
YFilter: Efficient and Scalable Filtering of XML Documents

Yanlei Diao, Peter Fischer, Michael J. Franklin, Raymond To
Computer Science Division, EECS
University of California, Berkeley

{diaoyl, fischerp, franklin}@cs.berkeley.edu, raygto@uclink4.berkeley.edu

Abstract
Soon, much of the data exchanged over the Internet

will be encoded in XML, allowing for sophisticated
filtering and content-based routing. We have built a
filtering engine called YFilter, which filters streaming
XML documents according to XQuery or XPath queries
that involve both path expressions and predicates. Unlike
previous work, YFilter uses a novel NFA-based execution
model. In this demonstration, we present the structures
and algorithms underlying YFilter, and show its efficiency
and scalability under various workloads.

1 Overview

Recently, there has been growing interest in the
filtering and routing of data based on user preferences. In
an XML filtering system, continuously arriving XML
documents are routed to users according to subscriptions
specified as queries. XML allows the encoding of
semantic and structural information that can improve
delivery accuracy. For large systems, filtering efficiency
and scalability are of paramount concern.

Filtering systems have traditionally been developed
using Information Retrieval techniques based on both the
Boolean and the “bag-of-words” models. More recently
database researchers have been developing Continuous
Query systems such as NiagaraCQ [3] that provide
similar functionality using relational and XML queries. A
key optimization used in NiagaraCQ is the grouping of
similar queries to minimize redundant work. At the same
time, another project, XFilter [1], has focused on the
efficient evaluation of path expressions over streaming
XML data, using indexed Finite State Machines (FSM) to
allow many structure-based queries to be processed
simultaneously. XFilter, however, makes no attempt to
eliminate redundant processing for similar queries.

FSMs are a natural and effective way to represent and
process path expressions. Elements of a path expression
are mapped to states. A transition from an active state is
fired when an element is found in the document that
matches that transition. If an accepting state is reached,
then the document is said to satisfy the query. For large-
scale systems, it is likely that significant commonality

among user interests will exist. Thus, we have developed
an alternative approach we call YFilter, which combines
multiple queries into a single Nondeterministic Finite
Automaton (NFA). The use of a combined NFA allows a
dramatic reduction in the number of states needed to
represent the set of user queries and greatly improves
filtering performance by sharing execution work. YFilter
also extends this NFA model to efficiently handle
predicates within path expressions.

2 NFA-based Path Navigation

As in XFilter, path expressions in our system are
written in XPath. Such path expressions are composed of
a sequence of location steps. Each location step consists
of an axis, a node test and zero or more predicates. An
axis specifies the hierarchical relationship between the
nodes. A node test is typically a name test, which can be
an element name or a wildcard operator ‘*’ that matches
any element name. Predicates will be discussed shortly.

We focus on the two common axes, parent-child (‘/’)
and descendent-or-self (“//”) with name tests. Path
expressions written using this subset of XPath can be
transformed into regular expressions for which there
exists an FSM that accepts the language described by the
expression. In order to handle many queries, we construct
a combined machine that satisfies the following: 1) It
identifies the exact language defined by all path
expressions together. 2) When an accepting state is
reached, it outputs all queries that are accepted at this
state. 3) Common prefixes of the path expressions are
represented by a single FSM.

Fig. 1 shows an example of such a Non-deterministic
Finite Automaton (NFA) representing eight queries. A
circle denotes a state. Two concentric circles denote an
accepting state, marked by the IDs of accepted queries. A
directed edge represents a transition. The symbol on an
edge represents the input that triggers the transition. A
special symbol * matches any element. An edge marked
by ε represents an ε-move (i.e, an empty input transition).
Shaded circles represent states shared by queries. In the
figure, note that the common prefixes of all the queries
are shared. Note also that the NFA contains multiple
accepting states, corresponding to the accepting states of
individual queries.

When an XML document arrives to be filtered, it is
parsed with an event-based parser; each time a new
element or the end of an element is encountered, an event
is raised. The start-of-element events trigger transitions
in the query FSMs. Since the machine is an NFA, many
states can be active simultaneously. Unlike an NFA used
to identify a regular language, the filtering of XML data
requires that processing continue until all possible
accepting states have been reached. So when an “end-of-
element” event is raised the execution must backtrack to
previous states. A run-time stack structure is used to track
the active and previously processed states.

Fig. 2 shows the evolution of the contents of the stack
as an example XML document is parsed. Each state in the
stack is represented by its state ID, as shown in Fig. 1. On
receiving a start-of-element event, the execution engine
follows all matching transitions from all currently active
states. For each active state, four checks are performed.
First, if a transition marked by the incoming element
name is present, the next state is added to the set of new
active states. A transition marked by the ‘*’ symbol is
checked in the same way. Then, the state itself is added to
the set if it has a self-loop, which is represented by an
underlined state ID in Fig 2. Finally, if an ε-move is
present, the state after the ε-move is processed
immediately according to these same rules. The interested
reader is referred to [4] for the details of the NFA-based
processing of path expressions.

3 Selection

In an XPath expression, predicates can be applied to
an element’s attributes, position or data. Predicates that do
not reference other elements can be evaluated
immediately when their related element is read from the
document. Rather than modifying the NFA model to
support these predicates, we use a special Selection
operator that interacts with the NFA-based processing of
path expressions in one of two ways. First, Selection can
be performed for all predicates applied to an element right
after the NFA execution makes transitions that are driven
by the reading of this element from the document. This
approach requires predicates to be stored with their
corresponding states. Alternatively, selection can be

performed for all predicates on a path expression when
the expression is satisfied (i.e., when the NFA execution
has reached an accepting state). For the latter approach
predicates can be stored on a query-by-query basis.

4 Implementation and Demonstration

YFilter has been implemented in Java. It uses an
event-based parser provided in the Xerces toolkit [2]
supporting the SAX 1.0 interface for event-based XML
parsing. The system works as follows: Queries are bulk
loaded to build the NFA index and in-memory predicate
tables. XML documents are then continuously generated
and placed into a document queue representing streaming
data. The filtering engine takes a document at a time from
the queue, runs all queries on it, and reports all queries
satisfied by the document. Between the processing of any
two documents, the NFA index can be updated with new
or deleted queries.

In the demonstration we will show the system in
operation, with monitors depicting the system workload in
terms of the number of queries, the number of predicates
etc. as well as the performance of the system in terms of
filtering time and the cost of online updates. We will also
describe in more detail the structures and algorithms that
are key to the efficiency and scalability of YFilter.

Acknowledgements
This work has been supported in part by the National

Science Foundation under the ITR grant IIS00-86057, by
DARPA under contract #N66001-99-2-8913, and by IBM,
Microsoft, Siemens, and the UC MICRO program.

References
[1] M. Altinel, M. J. Franklin. Efficient Filtering of XML

Documents for Selective Dissemination of Information. In
VLDB Conf., Sep. 2000.

[2] Apache XML project. Xerces Java Parser 1.2.3 Release.
http://xml.apache.org/xerces-j/index.html, 1999.

[3] J. Chen et al. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In ACM SIGMOD Conf.,
May 2000.

[4] Y. Diao, M. J. Franklin. NFA-based Filtering for Efficient
and Scalable XML Routing. Technical Report, USB/CSD-
1-1159, Oct. 2001.

An XML
document
<a>

<c>
</c>

Fig. 2: An example of the NFA execution

Runtime Stack

match Q1

read

3 9 7 6

2
1

read <c>

match Q3 Q8
Q5 Q6 Q4

5 10 12
8 11 6

3 9 7 6

2

1 read <a>

2
1

initial

1

read </c>

3 9 7 6

2
1

read

2
1

read

1

Q1=/a/b
Q2=/a/c
Q3=/a/b/c
Q4=/a//b/c
Q5=/a/*/c
Q6=/a//c
Q7=/a/*/*/c
Q8=/a/b/c

Fig. 1: XPath queries and a corresponding NFA

{Q1}

{Q3, Q8}

{Q2}

{Q4}

{Q6}

{Q5}

{Q7}

c a
 c

*

c

*

ε

c
b *

c

b

c

1 2

3

4

5

6

7 8

9
10

11

12 13

