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Abstract—In this paper, we argue that database systems be augmented with an automated data exploration service that methodically
steers users through the data in a meaningful way. Such an automated system is crucial for deriving insights from complex datasets
found in many big data applications such as scientific and healthcare applications as well as for reducing the human effort of data
exploration. Towards this end, we present AIDE, an Automatic Interactive Data Exploration framework that assists users in discovering
new interesting data patterns and eliminate expensive ad-hoc exploratory queries.

AIDE relies on a seamless integration of classification algorithms and data management optimization techniques that collectively strive
to accurately learn the user interests based on his relevance feedback on strategically collected samples. We present a number of
exploration techniques as well as optimizations that minimize the number of samples presented to the user while offering interactive
performance. AIDE can deliver highly accurate query predictions for very common conjunctive queries with small user effort while,
given a reasonable number of samples, it can predict with high accuracy complex disjunctive queries. It provides interactive
performance as it limits the user wait time per iteration of exploration to less than a few seconds.

Index Terms—data exploration; data sampling;

1 INTRODUCTION

Traditional data management systems assume that when users
pose a query they a) have good knowledge of the schema, meaning
and contents of the database and b) they are certain that this
particular query is the one they wanted to pose. In short, traditional
DBMSs are designed for applications in which the users know
what they are looking for. However, as data are being collected
and stored at an unprecedented rate, we are building more dynamic
data-driven applications where this assumption is not always true.

Interactive data exploration (IDE) is one such example. In
these applications, users are trying to make sense of the under-
lying data space by experimenting with queries, backtracking on
the basis of query results and rewriting their queries aiming to
discover interesting data objects. IDE often incorporates “human-
in-the-loop” and it is fundamentally a long-running, multi-step
process with the user’s interests specified in imprecise terms.

One application of IDE can be found in the domain of
evidence-based medicine (EBM). Such applications often involve
the generation of systematic reviews, a comprehensive assessment
of the totality of evidence that addresses a well-defined question,
such as the effect on mortality of giving versus not giving drug
A within three hours of a symptom B. While a content expert
can judge whether a given clinical trial is of interest or not (e.g.,
by reviewing parameter values such as disease, patient age, etc.),
he often does not have a priori knowledge of the exact attributes
that should be used to formulate a query to collect all relevant
clinical trials. Therefore the user relies on an ad hoc process
that includes three steps: 1) processing numerous selection queries
with iteratively varying selection predicates, 2) reviewing returned
objects (i.e., trials) and classifying them to relevant and irrelevant,
and 3) adjusting accordingly the selection query for the next

iteration. The goal here is to discover the selection predicates that
balances the trade-off between collecting all relevant objects and
reducing the size of returned results. These “manual” explorations
are typically labor-intensive: they may take days to weeks to
complete since users need to examine thousands of objects.

Scientific applications, such as ones analysing astrophysical
surveys (e.g., [1], [2]), also suffer from similar situations. Consider
an astronomer looking for interesting patterns over a scientific
database: they do not know what they are looking for, they only
wish to find interesting patterns; they will know that something
is interesting only after they find it. In this setting, there are no
clear indications about how the astronomers should formulate their
queries. Instead, they may want to navigate through a subspace of
the data set (e.g., a region of the sky) to find objects of interest,
or may want to see a few samples, provide yes/no feedback, and
expect the system to find more similar objects.

To address the needs of IDE applications, we propose an
Automatic Interactive Data Exploration (AIDE) framework that
automatically discovers data relevant to her interest. Our ap-
proach unifies the three IDE steps—query formulation, query
processing and result reviewing—into a single automatic process,
significantly reducing the user’s exploration effort and the over-
all exploration time. In particular, an AIDE user engages in a
“conversation” with the system indicating her interests, while in
the background the system builds a user model that predicts data
matching these interests.

AIDE offers an iterative exploration model: in each iteration
the user is prompted to provide her feedback on a set of sample
objects as relevant or irrelevant to her exploration task. Based on
her feedback, AIDE generates the user’s exploration profile, i.e., a
user model that classifies database objects as relevant or irrelevant.
AIDE leverages this model to explore further the data space,



identify strategic sampling areas and collect new samples for the
next iteration. These samples are presented to the user and her
new feedback is incorporated into the user model. This iterative
process aims to generate a user model that identifies all relevant
objects while eliminating the misclassification of irrelevant ones.

AIDE’s model raises new challenges. First, AIDE operates on
the unlabeled space of the whole data space that the user aims
to explore. To offer effective exploration results (i.e., accurately
predict the user’s interests) it has to decide and retrieve in an
online fashion the example objects to be extracted and labeled by
the user. Second, to achieve desirable interactive experience for
the user, AIDE needs not only to provide accurate results, but also
to minimize the number of samples presented to the user (which
determines the amount of user effort) as well as to reduce the
sampling and space exploration overhead (which determines the
user’s wait time in each iteration).

These challenges cannot be addressed by existing machine
learning techniques. Classification algorithms (e.g., [3]) can build
the user model and the information retrieval community offers
solutions on incrementally incorporating relevance feedback in
these models (e.g., [4]). However, these approaches operate under
the assumption that the sample set shown to the user is either
known a priori or, in the case of online classification, it is provided
incrementally by a different party. In other words, classification
algorithms do not deal with which data samples to show to the
user, which is one of the main research challenges for AIDE.

Active learning systems [5] also extract unlabeled samples to
be labeled by a user and the goal is to achieve high accuracy
using as few labeled samples as possible. In particular, pool-
based sampling techniques selectively draw samples from a large
pool of unlabeled data. However, these solutions exhaustively
examine all unlabeled objects in the pool in order to identify the
best samples to show to the user based on some informativeness
measure [6]. Therefore, they implicitly assume negligible sample
acquisition costs and hence cannot offer interactive performance
on big data sets as expected by IDE applications. In either case,
model learning and sample acquisition are decoupled, with the
active learning algorithms not addressing the challenge of how to
minimize the cost of sample acquisition.

To address the above challenges, AIDE closely integrates the
active learning paradigm and sample acquisition through a set of
exploration heuristics. These heuristics leverage the classification
properties of decision tree learning to identify promising data
exploration areas from which new samples are extracted, as well
as to minimize the number of samples shown to the user. Our
techniques are designed to predict linear patterns of user interests,
i.e., we assume relevant objects are clustered in multi-dimensional
hyper-rectangles. These interests can be expressed as range queries
with disjunctive and/or conjunctive predicates.

This paper extends our previous our previous work on auto-
matic data exploration [7], [8]. Specifically, we extended AIDE
with a number of performance optimizations that are designed to
reduce the total exploration overhead. Specifically, we introduce:
(a) a skew-aware exploration technique that deals with both
uniform and skewed data spaces as well as user interests that
lie on either the sparse or dense parts of the distribution, (b) a
probabilistic sampling strategy for selecting the most informative
sample to present to the user; the strategy is designed to reduce the
user’s exploration effort and (c) an extended relevance feedback
model that allows users to annotate “similar” (rather than only
relevant/irrelevant) samples, allowing us to further reduce the

2

total exploration time. We also include a new set of experimental
results that demonstrate the effectiveness and efficiency of our new
exploration techniques.

The specific contributions of this work are the following:

1) We introduce AIDE, a novel, automatic data exploration
framework, that navigates the user throughout the data
space he wishes to explore. AIDE relies on the user’s
feedback on example objects to generate a user model
that predicts data relevant to the user. It employs a unique
combination of machine learning, data exploration, and
sample acquisition techniques to deliver highly accurate
predictions of linear patterns of user interests with in-
teractive performance. Our data exploration techniques
leverage the properties of classification models to identify
single objects of interest, expand them to more accurate
areas of interests, and progressively refine the prediction
of these areas. Our techniques address the trade-off be-
tween quality of results (i.e., accuracy) and efficiency
(i.e., the total exploration time which includes the total
sample reviewing time and wait time by the user).

2)  We introduce new optimizations that address the presence
of skew in the underlying exploration space as well as
a novel probabilistic approach for identifying the most
informative sample set to show to the user. We also
include an extended feedback model based on which
the user can also indicate similar but not necessarily
relevant objects. This new model allows AIDE to focus
its exploration on on certain promising domain ranges
reducing significantly the user’s labeling effort.

3) We evaluated AIDE using the SDSS database [2] and a
user study. When compared with traditional active learn-
ing and passive learning (i.e., random sampling), AIDE
and its novel optimizations are strictly more effective
and efficient. AIDE can predict common conjunctive
queries with a small number of samples, while given an
acceptable number of labeled samples it predicts highly
complex disjunctive queries with high accuracy. It offers
interactive performance as the user wait time per iteration
is less than a few seconds in average. Our user study
revealed that AIDE can reduce the user’s labeling effort
by up 87%, with an average of 66% reduction. When
including the sample reviewing time, it reduced the total
exploration time by 47% in average.

The rest of the paper is organized as follows. Section 2 outlines
the AIDE framework and Section 3 describes the phases of our
data exploration approach. Section 4 discusses the new perfor-
mance optimizations we introduce in AIDE. Section 5 presents
our experimental results. Section 6 discusses the related work and
we conclude in Section 7.

2 AIDE FRAMEWORK OVERVIEW

In this section we introduce our system model, the classification
algorithms we use and we define our exploration problem.

2.1 System Model

The workflow of our exploration framework is depicted in Fig-
ure 1. AIDE presents to the user sample database objects and re-
quests her feedback on their relevance to her exploration task, i.e.,
characterize them as relevant or not. For example, in the domain
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Fig. 1: Automated Interactive Data Exploration Framework.

of evidence-based medicine, users are shown sample clinical trials
and they are asked to review their abstract and their attributes
(e.g., year, outcome, patience age, medication dosage, etc) and
label each sample trial as interesting or not. AIDE allows also
the user to annotate samples that are similar (in some attribute)
but not match exactly her interest, by marking them as “similar”
samples. Finally, the user can modify her feedback on previously
seen samples, however this could prolong the exploration process.

The iterative steering process starts when the user provides her
feedback by labeling samples are relevant or not. The relevant and
irrelevant samples are used to train a binary classification model
that characterizes the user’s interest, e.g., it predicts which clinical
trials are relevant to the user based on the feedback collected so
far (Data Classification) '. This model may use any subset of the
object’s attributes to characterize user interests. However, domain
experts could leverage their domain knowledge to restrict the
attribute set on which the exploration is performed. For instance,
one could request an exploration only on the attributes dosage and
age. In this case, relevant trials will be characterized on a subset
of these attributes (e.g., relevant trials have dosage >45mg).

In each iteration, more samples (e.g., records of clinical trials)
are extracted and presented to the user for feedback. AIDE
leverages the current user model as well as the user’s feedback
so far to identify promising sampling areas (Space Exploration)
and retrieve the next sample set from the database (Sample
Extraction). New labeled objects are incorporated with the already
labeled sample set and a new classification model is built. The
steering process is completed when the user terminates the process
explicitly, e.g., when reaching a satisfactory set of relevant objects
or when she does not wish to label more samples. Optionally,
AIDE “translates” the classification model into a query expression
(Query Formulation). This query will retrieve objects character-
ized as relevant by the user model (Data Extraction Query).

AIDE strives to converge to a model that captures the user
interest, i.e., eliminating irrelevant objects while identifying a
large fraction of relevant ones. Each round refines the user model
by exploring further the data space. The user decides on the
effort he is willing to invest (i.e., number of samples he labels)
while AIDE leverages his feedback to strategically sample the
exploration space, i.e., collect samples that improve the accuracy
of the classification model. The more effort invested in this
iterative process, the more effective the user model will be.

2.2 Data Classification & Query Formulation
AIDE relies on decision tree classifiers to identify linear pat-
terns of user interests, i.e., relevant objects clustered in multi-

1. ”’Similar” samples are not included in the training of the user model. In
Section 4.3 we discuss in detail how we leverage these samples.
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Fig. 2: An example decision tree.

dimensional hyper-rectangles. Decision tree learning [3] produces
classification models that predict the class of an unclassified object
based on labeled training data. The major advantage of decision
trees is that they provide easy to interpret models that clearly
describe the features characterizing each data class. Furthermore,
they perform well with large data and the decision conditions of
the model can be easily translated to simple boolean expressions.
This feature is important since it allows us to map decision trees
to queries that retrieve the relevant data objects.

Finally, decision trees can handle both numerical and categori-
cal data. This allows AIDE to operate on both data types assuming
a distance function is provided to calculate the similarity between
two data objects. Measuring the similarity between two objects
is a requirement of the space exploration step. AIDE treats the
similarity computation as an orthogonal step and can make use of
any distance measure. For continuous data sets (e.g., numerical),
the Euclidean distance can be used. Computing similarity between
categorical data is more challenging because there is no specific
ordering between categorical values. However, various similarity
measures have been proposed for categorical data, and AIDE can
be extended in a straightforward way to incorporate them.

Query Formulation Let us assume a decision tree classifier
that predicts relevant and irrelevant clinical trials objects based
on the attributes age and dosage (Figure 2). This tree provides
predicates that characterize the relevant class and predicates that
describe the irrelevant class. In Figure 2, the relevant class is
described by the predicates (age < 20A10 < dosage < 15) and
(20 < age < 40 A 0 < dosage < 10), while the irrelevant class
is characterized by the predicates (age < 20 Adosage < 10) and
(20 < age < 40 A dosage > 10) (here we ignore the predicates
that refer to values outside attribute domains, such as age > 40,
age < 0, dosage < 0 and dosage > 15). Given the decision tree
in Figure 2 it is straightforward to formulate the extraction query
for the relevant objects (select * from table where (age < 20 and
dosage >10 and dosage < 15) or (age > 20 and age < 40 and
dosage > 0 and dosage > 10)).

2.3 Problem Definition

Given a database schema D, let us assume the user has decided to
focus his exploration on d attributes, where these d attributes may
include both attributes relevant and those irrelevant to the final
query that represents the true user interest. Each exploration task
is then performed in a d-dimensional space of T" tuples where each
tuple represents an object characterized by d attributes. For a given
user, our exploration space is divided to the relevant object set T
and irrelevant set 7™". Since the user’s interests are unknown to
AIDE, the sets T and I"™" are also unknown in advance.



AIDE aims to generate a model that predicts these two sets,
i.e., classifies a tuple in 7" as relevant or irrelevant. To achieve
that, it iteratively trains a decision tree classifier. Specifically,
in each iteration ¢, a sample tuple set S; C T is shown to the
user and his relevance feedback assigns these samples to two data
classes, the relevant object class D™ C T, and the irrelevant one,
D" C T"". Based on the samples assigned to these classes up
to the i-th iteration, a new decision tree classifier C; is generated.
This classifier corresponds to a predicate set P} |J P;*", where the
predicates P characterize the relevant class and predicates P]*"
describe the irrelevant one.

We measure AIDE’s effectiveness (aka accuracy of a classifi-
cation model) by evaluating the F'-measure, the harmonic mean
between precision and recall.> Our goal is to maximize the F-
measure of the final decision tree C on the total data space
T, defined as: F(T) = 2xprecisiontixreciith  The perfect
precision value of 1.0 means that every object characterized as
relevant by the decision tree is indeed relevant, while a good recall
ensures that our final query can retrieve a good percentage of the
relevant to the user objects.

3 SPACE EXPLORATION TECHNIQUES

Our main research focus is on optimizing the effectiveness of
the exploration (i.e., the accuracy of the final user model) while
offering interactive experience to the user. To address that AIDE
strives to improve on a number of efficiency factors, including the
number of samples presented to the user and the number of sample
extraction queries processed in the backend. In this section, we
introduce our main exploration heuristics that tackle these goals.
AIDE assumes that user interests are captured by range
queries, i.e., relevant objects are clustered in one or more areas in
the data space. Therefore, our goal is to generate a user model that
predicts relevant areas. The user model can then be translated to a
range query that selects either a single multi-dimensional relevant
area (conjunctive query) or multiple ones (disjunctive query).
AIDE incorporates three exploration phases. First, we focus
on collecting samples from yet unexplored areas and identifying
single relevant objects (Relevant Object Discovery). Next, we
strive to leverage single relevant objects to generate a user model
that identifies relevant areas (Misclassified Exploitation). Finally,
given a set of discovered relevant areas, we gradually refine their
boundaries (Boundary Exploitation). In each iteration i, these
three phases define the new sample set we will present to the user.
Specifically, if 77, 7., and T} samples will be selected by the
object discovery, the misclassified and the boundary exploitation
phase, then the user is presented with S; = T3j+17,, + 7T} samples.
Our three exploration phases are designed to collectively
increase the accuracy of the exploration results. Given a set of
relevant objects from the object discovery step, the misclassified
exploitation increases the number of relevant samples in our
training set while reducing the misclassified objects (specifically
false negatives). Hence, this step improves both the recall and
the precision parameters of the F'-measure metric. The boundary
exploitation further refines the characterization of the already
discovered relevant areas. Therefore, it discovers more relevant

2. Here, if tp are the true positives results of the classifier (i.e., correct clas-
sifications as relevant), fp are the false positives (i.e., irrelevant data classified
as relevant) and fn are the false negatives (i.e., relevant data classified as

irrelevant), we define the precision of our classifier as precision = tpi—pfp

. — tp
and the recall as recall = o oo
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objects and eliminates misclassified ones, leading also to higher
recall and precision. Finally, similarly to general active learning
algorithms, AIDE does not provide theoretical guarantees on the
number of required labeled samples since these depend on the
distribution of the data spaces and the hypothesis of the user
models (linear separator, homogeneous separators, etc). Next, we
discuss in detail each phase. More details about these exploration
techniques can be found in [7].

3.1 Relevant Object Discovery

Our first exploration phase aims to discover relevant objects by
showing to the user samples from diverse data areas. To maximize
the coverage of the exploration space we follow a well-structured
approach that allows us to (1) ensure that the exploration space is
explored widely, (2) keep track of the already explored sub-areas,
and (3) explore different data areas in different granularity.

Our approach operates on a set of hierarchical exploration
grids. Given an exploration task on d attributes, we define the
exploration space to be the d-dimensional data area defined by
the domain of these attributes. AIDE creates off-line a set of grids
and each grid divides the exploration space into d-dimensional
equi-width cells. We refer to each grid as an exploration level and
each level has a different granularity, i.e., cells of different width.
The lower the exploration level the more fine-grained the grid cells
(i.e., smaller cells) it includes and therefore moving between levels
allows us to “zoom in/out” into specific areas as needed.

Exploration Level Construction To generate an exploration
level on a d-dimensional exploration space we divide each normal-
ized attribute domain® into width ranges that cover § percentage of
the normalized domain, effectively creating (100/5)¢ grid cells.
The § parameter defines the granularity of the specific exploration
level. A lower number leads to more grid cells of smaller width
per dimension. Each cell in our grid covers a certain range of
attribute values for each of the d exploration attributes. Therefore,
each cell includes a set of unique attribute value combinations and
it includes the data objects that match these attribute values.

Discovery Phase Our exploration starts at the highest explo-
ration level 7 where 6 = 100 and includes a single grid cell.
At each level it retrieves one random object from each non-empty
cell. In the next iteration it samples the lower level ¢ = ¢+ 1 where
§/2% until the user terminates the exploration. If no relevant object
is retrieved from one cell, we can safely infer that the whole grid
cell is not included in any relevant area. However, sub-areas of the
grid could partially overlap with some relevant areas. By moving
to the a lower exploration level, we “zoom-in” into this grid cell
and increase the probability of discovering a relevant object.

3.2 Misclassified Samples Exploitation

While the object discovery phase bootstraps the discovery of
relevant objects, it extracts at most one object of interest in each
sampling area explored. In order to offer acceptable accuracy,
decision tree classifiers require a higher number of samples
from the relevant class. AIDE employs the misclassified samples
exploitation phase which improves the accuracy our predictions
by increasing the number of relevant objects in our training set.
Misclassified objects can be categorized to: (i) false positives,
i.e., objects that are categorized as relevant by the classifier but

3. We normalize each domain to be between [0,100]. This allow us to reason
about the distance between values uniformly across domains. Operating on
actual domains will not affect the design of our framework or our results.
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labeled as irrelevant by the user and (ii) false negatives, i.e.,
objects labeled as relevant but categorized as irrelevant by the
classifier. False positives are less common because the classifica-
tions rules of decision trees aim to maximize the homogeneity of
their predicted relevant and irrelevant areas [3]. Practically, this
implies that the classifier defines the relevant areas such as the
relevant samples they include are maximized while minimizing
the irrelevant ones. In fact, most false positives are due to wrongly
predicted boundaries of these areas. Figure 3 shows examples of
false positives around a predicted relevant area. Elimination of
these misclassified samples will be addressed by the boundary
exploitation phase (Section 3.3).

False negatives on the other hand are objects of interest that
belong in an undiscovered relevant area. Examples of false nega-
tive are also shown in Figure 3. Relevant areas are undiscovered by
the decision tree due to insufficient samples from within that area.
Hence, AIDE increases the set of relevant samples by collecting
more objects around false negatives.

Clustering-based Exploitation Our misclassified exploitation
phase operates under the assumption that relevant tuples will be
clustered close to each other, i.e., they typically form relevant ar-
eas. This implies that sampling around false negatives will increase
the number of relevant samples. Furthermore, false negatives that
belong in the same relevant area will be located close to each
other. Hence, AIDE generates clusters of misclassified objects and
defines a new sampling area around each cluster. Specifically,
it creates clusters using the k-means algorithm [3] and defines
one sampling area per cluster. An example of a cluster of false
negatives is shown in Figure 3.

The main challenge in this approach is identifying the number
of clusters we need to create. Ideally, we would like this number
to match the number of relevant areas we have “hit” so far,
i.e., the number of relevant areas from within which we have
collected at least one object. We argue that the number of
relevant objects created by the object discovery phase is a strong
indicator of the number of relevant areas we have already “hit”.
The object discovery phase identifies objects of interest that belong
to different areas or the same relevant area. In the former case,
our indicator offers correct information. In the latter case, our
indicator will lead us to create more clusters than the already
“hit” relevant areas. However, since these clusters belong in the
same relevant area they are typically close to each other and
therefore the decision tree classifier eventually “merges” them and
converges to an accurate number of relevant areas.

In each iteration, the algorithm sets k to be the overall number
of relevant objects discovered in the object discovery phase. Since
our goal is to reduce the number of sampling areas (and therefore
the number of sample extraction queries), we run the clustering-
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based exploitation only if k is less than the number of false
negatives. Specifically, we collect samples within a distance y;
from the center of each cluster at each dimension. If no cluster
is created, we sample within distance y; at each dimension from
each false negative. In either case we retrieve f random samples
within the sampling area. The f value should be picked to ensure
the relative proportion of relevant and irrelevant samples allows
the classifier to identify the relevant areas with as few exploration
rounds as possible. We observed that a relative proportion of 1:10
of relevant vs irrelevant samples is sufficient. Since the number of
irrelevant samples depend on the size of the relevant area, one can
use an adaptive approach and set the f value in each iteration to
be the 1/10 of the number of irrelevant samples already collected.
The parameter y; defines the sampling area and affects the
number of relevant samples we collect around each misclassified
object. Setting y; to a value that maximizes the overlap of the
sampling area with the actual relevant area will allow AIDE to
collect more relevant samples and identify the relevant area with
less exploration rounds. If a cluster of misclassified is formed,
we set y; to be the distance of the farthest cluster member from
the center of the cluster in the dimension ¢. This guarantees that
we will collect mostly relevant samples. Otherwise, we initially
set y; to a small value (the same for all dimensions) and we
automatically adjust it. Specifically, if no new relevant samples
are discovered after the first sampling around a misclassified, we
conclude that the sampling area exceeds the relevant area in at
least one dimension. We then decrease y; in all dimensions and we
sample closer to the relevant sample. We repeat the process until
the relevant samples can form a cluster of misclassified samples.

3.3 Boundary Exploitation

Given a set of relevant areas identified by the decision tree clas-
sifier, our next phase aims to refine these areas by incrementally
adjusting their boundaries. This leads to better characterization of
the user’s interests, i.e., higher accuracy of our final results. In this
section, we describe our general approach.

AIDE represents the decision tree classifier C; generated at
the 4-th iteration as a set of hyper-rectangles in a d-dimensional
space defined by the predicates in P | J P"", where the predicates
P} characterize the relevant areas and predicates P*" describe
the irrelevant areas. We iteratively refine these predicates by
shrinking and/or expanding the boundaries of the hyper-rectangles.
Figure 4 shows the rectangles for the classifier in Figure 2. If our
classification is based on d attributes (d = 2 in our example)
then a d-dimensional area defined by p € P, will include objects
classified as relevant (e.g., areas A and D in Figure 4). Similarly,
objects in an area defined by p € P;'" are classified as irrelevant
(e.g., areas B and C in Figure 4).

AIDE eliminates irrelevant attributes from the decision tree
classifier by domain sampling around the boundaries. Specifically,
while we shrink/expand one dimension of a relevant area we
collect random samples over the whole domain of the remain-
ing dimensions. Figure 4 demonstrates our technique: while the
samples we collect are within the range 11 < dosage < 9 they
are randomly distributed on the domain of the age dimension.

Our evaluation showed that this phase has the smallest impact
on the effectiveness of our model: not discovering a relevant
area can reduce our accuracy more than a partially discovered
relevant area with imprecise boundaries. Hence, we constrain the
number of samples used during this phase to c. This allows us to
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Fig. 4: Boundary exploration for the relevant areas A and D.

better utilize the user effort as he will provide feedback mostly on
samples generated from the previous two, more effective phases.

Let us assume the decision tree has revealed k d-dimensional
relevant areas. Each area has 27 boundaries. Hence we collect
a/(kx2%) random samples within a normalized distance +x from
each boundary. This approach is applied across all the boundaries
of the relevant hyper-rectangles, allowing us to shrink/expand
each dimension of the relevant areas. The new collected samples,
once labeled by the user, will increase the recall metric: they will
discover more relevant tuples (if they exist) and eventually refine
the boundaries of the relevant areas.

The x parameter can affect the number of samples needed to
converge to the real relevant boundary. If the difference between
the predicted and real boundaries is less than x, this phase will
retrieve both relevant and irrelevant samples around the boundary
and allow the decision tree to more accurately predict the real
boundary of the relevant area. Otherwise, we will mostly collect
relevant samples since the sampling area will not overlap with the
relevant area. This will swill increase the number of samples we
will need to converge to an accurate boundary.

This phase includes a number of further optimizations, such
as detecting and avoiding sampling overlapping areas as well as
adjusting the number of samples to the convergence rate of the
user model. These optimizations improve AIDE’s effectiveness
and efficiency and they are described in detail in [7].

4 PERFORMANCE OPTIMIZATIONS

In this section we describe a set of novel optimizations we
introduced in AIDE. These include techniques that: (a) handle
exploration on skewed data distributions, (b) leverage the informa-
tiveness of samples to improve AIDE’s effectiveness, (c) extend
the expressiveness of the user feedback model to accelerate the
convergence to an accurate model and (d) reduce the size of our
exploration space to offer highly interactive times. We note that
the first three techniques are new optimizations that we added to
the original version of AIDE introduced in [7], [8].

4.1 Skew-aware Exploration

Skewed data distributions are prevalent in virtually every scientific
domain of science. In our framework, skewed data distributions
could hinder the discovery of relevant objects due to the fact that
our initial exploration step (Section 3.1) distributes the number of
collected samples evenly across the data space. In the presence
of skew, this approach slows the convergence to an accurate
user model, since dense areas will be under-sampled compared
with the sparse ones. To address this challenge we introduce a
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new sampling technique designed to operate effectively on both
uniform and skewed data distributions.

Our hybrid approach combines the grid-based exploration
with a clustering-based sampling that identifies dense areas and
increases the sampling effort within them. This clustering-based
approach operates on multiple exploration levels. For a given
exploration level with k clusters, we cluster all data in the
dataspace using the k-means algorithm [3]. By default our highest
level creates a single cluster and each level doubles the number
of clusters of its previous one. The clustering is performed offline
and these exploration levels can be used by all users.

AIDE maintains also its grid-based exploration levels as de-
scribed in Section 3.1. For uniform distributions, the cluster-based
and the grid-based sampling areas overlap. In this case, sampling
within each grid cell as described in Section 3.1 is sufficient
to discover relevant areas. However, in the presence of skewed
exploration domains most of the clusters will be concentrated to
dense areas leaving sparse areas under-sampled. Maintaining our
grid-based sampling areas allows us to sample also sparse sub-
areas and discover relevant areas of low density.

Our hybrid approach starts by sampling at the highest explo-
ration level (i.e., with one cluster and one grid cell) and moves on
at each iteration to the next lower level until the user terminates the
exploration. At each level it samples dense areas by collecting one
random sample within each cluster of that level. Next, it samples
sparse sub-areas by retrieving one random sample within specific
grid cells of the same exploration level. These are the non-empty
grid cells from within which no sample has been retrieved yet.

The user is presented with the samples collected by both
the grid-based and the cluster-based sampling areas. This hybrid
approach allows us to adjust our sample size to the skewness of
our exploration space (i.e., we collect more samples from dense
sub-areas) while it ensures that any sparse relevant areas will not
be missed (i.e., sparse sub-areas are sufficiently explored).

4.2 Probabilistic Sampling

AIDE relies on a pool-based active learning paradigm for discover-
ing user interests, i.e., samples are picked from a pool of unlabeled
data objects and presented to the user for labeling. Existing pool-
based sampling strategies [5] exhaustively examine all unlabeled
objects available, searching for the best sample to show to the
user. Clearly, such an approach cannot scale on big datasets. AIDE
eliminates this exhaustive approach by randomly sampling a small
number of strategically selected sub-areas in the exploration space.

Random sampling is highly effective. Especially in the bound-
ary exploitation step, random sampling distributes the samples
across the whole domain of our exploration attributes which
eliminates irrelevant attributes from the classifier (see Section 3.3).
However, it suffers from certain limitations. In particular, in the
misclassified exploitation phase, random sampling treats each
sample uniformly and it does not leverage the informativeness
of the samples, which could potentially lead faster to an accurate
user model. In other words, random sampling does not answer the
question “which candidate samples to show to the user in order to
reduce the total number of labeled samples needed for learning”.
To address this question, AIDE includes a new probabilistic
sampling strategy for the misclassified exploitation phase.

Active learning has proposed a number of sample selection
approaches that evaluate the informativeness of unlabeled sam-
ples [5]. In all these strategies the informativeness of a sample



(e.g., the probability of being relevant or not) is either generated
from scratch or sampled from a known distribution. In AIDE,
we do not assume any distribution of relevant/irrelevant object.
Instead we leverage the user’s relevance feedback to calculate for
each unlabeled object its informativeness, i.e., its probability of
being labeled as relevant or irrelevant (aka posterior probability).
Given this probability, we use the uncertainty sampling strategy to
identify the next set of samples to show to the user.

We now discuss how to evaluate the posterior probability
of unlabeled samples, given a set of relevant samples S+ and
irrelevant samples S™. AIDE considers each labeled sample as
basis for a nearest neighbour classifier with only one training
sample and considers each unlabeled object to be a test example
that has to be classified into the relevant or non-relevant class.
We then combine these classifiers in order to “blend” information
from all the user’s collected feedback [9], [10].

Formally, given a sample labeled as relevant by the user s,
the probability that an unlabeled sample x is relevant (r) is:

po(r|sy) o< exp(—similarity(z, s4))

where similarity(z, sy ) returns the similarity value between x
to sy. Intuitively, this formula indicates that the probability of a
sample x being relevant increases exponentially with its similarity
to the relevant sample s;. This is in accordance to our former
argument that relevant samples will be clustered together in the
exploration space and will be forming relevant areas.
Analogously, we assume that the probability of a sample x
being non-relevant (n) increases exponentially when the sample is
similar to a sample s_ labeled as non-relevant by the user:

pz(n|s—) o< exp(—similarity(xz,s_)).

To calculate the posterior probability of a sample x being rele-
vant, we combine the individual classifiers from the set of relevant
samples ST and the set of irrelevant samples S_ by using the sum
rule [10]. Specifically, given that p, (r|sy) =1 — px(n|s_),

Pe(rI(S%,67)) = 1 S cse pelrlss) +
% Zs,esf 1- px(n|87)

where « is a weighting factor we added to allow us to change
the impact of the relevant and non-relevant samples. In the above
formula if & = 1 we only take into account its distance from the
set of relevance samples to calculate its posterior probability. In
the opposite case if @ = 0 we only consider its distance from the
set of samples that are labeled as non-relevant.

Given the posterior probability of a sample, we use the
uncertainty sampling strategy to select which samples to show
to the user [5]. In uncertainty sampling the user is presented with
samples for which the classifier is the most uncertain about. When
using a binary classification model, like in our case, uncertainty
sampling selects the sample whose posterior probability of being
positive is nearest to 0.5 [5]. These are the samples that we are the
least certain about their relevance.

We apply this approach in our misclassified exploitation phase
as follows. Our sampling areas are defined around the clusters
of misclassified we have identified. Specifically, given a cluster
of size ¢ we retrieve all samples within a distance y; from the
farthest cluster member in each dimension 2. Next, we calculate
the posterior probability for each of these samples and we present
to the user f X ¢ samples whose probability is closest to 0.5,
where f (see Section 3.2 on how f can be set). Employing this
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technique allows us to discover the user’s relevant area with less
labeled samples proving the hypothesis that some samples are
more informative than others.

4.3 Similarity Feedback Model

In our previous paragraphs we introduced exploration techniques
that rely on binary relevance feedback, i.e., the user indicates
whether the sample is relevant or not to her exploration task.
However, there exist numerous scenarios where although the user
cannot decidedly classify the relevance of an object, she can
indicate whether this object is “close” to her interests. This label
can be used when the user finds relevant some characteristics of
the object but not necessarily all of them or if she is still uncertain
about the relevance of the object, which is often the case when the
user is unfamiliar with the underlying data set.

Let us consider the case of a scientist exploring an astronom-
ical dataset searching for clusters of sky objects with unusually
high brightness. Initially, the user will be able to label star objects
with high brightness values as potentially interesting. However,
her understanding of which brightness values are in fact unusual
crystallizes only after she has examined numerous sky objects
of various brightness values. After that point she can identify
unusually bright sky objects and label them as relevant. In another
example, medical professionals searching for clinical trials for
diabetes type A on 2 year old children can indicate that studies on
diabetes type B on 3 year old children are also of possible interest
to her (e.g., since the symptoms, medication and side effects for
2 and 3 year old children can be quite similar). However, she will
label as relevant only trials on 2 year olds.

In the technical level, using a binary feedback model imposes
a number of limitations to AIDE. In the previous example let’s
assume the user labels trials on 3 year old children as relevant
(since it is close to the age of the actual patient). This will lead
to a less accurate classification model (e.g., AIDE will steer the
exploration to studies on 3 year olds). While the user can modify
this label in subsequent iterations, this will slow the convergence
of the exploration to an effective classification model. On the
other hand, labeling these trials as irrelevant does not capture
the similarity of these trials to the actual relevant objects (e.g.,
studies on 3 years are closer in the exploration space to the relevant
trials than studies on 10 year olds). This similarity information, if
expressed, could lead AIDE to focus its exploration on small ages
and converge to an accurate model with less user effort.

Furthermore, the similarity feedback could help improve
AIDE’s efficiency when predicting small areas of interest. In our
current approach, the smaller the relevant area we aim to predict,
the higher user effort (i.e., number of labeled samples) is required.
This is a practical challenge especially when the relevant objects
are clustered within very small areas in the exploration space.
The smaller the relevant area the more zoom-in operations AIDE
will execute in order to discover a relevant sample from within
that area (Section 3.1). These operations result in sampling more
areas (i.e., grid cells), which increases the user effort as well as
the number of sampling queries processed. A more expressive
feedback model that allows users to indicate that a sample is
“close” to a relevant object could help us direct our zoom-in
operations to only promising sub-areas of the exploration space.
This will lead to an accurate user model with less user effort and
exploration overhead.

To address the above challenges, we extended our user feed-
back model as follows. Users can indicate that an object is “close”
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to her interests by annotating it as a “similar” sample. This label
should be used for samples with at least one attribute value that
appears interesting or similar (“close”) to a relevant value. The
user has the option to indicate these attributes, i.e., the dimension
on which she found the sample to be interesting (e.g., age range in
the above medical example, brightness in the scientific example).
The system can then utilize this extra information to expedite
the exploration process. We note that our “similarity” annotations
do not constitute a new label for our classification model, i.e.,
our decision tree classifier will continue to generate classification
rules that predict only the relevant and irrelevant classes. Next, we
describe our technique.

Extended Feedback Exploration We introduce one more
exploration phase that defines sampling areas around each “sim-
ilar” sample. Based on the definition of this label, each such
sample x is potentially “close” to a relevant object in at least
one of the exploration dimensions. AIDE by default assumes that
this similarity may be present in all dimensions unless the user
explicitly indicates for which dimensions she discovered similar
values. We refer to these as the interesting dimensions.

Let us assume a sample z annotated as “similar’ across a
set of interesting dimensions d (which are a subset of the set of
exploration dimensions). AIDE explores all possible interesting di-
mensions around x on the d dimensional space aiming to identify
relevant samples. Specifically, there are 2d possible exploration
directions around the sample, i.e., for each dimension we explore
both higher and lower values of the z’s value on this dimension.
Hence, we define 2¢ sampling areas and we select one random
sample close to the center of each area to present to the user. In
Figure 5 we show a scenario of a 2-dimensional exploration space
(age and dosage from our medical example), where the user has
indicated as interesting only a single dimension (age). Hence, we
have created 2 sampling areas around the sample  and we have
selected one sample within each of these areas.

We define the sampling areas to be located in a distance +y;
from the “similar” sample x in each interesting dimension . If
one of the new samples we present to the user is now closer to
the relevant area we can expect that the user will annotate it as
a “similar” sample too. In the opposite case, we assume that the
user will naturally be dissatisfied with these samples and will label
them as non-relevant. Eventually one of the sampling areas will
overlap with the relevant area and the user will label the sample we
extract from that area as relevant. Hence, sampling in a distance ;
on each dimension ¢ from x bring us closer or inside the relevant
area. In Figure 5, let’s assume that x is a study on 5 years olds.
If the patient’s age is 3 then samples with lower age groups (e.g.,
sample x”) will be also annotated as “similar” while samples with
higher age groups (e.g., sample n) will be irrelevant.

The effectiveness of our <; value correlates with the range
(percentage of the normalized domain) the relevant areas s; cover
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in each dimension ¢ (see Figure 5). Let us assume v; < s; for
some dimension ¢. Then in the next iteration we will sample either:
a) within the relevant range in dimension ¢ or b) closer to that
relevant range compared with the previous iteration. The first case
leads directly to the relevant area. In the second case we guarantee
that we will “hit” the relevant range in that dimension in d;/v;
iterations (i.e, after d; /; —1 “similar” sample annotations), where
d; is the distance of the sample x from the relevant range in
dimension ¢. In the opposite case where ; > s; we might move
towards the relevant area but miss the area altogether; intuitively,
our “step” is so large that we “jump” over the relevant range and
never sample within it. In this case we expect the user to label
the new samples we will present to her as non-relevant samples
since our sampling areas are fending away from the relevant area
instead of approaching it. AIDE detects this scenario and restarts
this exploration phase from the original x sample but a lower ~;
value for that dimension ¢. Using this pattern, we keep adapting
our -y; value until we “hit” a relevant sample.

4.4 Exploration Space Reduction

Our exploration techniques rely on sending a sampling query to
the back end database system for each defined sampling area. Such
queries can be particularly expensive. This is especially true for
the sampling queries generated by the boundary exploitation phase
since they need to fully scan the whole domain of all attributes.
Even when covering indexes are used to prevent access to disk,
the whole index needs to be read for every query, increasing the
sampling extraction overhead.

An interesting artifact of our exploration techniques is that
their effectiveness does not depend on the frequency of each
attribute value, or on the presence of all available tuples of our
database. This is because each phase executes random selections
within data hyper-rectangles and hence these selections do not
need to be deterministic. Hence, as long as the domain value dis-
tribution within these hyper-rectangles is roughly preserved, our
techniques are still equally effective. This observation allows to
apply our exploration on a sampled exploration space. Specifically,
we generate our sampled data sets using a simple random sampling
approach that picks each tuple with the same probability [11].
We then execute our exploration on this smaller sampled space.
Since this data space maintains the same value distribution of the
underlying attribute domains, our approach offers a similar level
of accuracy but with significantly less time overhead.

5 EXPERIMENTAL EVALUATION

Next, we present experimental results from a micro-benchmark on
the SDSS dataset [2] and from a user study.

5.1 Experimental Setup: SDSS Dataset

We implemented our framework on JVM 1.7. In our experiments
we used various Sloan Digital Sky Survey datasets (SDSS) [2]
with a size of 10GB-100GB (3 x 106 —30x 106 tuples). Our explo-
ration was performed on combinations of 16 numerical attributes
of the PhotoObjAll table with different value distributions.
This allowed us to experiment with both skewed and roughly
uniform exploration spaces. A covering index on these attributes
was always used. We used by default a 10GB dataset and a
uniform exploration space on rowc and colc, unless otherwise
noted. All experiments were run on an Intel PowerEdge R320
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Fig. 6: Figures (a), (b) show AIDE’s effectiveness, i.e., prediction accuracy. Figure (c) shows efficiency results, i.e., time overhead.

server with 32GB RAM using MySQL. We used Weka [12] for
executing the CART [3] decision tree and the k-means algorithms.
All experiments report averages of ten runs.

Target Queries AIDE “predicts” the selection predicates that
retrieve the user’s relevant objects. We focus on predicting the
results of range queries (we call them target queries) and we vary
their complexity based on: a) the number of disjunctive predicates
they include (number of relevant areas) and b) the data space
coverage of the relevant areas, i.e., the width of the range for each
attribute (relevant area size). Specifically, we categorize relevant
areas to small, medium and large. Small areas have attribute ranges
with average width of 1-3% of their normalized domain, while
medium areas have width 4-6% and large ones have 7-9%. We also
experimented with queries with a single relevant area (conjunctive
queries) as well as complex disjunctive queries that select 3, 5 and
7 relevant areas. The higher the number of relevant areas and the
smaller these areas, the more challenging is to predict them.

The diversity of our target query set is driven by the query
characteristics we observed in the SDSS sample query set [13].
Specifically, 90% of their queries select a single area, while 10%
select only 4 areas. Our experiments cover even more complex
cases of 5 and 7 areas. Furthermore, 20% of the predicates used
in SDSS queries cover 1-3.5% of their domain, 3% of them have
coverage around 13%, and 50% of the predicates have coverage
50% or higher while the median coverage is 3.4%. Our target
queries have domain coverage (i.e., the relevant area size) between
1-9% and our results demonstrate that we perform better as the
size of the areas increases. Hence, we believe that our query set
has a good coverage of queries used in real-world applications
while they also cover significantly more complex cases.

User Simulation Given a target query, we simulate the user
by executing the query to collect the exact target set of relevant
tuples. We rely on this set to label the new sample set we extract in
each iteration as relevant or irrelevant depending on whether they
are included in the target set. We also use this set to evaluate the
accuracy (F'-measure) of our final predicted extraction queries.

Evaluation Metrics We measure the accuracy of our approach
using the [F'-measure (Section 2.3) of our final data extraction
predictions and report the number of labeled samples required
to reach a given accuracy level. For all our experiments we
aim for accuracy 90% or higher unless stated otherwise. Our
efficiency metric is the system execution time (equivalent to user
wait time), which includes the time for the space exploration, data
classification, and sample extraction. We may also report the total
exploration time, which includes both the system execution time
and the sample reviewing time by the user.

System Parameters To understand the impact of the parame-
ters used by our heuristics we conducted a sensitivity study. Next
we discuss these parameters and the default values we used.

The « parameter is the total number of samples collected in
the boundary phase. Our study showed that collecting at least 2
samples for each boundary is sufficient, hence for a d-dimensional
exploration space we allocate o« = 2 X d samples for this phase.
Even if the relevant dimensions are less than d the extra sample
size will be small relatively to the number of samples collected
through the rest of the exploration phases.

The x parameter is the sample distance around each boundary
and ideally it should be set such that the sampling area overlaps
with the relevant area (see Section 3.3). We observed that our
decision trees approximate the correct boundary very well within
a few iterations. Hence, we set « to 0.06% which lead us to sample
within the relevant areas and improved our convergence rate. Note
that our study revealed that setting this value between 1% to 10%
increased the total number of samples by no more than 50 samples
when running AIDE to predict areas of small, medium or large size
with 90% accuracy. Hence, AIDE is quite robust to this parameter.

The f parameter is the number of samples we collect around
each misclassified or clusters of misclassfied object and y; is
the sampling distance on dimension ¢ around each misclassified
object. Both of them can be adjusted dynamically as their ideal
value depends on the size of the relevant area (see Section 3.2).
Based on our sensitivity study on the relevant areas we are using,
we set f to 15 samples and y; to 2% of the normalized domain.
These allows AIDE to collect the necessary relevant samples to
bootstrap our user model within fewer iterations.

5.2 Effectiveness & Efficiency of AIDE

Figure 6(a) shows AIDE’s effectiveness when we increase the
query complexity by varying the size of relevant areas from Small
to Medium and Large. Our queries have one relevant area which is
the most common range query in SSDS. Naturally, labeling more
samples improves in all cases the accuracy. As query complexity
increases the user needs to label more samples to reach a given
accuracy level. By requesting feedback on only 247 out of 3 x 106
objects AIDE predicts large relevant areas with accuracy higher
than 60% (with 386 samples we have an accuracy higher than
80%). In this case, the user needs to label only 0.4% of the total
relevant objects and 0.01% of the irrelevant objects in the database.
Furthermore, AIDE needs only 300 labeled samples to predict
medium areas with 66% accuracy and small areas with 63%
accuracy. Hence, AIDE decreases the user effort (i.e., reviewing
objects) to a few 100’s samples compared with the state-of-the-
art “manual” exploration which involves examining 1000’s of
objects (e.g., target queries return 26,817-99,671 relevant objects
depending on the size of the relevant areas).

We also increased the query complexity by varying the number
of areas from one (1) to seven (7). Figure 6(b) shows our results for
the case of large relevant areas. While AIDE can perform very well
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Fig. 7: Figures (a) and (b) compare AIDE with other exploration techniques while (c) demonstrates the effectiveness of the exploration phases.

for common conjunctive queries (i.e., with one (1) relevant area),
to accurately predict highly complex disjunctive queries more
samples are needed. However, even for highly complex queries
of seven (7) areas we get an accuracy of 60% or higher with a
reasonable number of samples (500 labeled samples).

Figure 6(c) shows the user’s wait time (seconds in average
per iteration). In all cases, high accuracy requires the extraction
of more samples which increases the exploration time. The com-
plexity of the query (size of relevant areas) also affects the time
overhead. Searching for larger relevant areas leads to more sample
extraction queries around the boundaries of these relevant areas.
However, our time overhead is acceptable: to get an accuracy of
60% the user wait time per iteration is less than 0.55 seconds for
all area sizes, while to get highly accurate predictions (90%-100%)
the user experiences 1.7 seconds wait time in average.

Comparison with Random Sampling Next, we compared
AIDE with two exploration techniques that rely on random sam-
pling. Random selects randomly 20 samples per iteration, presents
them to the user for feedback and then builds a classification
model. Random-Grid uses our exploration exploration grid (Sec-
tion 3.1) and selects one random sample within each grid cell, i.e.,
it collect samples that are evenly distributed across the exploration
space. This approach also collects 20 samples per iteration. For
comparison reasons, AIDE also limits the number of new samples
it extracts per iteration: we sum the number of samples needed
for the boundary and the misclassified exploitation and we use the
remaining out of 20 samples to sample grid cells.

Figure 7(a) shows the number of samples needed to achieve an
accuracy of at least 70% when our target queries have one relevant
area of varying size. For this experiment, we set F'-measure
to 70% because Random-Grid and Random cannot converge to
accuracy higher than 70% for most area types given a reasonable
number of samples (less than 6,000). AIDE is consistently highly
effective: it requires no more than 373 samples for any area size
always outperforming the baselines. Random fails to discover
small areas of interest even when we increase the labeled set
to 6,000 samples, while Random-Grid needs 5520 samples in
average. For medium and large areas Random and Random-Grid
are still highly ineffective compared with AIDE.

Comparison with Active Learning Figure 7(b) compares the
prediction accuracy of AIDE with Query By Bagging (OBB) [14],
an active learning technique for decision tree classifiers. The
results are for a single large area. Given a new set of labeled
objects at each round, QBB creates an ensemble of decision trees
on different training sets generated through sample replacement.
It then examines all database objects to select for labeling the
one on which these classifiers disagree most. QBB assumes a
training set is provided a-priori with sufficient relevant/irrelevant
samples to bootstrap the generation of the decision trees. Aiming
to support real-life exploration scenarios, AIDE does not have

this assumption. Hence, we modified QBB to use AIDE’s object
discovery phase to collect its initial labeled sample set. Figure 7(b)
reveals that AIDE performs better than QBB, i.e., converges to
a high accuracy with less samples than QBB. This is because
AIDE generates the initial training set more strategically, e.g., after
hitting the first few relevant samples, the misclassified exploitation
phase discovers enough relevant objects to boostrap the generation
of its decision tree and in the following steps the boundary
exploitation improves the accuracy of that tree with very few
samples. Furthermore, QBB requires a much higher exploration
time than AIDE, as it needs to examine all database objects in
each iteration in order to decide which one to present to the user.

Impact of Exploration Phases We also studied the impact
of each exploration phase independently. Figure 7(c) presents the
number of samples we need to reach different accuracy levels
for queries with one large relevant area. We compare AIDE with
two variants: one that uses only the object discovery phase (Obj-
Discovery) and one that adds only the misclassified exploitation
phase (Obj-Discovery+Misclassified). The results show that com-
bining all three phases of AIDE gives the best results, i.e, better
accuracy with fewer labeled samples. Specifically, using only the
object discovery phase requires more than 800 labeled samples
to reach an accuracy higher than 20%. Adding the misclassified
exploitation to the object discovery phase increases the accuracy
by an average of 54%. Finally, adding the boundary exploitation
phase further improves the accuracy by an average of 15%. Hence,
combining all three phases is highly effective in predicting relevant
areas while reducing the amount of user effort.

5.3 Skewed Exploration Spaces

We also studied AIDE in the presence of skewed exploration
spaces. We experimented with three types of 2-dimensional ex-
ploration spaces: (a) Uniform where we use two roughly uniform
domains (rowc, colc), (b) Hybrid that includes one skewed
(dec) and one uniform domain (rowc) and (c) Skewed that uses
two skewed domains (dec, ra). We also experimented with the
density of the target queries: (a) Dense queries involve dense
relevant areas and (b) MixQ queries cover both sparse and dense
ranges of the relevant domains. Figure 8(a) shows the number
of samples needed to achieve accuracy greater than 90% for
queries with one large relevant area. We compare three variants
of our system: (a) AIDE-Grid that uses the grid-based technique
for the relevant object discovery phase, (b) AIDE-Clustering that
uses only clustering-based sampled for skewed distributions but
not sampling within grid cells and (c) AIDE-SkewAware that is a
hybrid of the two previous techniques as described in Section 4.1.

The results show that AIDE-SkewAware works best under any
combination of query density and exploration space distribution.
When the distribution is uniform (Uniform) clusters and grid cells
are highly aligned providing roughly the same results for all three
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techniques. Note that in this case all our relevant areas will be
dense. In the highly skewed data space (Skewed) we also used only
dense relevant areas as the sparse areas were practically non pop-
ulated. Here, both the clustering-based technique and the skew-
aware technique outperform the grid-based approach requiring
82% less samples. This is because clusters are formulated in the
dense sub-space while grid cells are created uniformly across the
data space covering non populated exploration areas. This allows
AIDE-Clustering and AIDE-SkewAware to sample smaller, finer-
grained areas than the grid-based approach, eliminating the need
to zoom into the next exploration level.

Finally, for the case of hybrid distributions (Hybrid) we picked
our relevant area to cover both dense ranges (for the uniform
domain) and sparse ranges in the skewed domain, resulting to our
mixed query case (MixQ). Here, the clustering technique creates
most of its clusters on the dense areas and hence fails to discover
relevant objects in the sparse ones. It therefore has to zoom
into finer exploration levels and it requires 47% more samples
to converge to the same accuracy as the grid-based technique.
However, AIDE-SkewAware samples both the dense areas where
the clusters are located and the sparse areas which are covered
by the grid cell and it discovers the relevant area. We conclude
that combining sampling within clusters and grid cells is the best
strategy for exploring both skewed and non skewed domains.

5.4 Probabilistic Sampling

Next, we examine the effectiveness and efficiency of the prob-
abilistic sampling technique (Section 4.2). In Figure 8(b) we
measure the number of samples needed to reach an F'-measure
greater than 90% when using the probabilistic sampling technique
in the misclassified exploitation phase (AIDE+ Probabilistic). The
figure presents the results for small, medium and large areas. The
results show that AIDE requires less labeled samples to reach
an accuracy when using the probabilistic sampling strategy. In
average this new approach can reduce the user effort by 35%. This
confirms our hypothesis that some samples in the misclassified
sampling areas are more informative than others and they can be
leveraged to improve the user’s experience.

We also studied the overhead of this approach. Figure 8(c)
shows that the uncertainty sampling technique increases our user
wait time per iteration in all cases. This is because in each iteration
we have to extract all samples within the sampling area and for
each sample calculate its posterior probability and decide whether
to present it to the user or not. As a result, the user wait time
per iteration was increased by 50% in average. However, the time
overhead was less than 2.9 seconds in average which should not
affect the user’s interactive experience.

5.5 Similarity Feedback Model

We also studied the effect of extending our relevance feedback
model to include labels for similar but not necessarily relevant
samples. Here, we label as “similar” the samples that are within a
distance less than 10% from an actual relevant object (this distance
is measured in any of the exploration dimensions). Otherwise,
we label the sample as irrelevant. Figure 9(a) presents AIDE’s
effectiveness when using the binary feedback approach and the
extended feedback model. Here, we vary the size of the target
relevant area from small to medium and large and we measure
the number of samples AIDE needs to reach an F'-measure higher
than 90%. The results indicate that annotating the similarity of
objects can significantly reduce the labeling effort of the user.
This improvement is 38% in average across all area sizes. This
feedback is particularly useful in the case of the small relevant
areas where the user effort can be significant. Here, the user’s
“similar” labels steer the exploration towards the direction of the
relevant area and the labeling effort is significantly reduced. We
also measured the impact of this model on the user wait time and
in all cases it was under 0.1 seconds which should be unnoticeable
by the user. We omit the graph due to space limitations.

5.6 Scalability

Exploration Space Dimensionality Figure 9(b) shows the num-
ber of labeled samples required to reach more than 90% accuracy
as we increase the dimensions of a skewed exploration space
from 2 up to 16 and vary the size of the relevant areas. Our
target queries have conjunctions on two attributes. The graph
reveals that the labeling overhead increases linearly to the number
of dimensions. This is because more dimensions increase the
number of sampling areas for the object discovery phase and
boundary phase (more attributes/boundaries appear in the decision
tree split rules). However, even with 16 dimensions AIDE needs
only 923 samples to reach more than 90% accuracy. We anticipate
that in real scenarios the dimensionality of the data space will
be significantly less. As an example, 1.8 million SDSS queries
collected in April 2016 revealed that 54% of user queries include
less than 4 dimensions. Figure 9(c) shows that even with 16
dimensions the user wait-time per iteration is always less than
4.1 seconds for all area sizes. The results reveal a small increase
in the user’s wait time as we add more dimensions.

Database Size Figure 10(a) shows AIDE’s accuracy with a
given number of labeled samples for dataset sizes of 10GB, 50GB
and 100GB. Our target queries have one large relevant area and
the average number of relevant objects increases as we increase
the size of the dataset (our target query returns in average 26,817
relevant objects in the 10GB, 120,136 objects in the S0GB and
238,898 objects in the 100GB database). AIDE predicts these
objects in all datasets with high accuracy without increasing the



user’s effort. We conclude that the size of the database does not
affect our effectiveness. AIDE consistently achieves high accuracy
of more than 80% on big data sets with only a few hundred
samples (e.g., 400 samples). These results were consistent even
for more complex queries with multiple relevant areas.
Exploration Space Reduction Applying our techniques to
larger datasets increases the time overhead since our sampling
queries have higher response times. One optimization is to execute
our exploration on a sampled database (Section 4.4). In this exper-
iment, we sampled datasets of 10GB, 50GB, 100GB and generated
the 10% sampled datasets of 1GB, 5GB and 10GB, respectively.
Figure 10(b) shows the absolute difference of the final accuracy
(10GB-Accuracy, 50GB-Accuracy, 100GB-Accuracy) when AIDE
is applied on the sampled and on the total datasets. The average
difference is no more than 7.15% for the 10GB, 2.72% for the
50GB and 5.85% for the 100GB data set. In the same figure we
also show the improvement of the system execution time (/0GB-
Time, 50GB-Time, 100GB-Time). For 10GB (and a sampled dataset
of 1GB) this time is reduced by 88% in average, while for the
larger datasets of 50GB and 100GB it is reduced by 96%-97%.
Figure 10(c) shows the improvement of the system execution
time when AIDE runs over the sampled data sets. Here, we
measure the system execution time to reach an accuracy higher
than 90% and for varying number of large areas. The average
time per iteration is 2.8 seconds for the 10GB, 37.7 for the 50GB
and 111 for the 100GB database. By operating on the sampled
datasets we improved our time by more than 84% while our
average improvement for each query type was more than 91%.
Our improved iteration time is 0.37 second for the 10GB, 2.14
seconds for the S0GB and 5.3 seconds for the 100GB dataset,
in average. Hence, AIDE can scale to big datasets by applying
its techniques on sampled datasets. This incurs low impact on the
accuracy while it significantly improves the system execution time.

5.7 User Study Evaluation

Our user study used the AuctionMark dataset [15] that includes
information on auction items and their bids. We chose this “intu-
itive” dataset, as opposed to the SDSS dataset, because the user
study requires identifying users with sufficient understanding of
the domain. We identified a group of graduate students with SQL
experience and designed their exploration task to be “identifying
auction items that are good deals”. Note that users should not
have an upfront understanding of the exact selection predicates
that would collect all relevant objects.

The exploration data set had a size of 1.77GB and it was
derived from the ITEM table of AuctionMark benchmark. It
included seven attributes: initial price, current price, number of
bids, number of comments, number of days an item is in an
auction, the difference between the initial and current item price,
and the days until the auction is closed for that item. Each
user explored the data set “manually”, i.e., iteratively formulating
exploratory queries and reviewing their results until he obtained
a query, (), that satisfied his interests. In each iteration, i, we
recorded (a) the number of objects, o;, returned by the user query
and (b) the time the user spent reviewing those objects, ¢;. Thus,
for each user we were able to calculate the average review time
per object, t = ZZ (t)‘ , where N is the total number of queries the
user executed during his exploration. This time varied significantly
by user depending on the time each one took to decide whether he
was interested or not in the returned results of his manual queries.

User Manual: Manual: AIDE: Reviewing | Manual: AIDE:
returned | reviewed | reviewed savings time time

objects objects objects (%) (min) (min)

1 253,461 312 204.9 34.3% 60 39.7
2 656,880 160 82.4 48.5% 70 36.3
3 933,500 1240 157 87.3% 60 79
4 180,907 600 319 46.8% 50 28.2

5 2,446,180 650 288.5 55.6% 60 27.5

6 1,467,708 750 3345 55.3% 75 33.8
7 567,894 1064 288.4 72.8% 90 24.8

TABLE 1: User study results.

Our user did not directly interact with AIDE. Instead we took
the user’s final query @ as the true interest of the user and used it
to simulate the user. In other words, we labeled each new sample
as relevant if the sample was included in the results of () and
as irrelevant otherwise. This guaranteed that objects received the
same label in both the manual and AIDE’s exploration.

We then measured how well AIDE can predict () by simulating
each user 10 times. For each run, we measured the number of
labeled samples that AIDE needed in order to discover the results
of @ with 100% accuracy. We report the average number of la-
beled samples during the 10 runs in Table 1. We also compared the
total exploration time of the two techniques, where the exploration
time consists of the system execution time (equivalent to the user
wait time) and the object review time. For AIDE, since the actual
review time was not available in simulation, we measured the
review time as the average review time per object, collected from
the manual exploration, multiplied by the number of samples that
AIDE needed to reach 100% accuracy.

The results demonstrated that AIDE would be able to reduce
the user’s reviewing effort by 66% in average (Reviewing savings
column in Table 1). Furthermore, with the manual exploration
users were shown 100s of thousands objects in total (Manual
returned objects) while AIDE shows them only a few hundred
strategically selected samples. Furthermore, with the manual ex-
ploration our users needed about an hour to complete their task
(Manual time). AIDE was able to reduce the exploration time
47% in average (AIDE time). We believe these time savings will be
even more pronounced for more complex exploration tasks (e.g., in
astronomical or medical domains) where examining the relevance
of an object requires significant time.

Our user study revealed that five out of the seven users used
only two attributes to characterize their interests . Similarly to our
SDSS workload, the most common type of query was conjunctive
queries that selected a single relevant area. Our exploration domain
was highly skewed and all our relevant areas were on dense
regions. These characteristics indicate that our micro-benchmark
on the SDSS dataset was representative of common exploration
tasks while it also covered highly more complex cases, i.e., small
relevant areas and disjunctive queries selecting multiple areas.

6 RELATED WORK

Query by Example Related work on “Query-By-Example”
(QBE) we originally proposed in [16]. Most recent work includes
querying knowledge graphs by example tuples [17], formulating
join queries based on example output tuples [18] and inferring
user queries by asking for feedback on database tuples [19], [20].
Finally, in [21] they learn user queries based on given value
assignments used in the intended query. These systems provide
alternative front-end query interfaces that assist the user formulate
her query and do not attempt to understand user interests nor
retrieve “similar” data objects which is AIDE’s focus.
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Data Exploration Numerous recent research efforts focus on
data exploration. The vision for automatic, interactive navigation
in databases was first discussed in [22] and later on in [23].
YMALDB [24] supports data exploration by recommending to
the user data similar to her query results. DICE [25] supports
exploration of data cubes using faceted search and in [26] they
propose a new “drill-down” operator for exploring and sum-
marizing groups of tuples. SciBORQ [27] relies on hierarchical
database samples to support scientific exploration queries within
strict query execution times. Idreos et al. [28] envision a system
for interactive data processing tasks aiming to reduce the time
spent on data analysis. In [29] interactively explores the space
based on statistical properties of the data and provides query
suggestions for further exploration while in [30] they propose a
technique for providing feedback during the query specification
and eventually guiding the user towards her intended query.
In [31] users rely on prefetching and incremental online processing
to offer interactive exploration times for window-based queries.
SearchLight [32] offers fast searching, mining and exploration of
multidimensional data based on constraint programming. All the
above systems are different than AIDE: we rely on the user’s
feedback on data samples to predict the user’s data interests and
we focus on identifying strategic sampling areas that allow for
accurate predictions. In [33] the authors propose a system for
faceted navigation of query results. This work uses a different
feedback model than AIDE; the user provides feedback on facet
conditions and not database samples and our optimization goal to
reduce the number of samples does not apply on faceted search.

Query Relaxation Query relaxation techniques have also been
proposed for supporting exploration in databases [34]. In [35],
[36] they refine SQL queries to satisfy cardinality constraints on
the query result. In [37] they rely on multi-dimensional histograms
and distance metrics for range queries for accurate query size
estimation. These solutions are orthogonal to our problem; they
focus on adjusting the query parameters to reach a cardinality goal
and therefore cannot characterize user interests. In [38] they relax
query conditions in order to obtain non-empty query results. This
work employs a different feedback model than AIDE: the user
rejects/accepts query modifications and not database samples. It

is nontrivial, in fact technically challenging, to equate these two
feedback models or transform one type of feedback to the other.
Active Learning The active learning community has proposed
solutions that maximize the learning outcome while minimizing
the number of samples labeled by the user [6], [39]. However,
these techniques assume either small datasets or negligible sample
extraction costs which is not a valid assumption when datasets
span 100s of GBs and interactive performance is expected. Rele-
vance feedback have been studied for image retrieval [40], docu-
ment ranking [41], information extraction and segmentation [42]
and word disambiguation [43]. All these solutions are designed
for specific data types (images or text) and do not optimize for
efficient sample acquisition and data space exploration.
Collaborative and Interactive Systems In [44] a collabora-
tive system is proposed to facilitate formulation of SQL queries
based on past queries and in [45] they use collaborative filtering
to provide query recommendations. However, both these systems
do not predict “similar” data object. In [46] they cluster related
queries as a means of understanding the intents of a given user
query. The focus is on web searches and not structured databases.

7 CONCLUSIONS

Interactive Data Exploration (IDE) is a key ingredient of a diverse
set of discovery-oriented application. In these applications, data
discovery is a highly ad hoc interactive process where users
execute numerous exploration queries using varying predicates
aiming to balance the trade-off between collecting all relevant in-
formation and reducing the size of returned data. Therefore, there
is a strong need to support these human-in-the-loop applications
by assisting their navigation in the data space.

In this paper, we introduce AIDE, an Automatic Interactive
Data Exploration system, that iteratively steers the user towards
interesting data areas and “predicts” her objects of interest. Our
approach leverages relevance feedback on database samples to
model user interests and strategically collects more samples to
refine the model while minimizing the user effort. AIDE integrates
machine learning and data management techniques to provide
effective data exploration results (matching the user’s interests
with high accuracy) as well as interactive performance (limiting
the user wait time per iteration to less than a few seconds).



Our experiments indicate that AIDE is a practical exploration
framework as it significantly reduces the user effort and the
total exploration time compared with the current state-of-the-
art approach of manual exploration as well as traditional active
learning techniques.
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