W and DS are both set to 0,
Hybrid is similar to YFilter as there is no decomposition of queries. As W (or DS)
increases, Hybrid moves more towards XFilter due to increased query decomposition.
Beyond a certain point (W = 0.4, here), the benefit of not processing wildcards becomes
dominant, and Hybrid’s performance improves along with XFilter’s.

4.5.2 Varying DS

Figure 18 shows the effect of varying DS (the probability of “ //” operators) from 0 to 1
with Q = 10,000 (a smaller number of queries was used here because XFilter was unable
to complete for the mid-range values of DS with more queries). As in the previous
experiment, YFilter has the best performance overall and is less sensitive to the parameter
setting than the other two.

The performance of YFilter is again largely explained by the change in the machine
size. As DS is increased from 0 to 1, the machine size first increases because of the
diversity of axes in location steps in queries, and then decreases, as queries become more
similar to each other. The turning point here occurs at DS = 0.6, where the machine size
is 2.8 times that at DS = 0, resulting in a 3.2 times increase in MQPT. The performance
degradation is kept small due to the shared representation and processing of “ //” operators
among multiple queries.

In contrast, XFilter does pay a large performance penalty as DS is increased. This
penalty is due to overhead it incurs when processing “ //” operators in the presence of
recursive elements. Recall that (as described in Section 3.1.3) in XFilter, if a location step
“ //a” can be matched by recursive “a” elements, the path node of the subsequent location
step will be promoted to its candidate list each time “ //a” is matched. In XFilter’s
implementation, if the subsequent location step contains a “ //” operator (e.g. “ //b”), its

0

100

200

300

400

0 0.2 0.4 0.6 0.8

Wildcard Probability

M
Q

P
T

 (
m

s)

xfilter(lb)

hybrid

yfilter

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

"//" Probability

M
Q

P
T

 (
m

s)

xfilter(lb)

hybrid

yfilter

Figure 17: Varying wildcard probability
 (NITF, Q=50,000, D=10, DS=0)

Figure 18: Varying “ //” probability
 (NITF, Q=10,000, D=10, W=0)

path node is simply added to the candidate list multiple times. However, if the next
location step contains a ‘ /’ operator instead (e.g. “ /b”), different instances of this path
node are first created and then added to the candidate list to remember all the possible
levels where this location step could be matched. Note that the probability of patterns
such as “ //a/b” first increases with DS and then decreases. The behavior of XFilter in this
experiment is determined by multiple promotions of path nodes in general and the
overhead of handling these particular patterns.

In this experiment, Hybrid again exhibits characteristics of the other two algorithms.
When DS = 0, Hybrid is similar to YFilter, and as DS is increased, it becomes more like
XFilter. Hybrid, however, does not exhibit the bell shape, because it uses a single runtime
stack to keep track of the active states as in YFilter, rather than promoting path nodes
multiple times to remember different document levels as in XFilter. At DS = 1, every
query is decomposed into single elements and the performance of Hybrid is very close to
XFilter. XFilter actually outperforms Hybrid a little as a benefit of using list balancing.

The experiments on non-determinism have shown that compared to the other two
algorithms, YFilter shows relatively little sensitivity to the W and DS parameters. Due to
prefix sharing, increasing the probabilities has only a modest effect on the size of the
NFA. As a result, the filtering cost of YFilter is relatively low and robust to changes in
these parameters.

4.6 Experiment 5: Maintenance cost

The last set of experiments we report on in this section deal with the efficiency of
maintaining the YFilter structure, which is expected to be one of the primary benefits of
the approach. Updates to the NFA in YFilter are handled as follows: To insert a query,
we merge its NFA representation with the combined NFA as described in Section 3.2.2,
and append the identifier of this query to the end of the query ID list at its accepting state.
To delete a query, the accepting state of the query is located and the query’s identifier is
deleted from the list of queries at this state. If the list becomes empty and the state does
not have a child state in the NFA, the state is deleted by removing the link from its
parent. The deletion of this state can be propagated to its predecessors. An update to a
query is treated as a delete of the old query followed by the insertion of the new one.

Deletion is the dual problem of insertion except that modification of the list at the
accepting state can be more expensive than appending an identifier to the list. As
demonstrated in the previous sections, YFilter’s performance is fairly robust with respect
to the number of queries in the system. Thus, instead of deleting queries immediately, we
adopt a lazy approach where a list of deleted queries is maintained. This list is used to
filter out such queries before results are returned. The actual deletions can then be done
asynchronously. Thus, in this section we focus on the performance of inserting new
queries.

We measured the cost of inserting 1000 queries with varying numbers of queries
already in the index (which can contain duplicate queries). The insert costs are shown in
Table 5. With Q = 2000 (i.e., 2000 queries already in the NFA), it takes 77 ms to insert

the 1000 new queries. At this point, the chance of a query being new is high, requiring
new states to be created and transition functions to be expanded by adding more hash
entries to the states. However, the cost drops dramatically as more queries are present in
the system. Beyond Q=50,000, the insertion cost stabilizes around 5 ms. This is because
most path expressions are already present in the index, so inserting a new query can
typically be added by simply traversing down a single path to an existing accepting state
and appending the query ID to the list at that state.

Q (x1000) 2 4 6 8 10 10 ~ 50 60 ~ 500

1000 Insertions (ms) 77 57 30 24 9 6 ≈ 5

Table 5: Cost of inserting 1000 queries (ms) (NITF, D=6, W=0.2, DS=0.2)

5. VALUE-BASED PREDICATE EVALUATION IN YFILTER

The previous section demonstrated the substantial performance improvements that can be
gained by sharing structure matching through the use of an NFA. This sharing, however,
would be greatly reduced if value-based predicates (i.e., predicates on individual
elements) were encoded directly into the NFA. In this section, we explore two alternative
techniques for handling such predicates in the YFilter framework.

Value-based predicates in XPath address properties of elements, such as their content,
their position, and their attributes. Examples include:

• The value of an attribute in an element, e.g., //product/price[@currency = “USD”];

• The text data of an element, e.g., //product/price [text() <= 300].

• The position of an element, e.g., /catalog/product[position() = 2], which means
“select the second product child element of the catalog element” .

Any number of such predicates can be attached to a location step in a query.

In this section, we focus on the processing of predicates on attributes or element
position but not on the data. Predicates on element data require additional bookkeeping
because the data (if present) is delivered by the parser in separate “characters” events that
may arrive at any time between the "start element" event and its corresponding “end
element” event.

We have developed two alternative approaches to implement value-based selections.
The first approach, called Inline, applies selection during the execution of the NFA. The
second, called Selection Postponed (SP), simply runs the NFA as described previously,
and then applies the selection predicates in a post-processing phase. Below, we discuss
these two alternatives in more detail, and compare their performance experimentally.

5.1 The Inline Approach

For the Inline approach, we extend the information stored in each state of the NFA to
include any predicates that are associated with that state. These predicates are stored in a
table, as shown in Figure 19. Since multiple path expressions may share a state, this table
can include predicates from different queries, so we identify predicates using (Query Id,
Predicate Id) pairs.

Inline works as follows: When a start-of-element event is received, the NFA
transitions as described in Section 3.2.4. For each state reached, the predicates stored
there are checked. For each query, bookkeeping information is maintained, indicating
which predicates of that query have been satisfied. When an accepting state is reached,
the bookkeeping information for the queries of that state is checked, and those queries for
which all predicates have been satisfied are returned as matches.

While such an approach sounds conceptually simple, there are several issues to
consider. The first is the potential benefit of checking predicates early. The failure of a
predicate at a state does not necessarily stop processing along that path because there may
be other queries sharing the state that did not fail. Furthermore, if a query contains a “ //”
prior to a predicate, then even if the predicate fails, the query effectively remains active
due to the non-determinism introduced by that axis. For these reasons, the common query
optimization heuristic of “pushing selects” to earlier in the evaluation process is not as
likely to be effective in this environment.

 A second issue is that, due to the nested structure of XML documents, it is possible
that backtracking will occur during the NFA processing. Such backtracking further
complicates the task of tracking the predicates that have been satisfied. For example,
consider query q4= “ //a[@a1=v1][@a2=v2]” that contains a location step with two
predicates (on two different attributes a1 and a2 of “a” elements). If care is not taken
during backtracking, a fragment such as “<a a1=v1> <a a2=v2> ” could
erroneously be determined to match q4 even though the attributes are associated with
different “a” elements. This problem can be solved by “undoing” changes made to the
predicate bookkeeping information for a state when backtracking from that state.

Unfortunately, the above solution does not solve a similar problem that exists for
recursively nested elements. Consider q4 when applied to a fragment with nested “a”
elements: “<a a1=v1> <a a2=v2> ” . In order to distinguish between the two “a”s
additional bookkeeping information must be kept. This additional information identifies
the particular element that caused each predicate to be set to true. During the final
evaluation for a query at its accepting state, the query is considered to be satisfied only if

Figure 19: Predicate Storage for Inline

a

a

 a

a

a

*

a a

 QueryId PredicateId property operator value
… … … … …

all predicates attached to the same location step are satisfied by the same element. The
Inline approach is described in more detail in Appendix A.

5.2 Selection Postponed (SP)

Effort spent evaluating predicates with Inline will be wasted if ultimately, the structure-
based aspects of a query are not satisfied. The Selection Postponed (SP) approach avoids
this problem by delaying predicate processing until after the structure matching has been
completed. SP has several other potential advantages. First, since the predicates on
different elements in a query are treated as conjunctions, a short-cut evaluation method is
possible; when a predicate of a query fails, the evaluation of the remaining predicates of
that query can be avoided.9 Second there is no need to extend the NFA backtracking logic
as for Inline.

 In SP, the predicates are stored with each query, as shown in Figure 20. We index the
predicates for a query by the “step number” field. When an accepting state is reached in
the NFA, selections are performed in bulk for each query associated with the state. If all
predicates of a query evaluate to true, then the query is satisfied.

In order to delay selection, however, the NFA must be extended to retain some
additional history about the states visited during structure matching. The reason for this
is demonstrated by the following example. Consider query q5 and an XML document
fragment as shown in Figure 21. When element ‘b’ of the document is parsed, the NFA
execution arrives at the accepting state of this query in the NFA (also shown in Figure
21). When selection processing is performed for q5, we need to decide on which of the
two ‘a’ elements encountered during parsing to apply the predicate.

A naïve method would be to simply check all of the ‘a’ elements encountered.
Unfortunately with more “ //” operators in a query or more recursive elements in the
document, searching for matching elements for predicate evaluation could become as
expensive as running the NFA again for this query. Instead, we extend the NFA to output

9 Note however, that with predicate evaluation it becomes possible to visit a given accepting state multiple
times, due to predicate failure. Such short-cut predicate evaluation only saves work for a single visit.

Figure 20: Predicate Storage for SP

a

a

 a

a

a

*

a a
{Q1}

{Q3}

{Q8}

 step number property operator value
… … … …

Runtime Stack

Figure 21: A sample query, its NFA, and
the NFA execution

q5: //a[@a1=v2]//b

3 1
ε

*

2
a

5
ε

*

4
b

An XML fragment:
<a a1=v1>
<a a1=v2>

 5

 3 4

 2 3

1

not only query IDs, but a list of path matches. Each path match provides a list of
document elements that should participate in predicate evaluation.

For example, at the accepting state for q5, the NFA would report the two path
matches “a_1 b” and “a_2 b” , where a_1 represents the first ‘a’ element and a_2 represents
the second (nested) ‘a’ element. Since predicates are indexed by “ step number” , it is easy
for the selection operator to determine which elements need to be tested. For the XML
fragment shown in Figure 21, the first path match does not satisfy q5 because a_1 does
not satisfy the predicate, but the second path match does.

The NFA is extended to output these path matches by linking the states in the runtime
stack backwards towards the root. That is, for each target state reached from an active
state, we add a predecessor pointer for the target state and set the pointer to the active
state. Then the target state with the pointer is later pushed onto the runtime stack. An
example is shown in Figure 21, which includes the content of the stack for the accepting
state of the sample query after the XML fragment was read.

For each state that is an accepting state, we can traverse backwards to find the
sequence of state visits that lead to the accepting state. Note that elements that trigger
transitions to “ //-child” states (along self-loops) can be ignored in this process, as they do
not participate in predicate evaluation. Returning to the example in Figure 21, there are
two sequences of state visits, namely “2 3 5” and “3 4 5” that the NFA took when
elements a_1, a_2 and b were read. After eliminating the elements that trigger transitions
to “ //-child” states for each state sequence, the two sequences of matching elements, “a_2
b” and “a_1 b” , can be generated for predicate evaluation.

A note is that our technique of linking states in the runtime stack using predecessor
pointers is similar in spirit to “backward chaining” used in PathStack and TwigStack
[Bruno et. al. 2002]. The idea in both is to use backward pointers to store partial or
complete matches of path expressions. The difference is that we use a single runtime
stack with backward pointers to store matches for all path expressions, while PathStack
requires a stack for each query node.

The evaluation data structures and pseudo-code for predicate evaluation using SP are
presented in Appendix B. Note that SP requires no bookkeeping information and that the
evaluation code is simple and straightforward.

Finally, as mentioned above, predicates on element data cannot be evaluated with
other value-based predicates in a query, because the element data is not returned when
the “start element” event is encountered. The fact that selection in SP is decoupled from
the event-based processing enables us to treat selections involving such predicates simply
as blocking operators. To collect information for such selection operators, we extend the
elements carried by the path matches to include a data field called “ text” . When a
“characters” event is received, the data returned by this event is appended to the “ text”
field in the corresponding element. This field is known to be complete when the
corresponding “end element” event is encountered. At that moment, selection operators
blocked on this field will be signaled to become unblocked.

5.3 Performance of Value-based Predicate Evaluation

Having described the Inline and SP approaches to value-based selection, we now present
results from an experimental study comparing their performance. The NITF DTD was
used for all experiments presented in this section. For query generation, the parameter P
(see Table 2) was used to determine the number of predicates that appear in each query.
Such predicates are distributed over the location steps uniformly at random. Distinct
queries are used in all of the experiments.

In the first experiment we examine the relative performance of Inline and SP as Q is
varied from 1,000 to 500,000. Figure 22 shows the MQPT of the two approaches for the
cases P=1 and P=2.

As can be seen in the figure, SP outperforms Inline by a wide margin. When P=1, for
example, SP takes 375 ms to process 200,000 queries, while Inline takes 1170 ms more.
To understand these results, recall the three major differences between Inline and SP.

1) Structure matching and value matching: Inline performs early predicate
evaluation before knowing if the structure is matched, and this early predicate
evaluation does not prune future work. In contrast, SP performs structure matching
to prune the set of queries for which predicate evaluation needs to be considered.

2) Conjunctive predicates in a query: In Inline, evaluation of predicates in the same
query happens independently at different states, while in SP, the failure of one
predicate in a query stops the evaluation of the rest of predicates immediately.

3) Bookkeeping: Inline requires bookkeeping information for the final evaluation of a
query. The maintenance cost includes setting the information and undoing it during
backtracking. Note that in addition to reduced MQPT, bookkeeping overhead causes
Inline to run out of memory, for Q above 400,000.

When the number of predicates per query is doubled (P=2, also shown in Figure 22)
both approaches suffer an increase in MQPT. The differences between the approaches,
however, are more pronounced. For example, for 200,000 queries containing two
predicates each, Inline takes 1534 ms more than SP. Inline also experiences a tremendous

0

1000

2000

3000

4000

0 100 200 300 400 500

Number of Queries (x1000)

M
Q

P
T

 (
m

s)

Inline(P=2)

Inline(P=1)

SP(P=2)

SP(P=1)

Figure 22: Varying number of queries (D=6, W=0.2, DS=0.2)

0

100

200

300

400

0 4 8 12 16 20

Number of Predicates Per Query

M
Q

P
T

 (
m

s)

SP

SP+sorting

increase in the bookkeeping overhead, and runs out of memory with 100,000 queries
earlier than P=1.

Figure 23 shows the MQPT of the two approaches as the number of predicates per
query is varied from 0 to 20 for a relatively small number of queries (Q =50,000). As can
be seen in the figure, a large number of predicates compounds the poor performance of
Inline. In contrast, SP is much less sensitive to the number of predicates per query. As P
increases, the increased cost in SP results from a larger number of invocations of
predicate evaluation and longer evaluation periods. Luckily, the negative impact is
limited by the short-cut evaluation strategy.

The previous experiment demonstrated the benefits of delaying content-based
matching in YFilter. One of the major benefits was seen to be the ability to “short-cut”
the evaluation process for a query when one predicate fails. This observation raises the
potential to further improve the chances of such short-cut evaluation by evaluating
highly-selective predicates first, as is done by most relational query optimizers.

If statistics on documents are kept, then the selectivity of predicates on attributes can
be estimated from the probability of an attribute occurring in an element and the number
of values this attribute can take. Examples of equality predicates on attributes of element
“a” are given as follows:

selectivity ([@attr]) = probability of the attribute occurring in element ‘a’ .

selectivity ([@attr=’v’]) = Selectivity[@attr] / max. # of values attribute “attr” can take.

The selectivity estimates for predicates involving other comparison operators can be
derived in a similar way. If predicates are attached to a wildcard in a location step, we
make simple assumptions about their selectivity. Other formulas are omitted here due to
space constraints.

We performed a simple experiment to examine the potential performance benefits of
predicate reordering in the SP approach. Figure 24 shows the MQPT for SP with and
without sorting, as P is varied from 0 to 20 for Q=50,000. The results indicate that as
expected, additional benefits can indeed be gained by predicate sorting, particularly for
cases with large numbers of predicates.

0

1000

2000

3000

0 4 8 12 16 20

Number of Predicates Per Query

M
Q

P
T

 (
m

s)
Inline

SP

Figure 23: Varying number of predicates
(D=6, Q=50000, W=0.2, DS=0.2)

Figure 24: Effect of predicate sorting
(D=6, Q=50000, W=0.2, DS=0.2)

6. NESTED PATH EXPRESSIONS

In the previous section, we described two approaches for value-based predicate
evaluation in YFilter. As our experimental results show, SP outperforms Inline by a wide
margin. Recall that in SP is that there is clear separation between path matching and
predicate evaluation. Our technique for handling nested path expressions in YFilter
leverages this post-processing of path matches.

6.1 Preliminaries

We begin by more clearly specifying the interface between the NFA path matching
engine and the post-processing operators. This interface is based on path match structures
that identify the document elements that caused the NFA to reach an accepting state.
During parsing document elements are given unique identifiers. Each time an accepting
state is reached, the NFA outputs a path match structure for each query associated with
that state. At an accepting state that represents a path expression of n location steps, each
structure generated is simply a list of identifiers of the n elements that matched the path
expression.

The elements that path matches reference are stored in memory resident data
structures created in document parsing. These data structures hold attributes and text data
of the corresponding elements which could be used by any operators in post-processing.

6.2 Query Decomposition

The original work on XFilter proposed using query decomposition to handle nested path
expressions. In this approach, the nested paths are extracted from the main path
expressions and processed individually. A post-processing phase is used to link matched
paths back together to determine if an entire query expression has been matched. The
advantage of such an approach is that the path matching engine remains untouched. We
follow a similar approach in YFilter, using the NFA/post-processing interface described
above. In YFilter, however, this approach has the significant additional benefit that it
naturally allows shared path matching to be exploited for nested path expressions.

We describe the approach by addressing: first, how the nested paths are represented,
and second, how they are evaluated. We then present results from a performance study of
our implementation.

6.2.1 Query representation

For ease of exposition, we initially describe our solution assuming only one level of path
nesting in queries. In other words, a nested path does not itself contain any nested paths.
We then relax this assumption in Section 6.2.3. For such queries we can define three
terms: A main path is the remaining structure of a query after all the nested paths are
removed. An anchor step of a nested path is a location step in the main path where that
nested path is attached to the main path. An extended nested path is a nested path
prepended with the prefix of the main path up to its anchor step.

In our approach, when a query containing nested paths is parsed, it is decomposed
into a list of absolute paths: the main path and any extended nested paths. For example,

consider the query q6=“ /a[d]//b[e/f]/c” . It contains two nested paths “d” and “e/f” . Query
decomposition produces a main path, “ /a//b/c” , and two extended nested paths, “ /a/d” and
“ /a//b/e/f” . We assign these paths identifiers consisting of pairs (QueryId, PathId), where
the main path has PathId 0 and the nested paths are numbered sequentially. All of the
paths are then inserted individually into the path matching engine with these identifiers.
We slightly extend the interface described above so that the engine returns path matches
to queries using the Query Ids with the Path Ids attached to the matches for the use inside
those queries.

Post-processing is implemented using operators called Nested Path Filters (NP-
Filter). Each NP-Filter is associated with a single query. Under the assumption of a single
level of nesting, only one NP-Filter is required per query. The NP-Filter contains
information for each path of its associated query. For each nested path, it stores the
position of its anchor step in the main path. This position will identify the last shared
element between the extended nested path and the main path. The NP-Filter also contains
for each path (main and nested) a store to keep the path matches corresponding to that
path.10

6.2.2 Query evaluation

As previously stated, queries containing nested paths are processed in two phases, path
matching and post-processing of the path matching results. The first phase is completely
done by the path matching engine. Thus, the processing of the common prefixes is shared
among all the paths, e.g., between main paths and extended nested paths and among the
extended nested paths themselves. Upon obtaining a new path match, the engine delivers
it to the queries containing the path, together with the PathId of this path in each of those
queries. The recipient queries hold this path match in one of its stores identified using the
attached PathId.

Post-processing is performed inside each NP-Filter at the end of document
processing. This processing consists of the following steps:

1) Store check: If any of the stores of the constituent paths of the query is empty, then
return False.

2) Filter construction: Otherwise, a filter is constructed for each nested path from its
corresponding store by extracting the set (no duplicates) of element ids that appear at
the anchor step position of the nested path.

3) Match filtering: The path match structures of the main path are then pipelined
through all the nested path filters. For each main path match, a nested path filter is
applied to the element identifier at the corresponding anchor step position. If the
filter does not contain this element identifier, the main path match is evicted. If a
main path match passes all the filters, the query is evaluated to True and the NP-
Filter stops.

10 In the implementation, a path match store is allocated for each unique path expression and shared among all

queries containing this path, so an NP-Filter only contains pointers to these shared stores. Due to this sharing,
the stores contain path matches in their entirety, even though any one query may not need all of the elements.

Figure 25 shows the three constituent paths of q6 and an NP-Filter operator for it, and
illustrates the post-processing performed for this query. On the left of the figure, data
structures maintained in the NP-Filter are shown in the upper box. In the list of anchor
step positions, the list element at index 1 corresponds to the first nested path (i.e., PathId
1), indicating that the anchor step of this nested path is at position 1 in the main path. The
list element at index 2 keeps the position information for the second nested path. In the
store list, three pointers link to the stores that contain path matches for the three
constituent paths.

The right part of the figure illustrates the execution of the NP-Filter. The arrows
drawn top down depict filter construction for the two nested paths. Anchor step positions
are used to extract element ids for each filter. The arrow below the filters illustrates
pipelining the main path matches through these two filters. The first main path match is
eliminated by the first filter, because the identifier of the ‘a’ element in this match is not
contained in the filter. The next two matches are removed by the second filter. Finally the
last main path match passes both filters, and the query is evaluated to True.

6.2.3 Support of Multiple Levels of Path Nesting

In the above description, we assumed that nested path expressions do not themselves
contain nested paths. The approach, however, can be extended to support an arbitrary
number of levels of path nesting. We first modify NP-Filter operators so that they can be
configured to output one or all matches retained from the nested path filters. The rest of
the extension is outlined as follows.

For each query involving multiple levels of path nesting, an NP-Filter is assigned to
each path expression (absolute or nested) that contains nested paths in its predicates. If
additional NP-Filters are assigned to the nested paths of this path expression, the NP-
Filter of this path expression treats them as child operators. In this way, a hierarchy of
NP-Filters is formed in correspondence to the hierarchy of path nesting.

NP-Filter (q6)

Index (PathId) 0 1 2

Anchor step positions 1 2

Pointers to stores

a1 b1 c1
a2 b2 c2
a2 b3 c2
a3 b4 c3

a2 d1
a3 d2
a3 d3

a1 b1 e1 f1
a3 b4 e2 f2 stores

main
path

nested
path 1

nested
path 2

PathId = 0: /a//b/c PathId = 1: /a/d PathId = 2: /a//b/e/f

q6 = /a[d]//b[e/f]/c

Figure 25: An example NP-Filter operator and its match filtering process

a1 b1 c1
a2 b2 c2
a2 b3 c2
a3 b4 c3

a3 b4 c3 main
path

a2 a3 b1 b4

position = 1

a2 d1
a3 d2
a3 d3

a1 b1 e1 f1
a3 b4 e2 f2

nested
path 1

nested
path 2

position = 2

During post-processing, the hierarchy of NP-Filters is executed bottom up. NP-Filters
at the bottom level of the hierarchy access path match stores and perform match filtering
as described above. They output all main path matches that are retained from their nested
paths filters. After NP-Filters at the next level receive the path matches from their child
operators, they start the execution and output in the same matter. This process continues
until the top level NP-Filter finds any main path match or exhausts all the input matches.
In the first case, the query is evaluated to True.

6.4 Evaluation of Nested Path Expressions

In this subsection, we evaluate the performance of our approach to processing nested path
expressions. Recall that in this approach, path matching is shared among all queries, and
post-processing is performed on a per-query basis. Our experimental study provides some
understanding of the component costs as well as total processing cost in MQPT.

The parameter NP (see Table 2) was used to generate a number of nested path
expressions in each query. Such nested paths are distributed over the location steps
uniformly at random. The depth of a nested path is determined by the difference between
maximum depth D and the actual depth of the location step where this nested path is
attached. The setting of parameters W and DS, is also applied to the nested paths. All
queries used in the experiments contain only one level of path nesting.

6.4.1 Varying Q and varying NP

In this experiment, we varied the number of distinct queries from 1000 to 200,000 for
three values of NP, 1, 2 and 3. Figure 26 shows YFilter’s performance in terms of MQPT.

An important trend is observed from this figure. As the number of queries grows,
there is a fair amount of increase in MQPT to process the first nested paths in queries (see
the case of NP=1). Processing additional nested paths in queries (in the cases of NP>1),
however, costs only a little more than processing the first nested paths. Consequently, the
cases of larger NP values exhibit efficiency and scalability very close to that in the case
of NP=1.

For a better understanding of this result, we implemented a profiler that reports the
costs of the path matching engine and NP–Filter operators, and also provides statistics
that help explain the observed execution costs. We re-ran the above experiment with the
profiler turned on. Due to the overhead of running the profiler, the costs reported in this
manner are higher than the costs observed while running the actual experiment. As a
sample of the content of the report, we show in Table 6 the total cost of the path matching
engine, the total cost of all NP-Filters, and some statistics at Q=50,000.

As Table 6 shows, when NP=1, the path matching engine costs much more than NP-
Filters. We have demonstrated in Section 4 that the NFA execution is very efficient.
Here, the engine cost is dominated by generation and delivery of multiple path matches
during each of the 5988 visits to accepting states. In contrast, NP-Filters have a relatively
low cost, due to the use of the store check as the first processing step. In this experiment,
most queries cannot have both constituent paths satisfied by a document, so their NP-
Filters only need to perform the inexpensive store check.

Q=50,000, NP = 1 2 3
Engine cost (ms) 152 160 171
NP-Filter cost (ms) 33 30 28
… … … …
of States in the NFA 42198 48523 57468
of accepting states hit 5988 6193 6701
of matched queries 3226 1837 770
… … … …

Table 6: Profile on nested path processing (Q=50,000, D=6, W=0.2, DS=0.2)

When examining cases of NP=2 and NP=3 in Table 6, we observe that the effects of
adding more nested paths are two-fold. First, it increases the cost of the engine, e.g. from
152 ms when NP=1 to 171 ms when NP=3. Our analysis of this cost increase is the
following. After the additional nested paths are added to the engine, they increase the size
of the NFA as shown in Table 6 (by 36% from NP=1 to NP=3). This increase, however,
is much less than that of the total number of nested paths, due to the path sharing
exploited by the engine. The increased machine size causes some more visits to accepting
states during document processing, e.g., 12% more from NP=1 to NP=3, which in turn
results in a slightly higher engine cost. The small increase indicates that after paying the
cost for the first nested paths, queries can obtain matches to most of their additional
nested paths at no extra cost. In other words, the cost of processing the initial nested paths
can be amortized by additional nested paths in queries.

The second effect of adding more nested paths is the slight reduction of the cost of the
NP-Filter operators. The additional nested paths increase query selectivity, as evidenced
by the reduced number of query matches shown in Table 6. Due to this increased query
selectivity, more NP-Filters can terminate due to store checks, thus improving the overall
cost of NP-Filters slightly.

The combination of these two effects determines the small increase in MQPT from
processing single nested paths in queries to multiple ones in them.

6.4.2 Performance for queries with mixed predicates

We further investigated the performance of YFilter when queries contain both value-
based predicates and nested path expressions. We integrate predicate evaluation into the
NP-Filters by applying the predicates to the paths immediately after the store check.
Thus, predicate evaluation is performed only if all constituent paths in the query are
satisfied. Similarly, the later steps of NP-Filter execution, namely, filter construction and
match filtering, are executed only when all paths also pass the selection evaluation.

To examine the performance of mixed predicates, we took the query sets from the
case of NP=1 of the previous experiment, and added a single value-based predicate to the
main path of each query. Then we ran the experiment by varying the number of queries
from 1000 to 200,000 for the two cases, (NP=1, P=0) and (NP=1, P=1). Figure 27 shows
the MQPT results.

We see that adding a value-based predicate to queries containing nested paths incurs
only a very modest increase in MQPT. This phenomenon can be explained by two

factors. First, selection operators (using the SP approach) and NP-Filter operators
completely share the overhead of path matching engine, e.g. the NFA-based path
navigation and the more expensive operations to generate and deliver path matches.
Second, due to the way that we combine selection evaluation with NP-Filter execution,
much of the predicate evaluation is avoided by the store check performed at the
beginning of NP-Filter execution.

Experimental results on nested path processing in YFilter can be summarized as
follows: 1) There is a fair amount of increase in MQPT to process the first nested paths in
queries. The cost is dominated by the overhead of supporting the interface of returning
path matches for post-processing. 2) The cost increase can be amortized through path
sharing when processing additional nested paths in queries, which results in good
efficiency and scalability in the cases of multiple nested paths per query. 3) This cost
increase can also be recovered when processing value-based predicates.

7. RELATED WORK

User profile modeling and matching have been extensively investigated in the context of
Information Filtering and Selective Dissemination of Information research, e.g., [Foltz
and Dumais 1992]. IR-style user profiles are intended for unstructured text-based systems
and typically use sets of keywords to represent user interests. In general, IR profile
models can be classified as either Boolean or Similarity-based. The former use an exact
match semantics over queries consisting of keywords connected with Boolean operators.
The latter use a fuzzy match semantics, in which a similarity value is assigned to every
(document, profile) pair. A document with similarity to a profile over a certain threshold
is said to match the profile [Salton 1989; Belkin and Croft 1992; Cetintemel et al. 2000].
The Stanford Information Filtering Tool (SIFT) [Yan and Garcia-Molina 1994; Yan and
Garcia-Molina 1999] is a keyword-based text filtering system for Internet News articles
that supports both profile models. Our work differs from IR-based filtering in that it is
targeted at application domains in which data is encoded in XML and user profiles take
advantage of the rich semantic and structural information embedded in the data for more
precise filtering.

0

100

200

300

400

0 50 100 150 200

Number of queries (x1000)

M
Q

P
T

 (
m

s)

NP=3

NP=2

NP=1

0

100

200

300

400

0 50 100 150 200

Number of queries (x1000)

M
Q

P
T

 (
m

s)

NP=1, P=1

NP=1, P=0

Figure 26: Varying number of queries
(D=6, W=0.2 DS=0.2, P=0)

Figure 27: Varying number of queries
(D=6, W=0.2 DS=0.2, NP=1)

Query-based profile models have also been studied in the context of Continuous

Queries (CQ), which are standing queries that allow users to get new results whenever an
update of interest occurs. Tapestry [Terry et al. 1992] was early work on CQ in relational
append-only databases. More recently, OpenCQ [Liu et al. 1999] and NiagaraCQ [Chen
et al. 2000; Chen et al. 02] have been proposed for information delivery on the Internet,
using the relational model and its techniques. OpenCQ uses grouped triggers for CQ
condition checking and query processing with cached views for incremental result
delivery. NiagaraCQ incrementally groups query plans of continuous queries using
common expression signatures. CACQ [Madden et al. 2002] further combines adaptivity
and grouping for CQ. It also breaks the abstraction of shared relational algebra
expressions and shares physical operators among tuples by attaching states to them
individually. These systems focus on relational techniques and do not address matching
constraints over the structure of the data.

Triggers [Stonebraker 1990; Widom and Finklestein 1990; Schreier et al. 1991] in
traditional database systems are similar to CQ. However, triggers are a more general
mechanism that can involve predicates over many data items and can initiate updates to
other data items. Thus, trigger solutions are typically not optimized for fast matching of
individual items to vast numbers of relatively simple queries. Some recent work has
addressed the issue of scalability for simple triggers by grouping predicates into
equivalence classes and using a selection predicate indexing technique [Hanson et al
1999]. However, this work has not addressed the XML-related issues that XFilter and
YFilter handle.

A number of XML filtering techniques have been proposed. Our first filtering system,
XFilter, is among the earliest work that addresses filtering XML documents for a large
number of profiles written in an XML query language. In the context of XFilter, CQMC
[Ozen et al. 2001] builds a FSM for all the queries that have identical structure
requirements. XTrie [Chan et al. 2002] indexes sub-strings of path expressions that only
contain parent-child operators, and shares the processing of the common sub-strings
among queries using the index. In addition, both of those systems support broader
functionality, e.g. ordered matching, formatting, or predicate evaluation in a simple way.
Compared to our work in YFilter, however, they exploit less path sharing. Furthermore,
none of this prior work has studied the integration of predicate evaluation and structure
matching. A recent study by Bruno et al. [Bruno el al. 2003] shows that compared to an
index-based approach to scan streaming documents for multiple queries, YFilter’s
approach is particularly effective for short documents and large numbers of queries.
MatchMaker [Lakshmanan and Parthasarathy 2002] was among the first attempts to
efficiently match multiple tree patterns. It constructs disk-resident requirement indexes
on pattern nodes and path operators, and then labels document nodes with matching
queries using the indexes. Due to the I/O invocations in the query processing, it reports
filtering performance orders of magnitude slower than the other memory-based filtering
algorithms.

The evaluation of path expressions on streaming data was studied in [Ives et al. 2000],
where queries that include resolving IDREFs are expressed by several individual FSMs
that are generated on the fly. [Green et al. 2003] proposes a structure matching approach
that combines all path expressions into a single DFA, resulting in good performance, but
with significant limitations. As shown in our experiments, when using an NFA-based
algorithm such as YFilter, structure matching is no longer the dominant cost of filtering.
As a result we do not believe that trading flexibility for any further improvements in
structure matching speed is worthwhile.

A number of event-based publish/subscribe systems have been developed. Among
them, Xlyeme [Nguyen et al. 2001] tackles the problem of finding the complex events
associated with monitoring queries that are satisfied by incoming documents. It uses a
hierarchy of hash tables to index sets of atomic events that compose more complex
events. Le Subscribe [Fabret et al. 2001] proposes a predicate model to specify
subscriptions. To match incoming events (i.e. a set of attribute value pairs) with
predicates efficiently, all predicates are indexed, and all subscriptions are clustered by
their common conjunctive predicates. A cost model and algorithms are developed to find
good clustering structure and to dynamically optimize it. A common feature of these
systems is the use of restricted profile languages and data structures tailored to the
complexity of the languages in order to achieve high system throughput. WebFilter
[Pereira et al. 2001] demonstrates a system that processes XML encoded events, by
translating XML data in a parsing step to events that consist of set of attribute value pairs
and then using techniques developed in Le Subscribe. Details on structure matching are
not provided in this paper.

Finally, DataGuides [Nestorov et al. 1999; Goldman and Widom 1997] are structural
summaries of an XML source database that can be used to browse database structure,
formulate queries, and enable query optimization. Creating a DataGuide from a source
database has been proved to be equivalent to converting an NFA to a DFA. Our NFA-
based work differs in that it is intended to represent path expressions rather than data and
that it must faithfully encode all of the expressions in their entirety, rather than just
summarizing them. As a result, the implementations of the YFilter NFA and DataGuides
differ significantly.

8. CONCLUSIONS

In this paper, we studied integrated approaches to handling both structure-based and
content-based filtering of XML documents. We first described XFilter, an FSM-based
approach using event-based parsing and a dynamic index, which represents what is to our
knowledge, the first such approach in the literature. Next, we described YFilter, an NFA-
based structure matching engine that provides flexibility and excellent performance by
exploiting overlap of path expressions. Using YFilter, path matching is no longer the
dominant cost for XML filtering.

We then investigated two alternative techniques for integrating value-based predicate
matching with the NFA. Experimental results comparing these techniques provide a key

insight arising from our study, namely, that structure-based matching and content-based
matching cannot be considered in isolation when designing a high-performance XML
filtering system. In particular, our experiments demonstrated that contrary to traditional
database intuition, pushing even simple selections down through the combined query plan
may not be effective, and in fact, can be quite detrimental to performance due to the way
that sharing is exploited in the NFA, and due to certain properties of XML documents
and XPath queries. Finally, we discussed how YFilter has been extended to support
nested path processing and demonstrated that our solution built on shared path sharing is
efficient even for large numbers of queries containing multiple nested paths each.

The results presented here, as well as other efforts cited in the related work, have
demonstrated that XML Filtering is a rich source of research issues. Furthermore, as
XML continues to gain acceptance in technologies such as Web Services, Event-based
Processing, and Application Integration, this work will be of increasing commercial
importance. As such, there are many important problems to be addressed in future work.
These include, the integration of filtering with dissemination, incorporation of more
expressive query languages such as XQuery, and ultimately, the extension of the filtering
concept into a more general notion of XML Routing in a wide-area distributed
environment. Research on all of these issues is currently underway.

ACKNOWLEDGEMENTS

We would like to thank Raymond To for helping us develop YFilter, and Philip Hwang
for helping provide insight into XML parsing. We would also like to thank Sirish
Chandrasekaran, Ryan Huebsch, and Sailesh Krishnamurthy for valuable comments on
early drafts of this paper.

REFERENCES

AKSOY, D., ALTINEL, M., BOSE, R., CETINTEMEL, U., FRANKLIN, M.J., WANG, J., AND ZDONIK, S.B. 1998.
Research in data broadcast and dissemination. In Proc. of the 1st International. Conference on Advanced
Multimedia Content Processing. Springer, Berlin, Germany, 194-207.

ALTINEL, M., AKSOY, D., BABY, T., FRANKLIN, M.J., SHAPIRO, W., AND ZDONIK, S.B. 1999. DBIS-Toolkit:
Adaptable middleware for large scale data delivery. In Proc. of SIGMOD 1999. ACM Press, New York, NY,
USA, 544-546.

ALTINEL, M., AND FRANKLIN, M.J. 2000. Efficient filtering of XML documents for selective dissemination of
information. In Proc. of VLDB 2000. Morgan Kaufmann, San Francisco, CA, USA, 53-64.

Apache XML project. 1999. Xerces Java parser 1.2.3 Release. http://xml.apache.org/xerces-j/index.html.
BELKIN, N.J., AND CROFT, B.W. 1992. Information filtering and information retrieval: Two sides of the same

coin? Communications of the ACM, 35, 12, 29-38.
BRUNO, N., GRAVANO, L., KOUDAS, N., AND SRIVASTAVA, D. 2003. Navigation- vs. index-based XML multi-

query processing. In Proc. of ICDE 2003. IEEE Computer Society, Los Alamitos, CA, USA.
BRUNO, N., SRIVASTAVA, D., AND KOUDAS, N. 2002. Holistic twig joins: Optimal XML pattern matching. In

Proc of SIGMOD 2002. ACM Press, New York, NY, USA, 310-321.
BUSSE, R., CAREY, M., FLORESCU, D., KERSTEN, M., MANOLESCU, I., SCHMIDT, A., AND WAAS, F. 2001.

Xmark: An XML benchmark project. http://monetdb.cwi.nl/xml/index.html.
CETINTEMEL, U., FRANKLIN, M.J., AND GILES, C.L. 2000. Self-adaptive user profiles for large scale data

delivery. In Proc. of ICDE 2000. IEEE Computer Society, Los Alamitos, CA, USA, 622-633.
CHAMBERLIN, D., FANKHAUSER, P., FLORESCU, D., MARCHIORI, M., AND ROBIE, J. 2002. XML query use

cases. W3C Working Draft. http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430.
CHAN, C., FELBER, P., GAROFALAKIS, M., and RASTOGI, R. 2002. Efficient fi ltering of XML documents with

XPath expressions. In Proc. of ICDE 2002. IEEE Computer Society, Los Alamitos, CA, USA, 235-244.

CHEN, J., DEWITT, D.J., AND NAUGHTON, J.F. 2002. Design and evaluation of alternative selection placement
strategies in optimizing continuous queries. In Proc. of ICDE 2002. IEEE Computer Society, Los Alamitos,
CA, USA, 345-356.

CHEN, J., DEWITT, D.J., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A scalable continuous query system for
Internet databases. In Proc. of SIGMOD 2000. ACM Press, New York, NY, USA, 379-390.

CLARK, J. 1999. XSL transformations (XSLT) - version 1.0. http://www.w3.org/TR/xslt.
CLARK, J., AND DEROSE, S. 1999. XML path language (XPath) - version 1.0. http://www.w3.org/TR/xpath.
COVER, R. 1999. The SGML/XML Web Page. http://www.w3.org/TR/xslt.
DEROSE, S., DANIEL Jr., R., AND MALER, E. 1999. XML pointer language (XPointer).

http://www.w3.org/TR/WD-xptr.
DEUTSH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1998. XML-QL: A query language for

XML. http://www.w3.org/TR/NOTE-xml-ql.
DIAO, Y., FISCHER, P., FRANKLIN, M.J., AND TO, R. 2002. YFilter: Efficient and scalable filtering of XML

documents. In Proc. of ICDE 2002. IEEE Computer Society, Los Alamitos, CA, USA, 341.
DIAZ, A.L., AND LOVELL, D. 1999. XML generator. http://www.alphaworks.ibm.com/tech/xmlgenerator.
FABRET, F., JACOBSEN, H-A., LLIRBAT, F., PEREIRA, J., ROSS, K.A., AND SHASHA, D. 2001. Filtering

algorithms and implementation for very fast publish/subscribe systems. In Proc. of SIGMOD 2001. ACM
Press, New York, NY, USA, 115-126.

FOLTZ, P.W., AND DUMAIS, S.T. 1992. Personalized information delivery: An analysis of information filtering
methods. Communications of the ACM, 35, 12, 51-60.

FRANKLIN, M.J., AND ZDONIK, S. 1998. “Data in your face” : Push technology in perspective. In Proc. of
SIGMOD 1998. ACM Press, New York, NY, USA, 156-159.

GOLDMAN, R., AND WIDOM, J. 1997. DataGuides: Enabling query formulation and optimization in
semistructured databases. In Proc. of VLDB 1997. Morgan Kaufmann, San Francisco, CA, USA, 436-445.

GREEN, T.J., M IKLAU, G., ONIZUKA, M., AND SUCIU, D. 2003. Processing XML streams with deterministic
automata. In Proc. of ICDT 2003. Springer, Berlin, Germany, 173-189.

HANSON, E.N., CARNES, C., HUANG, L., KONYALA, M., NORONHA, L., PARTHASARATHY, S., PARK, J.B., AND
VERNON, A. 1999. Scalable trigger processing. In Proc. of ICDE 1999. IEEE Computer Society, Los
Alamitos, CA, USA, 266-275.

HOPCROFT, J. E., AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages and Computation.
Addition-Wesley Pub. Co., Boston, MA.

HORS, A.L., HICOL, G., WOOD, L., CHAMPION, M., AND BYRNE, S. 2001. Document object model core (level
2). http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html

IVES, Z., LEVY, A., AND WELD, D. 2000. Efficient evaluation of regular path expressions on streaming XML
data. Technical Report, University of Washington, Seattle, WA.

KAY, M.. 2001. Saxon: the XSLT processor. http://users.iclway.co.uk/mhkay/saxon/.
LAKSHMANAN, L.V.S., AND Parthasarathy, S. 2002. On efficient matching of streaming XML documents and

queries. In Proc. of EDBT 2002. Springer, Berlin, Germany, 142-160.
LEY, M. 2001. DBLP DTD. http://www.acm.org/sigmod/dblp/db/about/dblp.dtd.
LIU, L., PU, C., AND TANG, W. 1999. Continual queries for Internet scale event-driven information delivery.

Special Issue on Web Technologies, IEEE TKDE, 11, 4, 610-628.
MADDEN, S., SHAH, M., HELLERSTEIN, J.M., AND RAMAN, V. 2002. Continuously adaptive continuous queries

over streams. In Proc. of SIGMOD 2002. ACM Press, New York, NY, USA, 49-60.
NESTOROV, S., ULLMAN, J.D., WIENER, J.L., AND CHAWATHE, S.S. 1997. Representative objects: Concise

representations of semistrctured hierarchical data. In Proc. of ICDE 1997. IEEE Computer Society, Los
Alamitos, CA, USA, 79-90.

NGUYEN, B., ABITEBOUL, S., COBENA, G., AND PREDA, M. 2001. Monitoring XML data on the Web. In Proc.
of SIGMOD 2001. ACM Press, New York, NY, USA, 437-448.

OZEN, B., KILIC, O., ALTINEL, M., AND DOGAC, A. 2001. Highly personalized information delivery to mobile
clients. In Proc. of the 2nd ACM International Workshop on Data Engineering for Wireless and Mobile
Access. ACM Press, New York, NY, USA, 35-41.

PEREIRA, J., FABRET, F., LLIRBAT, F., AND JACOBSEN, H-A. 2001. WebFilter: A high-throughput XML-based
publish and subscribe System. In Prof. of VLDB 2001. Morgan Kaufmann, San Francisco, CA, USA, 723-
724.

SALTON, G. 1989. Automatic Text Processing. Addison-Wesley Co., Boston, MA.
Sax Project Organization. 2001. SAX: Simple API for XML. http://www. saxproject.org.
SCHREIER, U., PIRAHESH, H., AGRAWAL, R., AND MOHAN, C. 1991. Alert: An architecture for transforming a

passive DBMS into an active DBMS. In Proc. of VLDB 1991. Morgan Kaufmann, San Francisco, CA, USA,
469-478.

STONEBRAKER, M., JHINGRAN, A., GOH, J., AND POTAMIANOS, S. 1990. On rules, procedures, caching and
views in data base systems. In Proc. of SIGMOD 1990. ACM Press, New York, NY, USA, 281-290.

Sun Microsystems, Inc. 2001. Java XML pack. Winter 01 update release. http://java.sun.com/xml/
downloads/javaxmlpack.html.

TERRY, D.B., GOLDBERG, D., NICHOLS, D.A., AND OKI, B.M. 1992. Continuous queries over append-only
databases. In Proc. of SIGMO 1992. ACM Press, New York, NY, USA, 321-330.

WATSON, B.W. 1997. Practical optimization for automata. In Proc. of the 2nd International Workshop on
Implementing Automata. Springer, Berlin, Germany, 232-240.

WIDOM, J., AND FINKLESTEIN, S.J. 1990. Set-oriented production rules in relational database systems. In Proc.
of SIGMOD 1990. ACM Press, New York, NY, USA, 259-270.

Wutka. 2000. DTD parser. http://www.wutka.com/dtdparser.html.
YAN, T.W., AND GARCIA-MOLINA, H. 1994. Index structures for selective dissemination of information under

boolean model. ACM TODS, 19, 2, 332-364.
YAN, T.W., AND GARCIA-MOLINA, H. 1999. The SIFT information dissemination system. ACM TODS, 24, 4,

529-565.

APPENDIX A: DATA STRUCTURES AND PSEUDO-CODE FOR INLINE

A.1 Data Structures for Bookkeeping

QueryEvaluation[] queryEvalList;

class QueryEvaluation {

 boolean isMatched;

 PredicateEvaluation[] predEvalList;

}

class PredicateEvaluation {

 int stepNumber;

 Set elementIdentifiers;

}

A.2 Pseudo-code

QueryEvaluation[] queryEvalList;

Stack elementIDStack, truePredicateStatck;

Start document handler:

 if queryEvalList has not been allocated

 allocate queryEvalList;

 else

 clear all data structures in queryEvalList;

Start element handler:

 assign an element identifier elementID to this element Element;

 for each active state

 apply rule (1) to (4) to find target states (see section 3.2.4);

 endfor

 List truePredicates;

 for each target state

(1) for each predicate P in the local predicate table of the state

 retrieve the P.QueryIDth element queryEval from queryEvalList;

 evaluate P using Element only if queryEval.isMatched is false;

 if P is evaluated to true

 retrieve the P.PredicateIDth element predEval from queryEval;

 add elementID to the set elementIdentifiers in predEval;

 add the pair (P.QueryID, P.PredicateID) to truePredicates;

 endif

 endfor

 if this target state is an accepting state

(2) for each query Q whose identifier is in the ID list at the state

 if all predicates contained in Q have been satisfied

 intersect element identifier sets of all predicates that have the same step number;

 if the intersection is non-empty for every level

 queryEval.isMatched = true;

 endif

 endif

 endfor

 endif

 endfor

 push elementID to elementIDStack;

 push truePredicates to truePredicateStack;

End element handler:

 pop the top element truePredicates from truePredicatStack;

 pop the top element elementID from elementIDStack;

 for each pair (P.QueryID, P.PredicateID) of predicate P in the list truePredicates

(3) retrieve the P.QueryIDth element queryEval from queryEvalList;

 if queryEval.isMatched is false

 retrieve the P.PredicateIDth element predEval from queryEval;

 remove elementID from the set elementIdentifiers in predEval;

 endif

 endfor

Note: (1) evaluation of a predicate; (2) final evaluation of a query; (3) undo for a predicate

APPENDEX B: DATA STRUCTURES AND PSEUDO-CODE FOR SP

A.1 Data Structures for Bookkeeping

Boolean[] queryEvalList;

A.2 Pseudo-code

Boolean[] queryEvalList;

Start document handler:

 if queryEvalList has not been allocated

 allocate queryEvalList;

 else

 clear all data structures in queryEvalList;

 endif

Start element handler:

 assign an element identifier elementID to this element Element;

 for each active state

 apply rule (1) to (4) to find target states (see section 3.2.5);

 retrieve sequences of elements for the active state by following pointers from the state in
the run time stack;

 append Element to the end of the sequences to obtain new sequences for all target states;

 for each target state that is an accepting state

 for each sequence of elements

 for each query Q whose identifier is in the ID list at the state

 (1) retrieve the Q.QueryIDth element of queryEvalList;

 if Q is not matched

 for each predicate P of Q

 retrieve an element from the sequence using P’ s step number and evaluate P;

 if evaluation fails

 break;

 endif

 endfor

 if all pedicates are satisfied

 set the Q.QueryIDth element of queryEvalList to true;

 endif

 endif

 endfor

 endfor

 endfor

Note: (1) selection performed by SP.

Received July 2002; revised April 2003; accepted August 2003.

