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Abstract— Recent innovations in RFID technology are en-
abling large-scale cost-effective deployments in retail, healthcare,
pharmaceuticals and supply chain management. The advent of
mobile or handheld readers adds significant new challenges to
RFID stream processing due to the inherent reader mobility,
increased noise, and incomplete data. In this paper, we address
the problem of translating noisy, incomplete raw streams from
mobile RFID readers into clean, precise event streams with
location information. Specifically we propose a probabilistic
model to capture the mobility of the reader, object dynamics,
and noisy readings. Our model can self-calibrate by automat-
ically estimating key parameters from observed data. Based
on this model, we employ a sampling-based technique called
particle filtering to infer clean, precise information about object
locations from raw streams from mobile RFID readers. Since
inference based on standard particle filtering is neither scalable
nor efficient in our settings, we propose three enhancements—
particle factorization, spatial indexing, and belief compression—
for scalable inference over large numbers of objects and high-
volume streams. Our experiments show that our approach can
offer 54% error reduction over a state-of-the-art data cleaning
approach such as SMURF while also being scalable and efficient.

I. INTRODUCTION

RFID deployments have become popular in domains such
as retail management [14], healthcare [14], pharmaceuticals
[14], and library management [10]. RFID applications enable
unique identification of every tagged object and provide real-
time monitoring and tracking capabilities. While early RFID
deployments used fixed, wall-mounted readers, technology
advancements have added mobile, handheld readers to the mix,
significantly complicating the tasks of stream processing and
querying of RFID data. Recent research has adopted general
stream query processing to encode application information
needs as declarative queries and evaluate these queries over
real-time RFID streams [13], [35], [33]. However, raw RFID
data, particularly from mobile readers, is unsuitable for direct
querying for two reasons:
• Data is incomplete and noisy. Despite technological
advances, RFID readings continue to be noisy. Observed
read rates in actual deployments are significantly below
100% [18], largely due to the intrinsic sensitivity of radio
frequencies (RFs) to environmental factors such as interfer-
ence from nearby metal objects [11] and contention among
tags [12]. Also, it is hard to estimate the data quality
in advance, because the read rate depends greatly on the
particular characteristics of the deployment. Mobile readers
can produce even more noisy data than static readers since
they produce readings from arbitrary handheld orientations.

• Observed data reveals data of interest only indirectly.
Raw RFID readings only contain tag identities and do not
contain additional high-level information such as object
locations or containment that are needed by tracking and
monitoring applications. If the reader location is fixed and
known, then raw readings provide indirect coarse-grained
location information for objects. When mobile readers are
used instead, their locations vary over time and can be un-
certain. Therefore, feeding readings from such readers into
a stream processor does not allow a monitoring application
to answer even simple queries concerning object locations.
For these reasons, RFID data streams, particularly those

from mobile readers, are not “readily queriable”. We further
note that hardware technology advances are not expected
to address this problem for the foreseeable future. This is
because RFID technology is inherently designed for identifica-
tion rather than high-level information such as locationing or
containment. Even with multiple closely-spaced wall-mounted
readers, the precision of the acquired information is insuffi-
cient for tracking and monitoring tasks such as identifying
misplaced inventory in retail stores and computing density
of flammable objects in each square foot area [14], [35].
Instead, software solutions are needed to enable rich stream
query processing for tracking and monitoring and to ultimately
realize the promise of mobile RFID technology.

Therefore, in this paper, we address a fundamental data
cleaning and transformation problem for mobile RFID
data streams, which translates noisy, raw data streams from
mobile RFID readers into clean, precise queriable event
streams with location information. Informed by the demand of
subsequent stream query processing, our work aims to meet
three objectives: (i) high precision results of data cleaning and
transformation, which are able to simplify probabilistic query
processing as shown in [28], (ii) producing such results at
stream speed, (iii) scaling this process for large tracking and
monitoring environments.

Recent research on RFID data cleaning [13], [18] has
proposed building an abstraction of device data appropriate for
further query processing. This approach focuses on the simpler
problem of whether an object is in the (large) read range of
a static reader. These smoothing techniques, when applied to
mobile readers, provide information such as location only with
limited precision, as we shall show in the performance analysis
of this paper. The RFID data transformation component of [28]
generates low resolution location data, such as a person in a
particular office, which is inadequate for many tracking and
monitoring tasks as mentioned above. Moreover, both of these



studies consider at most one hundred RFID-tagged objects and
lack scalable solutions for large-scale environments such as
typical warehouses.

In this paper, we present a novel approach for efficient,
scalable cleaning and transformation of mobile RFID data
streams while offering high precision results. Our approach
is based on the view that applications want to query against
facts about the true state of the physical world, but these facts
are revealed only indirectly through a sensing process that,
even for the data that can be generated, is lossy and noisy.
The task of data cleaning and transformation is essentially
to recover the facts necessary for query processing while
mitigating the effects of data loss and sensing noise. Toward
this goal, we employ a principled probabilistic approach to (1)
model precisely how mobile RFID data is generated from those
facts about the physical world and (2) infer likely estimates of
the facts as noisy, raw data streams arrive.

While probabilistic inference is a well-established research
area, applying it to clean and transform RFID data streams
while meeting the three aforementioned objectives, namely,
high precision, stream speed, and scalability, pose considerable
challenges. By way of addressing these challenges, we make
the following contributions:

Modeling the data generation process (§III). First, we
design a probabilistic model that captures the underlying data
generation process, including the key components such as
reader motion, object dynamics, and noisy sensing of these
objects by the reader. In particular, our model employs a flex-
ible parametric RFID sensor model that can be automatically
and accurately configured for a variety of environments using
a standard learning technique. In contrast, existing projects
resort to manual calibration of the sensor model for each RFID
deployment environment [17], [10], [18], precisely because
they lacked such a flexible parametric sensor model.

Efficient, scalable inference (IV). To generate clean lo-
cation event streams from noisy, raw RFID data streams, we
apply a sampling-based inference technique, called particle fil-
tering, to the probability distribution developed above. Unfor-
tunately, this technique requires a prohibitively large number
of samples to cope with the number of objects typical in our
target environment, hence inadequate for stream processing.
Our second contribution is to enhance particle filtering to scale
to large numbers of objects and keep up with high-volume
streams while offering high precision inference results. To do
so, we develop three advanced techniques, namely, particle
factorization, spatial indexing, and belief compression. These
techniques lead to a solution that uses only a small number of
samples at any instant by focusing on a subset of the objects,
while maintaining high inference accuracy.

Prototyping and evaluation (§V). Our third contribution is
a prototype implementation and detailed performance evalua-
tion of our system for translating mobile RFID data streams
into clean, precise event streams with location information.
Our results of running a location update query over both
real-world traces and large-scale synthetic data show that (1)
with an automatically and accurately configured model, our
approach estimates object locations with high accuracy, e.g.,

within a range of a few inches, (2) our approach offers an
average of 54% error reduction over SMURF, a state-of-the-
art RFID data cleaning technique [18], for mobile RFID data,
(3) our system is robust to noise in both observed tags and
observed reader locations, and (4) our system is the first to
scale to tens of thousands of objects with small memory
usage and at a constant rate of over 1500 readings per second,
which has reached the maximum rate at which an RFID reader
can produce readings. In contrast, naive particle filtering can
process only 0.1 reading per second when given 20 objects
while striving to achieve comparable accuracy.

II. PROBLEM STATEMENT

In this section, we present our problem formulation and
illustrate how this enables rich stream query processing.

A. Problem Statement

Given a stream of raw readings of RFID tags and a sequence
of reader locations, both of which can be noisy, we wish
to derive a clean, precise and queriable event stream where
RFID tag observations are augmented with the locations of
the corresponding objects. This high-level problem can be
further described using the underlying physical world, the data
streams from a mobile reader, and the desired output stream.

The Physical World. The physical world being monitored
is a large storage area comprising shelves S and a set of objects
O. Both shelves and objects are affixed with RFID tags. Since
the shelves are at fixed locations, we assume that the precise
locations of their tags are also known a priori. However, the
object locations are unknown and must be determined as part
of the cleaning and transformation process. Typically, objects
stay on the same shelf but can sometimes move from one shelf
to another. The facts of interest to the application are the (x,
y, z) location of each object Oi at each time instant t.1

A mobile RFID reader provides the only means to observe
the physical world. Mobile readers come in two flavors—
handheld readers that are used by humans to scan and
monitor tagged objects (e.g., on store shelves), and readers
that be mounted on robots for automated monitoring and
order processing (e.g., Kiva systems [20]). The mobile reader
periodically scans the storage area. In each round, the reader
produces readings that contain the tag ids of observed objects
(usually a subset of O) and tag ids of observed shelves (also
a subset of S). In addition, the (x, y, z) location of the reader
itself at time t can be computed using a positioning technology
such as indoor GPS or ultrasound [31].

Data Streams from Mobile Readers. Various readings
from a mobile reader have the following characteristics:

No Information about object locations. Since an RFID
stream only consists of a sequence of tag ids and observation
times, the locations of objects are not observed directly.

Noisy object readings. Object readings are highly noisy.
First, if an object is on the boundary of the sensing area, in
what is called the minor detection range, the read rate is far

1 In this work, we assume that the facts of interest to the monitoring
application only consist of object locations. The extension to also
include inter-object relationships is a main task of our future work.



less than 100%. Even if the object is close to the reader, in
what is called the major detection range, objects can be missed
due to environment factors such as occluding metal objects
and contention among tags. Sometimes objects can be read
unexpectedly due to reflection of radio waves by obstructing
objects. Finally, mobile readers have greater noise and lower
read rates than fixed readers—mobile readers tend to read
objects from arbitrary orientations, and certain orientations can
result in poor read rates.

Uncertainty in reader locations. The exact reader location
is usually uncertain. For example, even when handheld readers
are coupled with indoor positioning systems such as ultrasound
locationing, the reported locations are imprecise ( e.g., accu-
racy is about tens of centimeters for moving objects [31]). As
another example, a robotic reader can measure its location
using dead reckoning, essentially by counting the number
of times that its wheels have revolved. But such location
estimates may contain significant noise because the robot can
drift sideways due to inertia or forward due to wheel slippage,
as we observed in our lab deployment (detailed in §V-C).

While the exact data format varies with the reader, in this
work we assume that readings are produced in two sepa-
rate streams: the RFID reading stream has readings (time,
tag id of object Oi or tag id of shelf Sj) and the
reader location stream has reports (time, (x, y, z)). In
practice, these streams may be slightly out-of-sync in time.
In our model, however, a time step (also called an epoch) is
fairly coarse-grained, e.g., a second. This allows us to generate
synchronized streams via simple low-level processing, such as
assigning the same time to RFID readings produced in one
epoch and taking average of multiple location updates in an
epoch to produce a single update. Therefore, we consider only
synchronized streams in the rest of the paper.

Output Event Stream. Our goal is to translate noisy,
primitive data streams from a mobile RFID reader into
clean, precise event streams with location information. In
the output stream, each event reports the location of an
object as follows: (time, tag id of Oi, (x, y, z) of
Oi, (statistics)?). Events are output for not only ob-
served objects but also objects with missed readings. In other
words, the output stream not only augments the input streams
with object locations but also mitigates the effect of missed
readings.2 In addition, the optional statistics field can be
used to report summary information of the estimated location
distribution, such as its variance or confidence regions.

Finally note that as the reader moves, it may observe
an object several times from different locations. Combining
such multiple readings provides valuable information about
the object location. To avoid fluctuating values in the output,
our system outputs an event for an object only at particular
points: for example, within x seconds after an object was read,
upon completion of a shelf scan, or upon completion of a full
area scan. The choice of when to output reports is left to the
discretion of the application.

2 While transforming raw data streams into an event stream, we
can also archive the raw streams for post-facto analysis.

B. Support for Stream Query Processing

We next illustrate the rich stream query processing that
our event stream enables but raw streams from mobile RFID
readers do not. We write our example queries in the CQL
stream query language [1]. The first query reports the location
change of each object. It simply reads the event stream,
considers the most recent location report of each object, and
if the location differs from the previous one, outputs the tag
id and the new location of the object.

Select Istream(E.tag id, E.(x, y, z))
From EventStream E [Partition By tag id Row 1]

The second query detects potential violations of a fire code:
display of solid merchandise shall not exceed 200 pounds per
square foot of shelf area.

Select Rstream(E2.area, sum(E2.weight))
From (Select Rstream(*,

SquareFtArea(E.(x, y, z)) As area,
Weight(E.tag id) As weight)

From EventStream E [Now])
E2 [Range 5 seconds]

Group By E2.area
Having sum(E2.weight) > 200 pounds

The nested Select-From query simply adds two attributes
to each event: the square foot area that each object belongs
to, computed by a function on its (x, y, z) location, and the
weight of the object, retrieved by another function using its
tag id. Then the outer query considers events in each 5 second
window, groups them based on the square foot area, computes
the total weight of the objects in each group. For the groups
with the total weight greater than 200 pounds, it reports the
area and the total weight in output.

Crucially, both of these queries require reliable knowledge
of the object location, which is unavailable without processing
and transforming the raw data streams. While the focus of this
paper is not sophisticated probabilistic query processing such
as [28], we view our work as a crucial data cleaning and
transformation step that enables such query processing over
real-world RFID data streams.

III. A PROBABILISTIC DATA GENERATION MODEL

In this section, we present a probabilistic model that cap-
tures how raw data streams are generated by a mobile RFID
reader from the true state of the world. Given the complexity of
the problem, our model incorporates the motion of the reader,
the object dynamics, and most importantly, the noisy sensing
of objects and reader locations.

Formally, the world is modeled as a vector of random
variables, which are represented as nodes in Figure 1. There
are two types of variables: evidence variables that we observe
in the data, and hidden variables that we wish to infer from the
information contained in the evidence. In our application, the
hidden variables are the true reader location Rt and the object
locations Oti, which are represented by the unshaded nodes
in Figure 1. The evidence variables are the reported reader
location R̂t and the object readings Ôti, which are indicated
by the shaded nodes in Figure 1. (For definitions of all the
notation used in this section, see Table I.)



Rt True reader location at time t. Vector containing
(x, y, z) position and orientation.

R̂t Noisy observation of reader location at time t.
Oti True location of object i at time t. Vector containing

(x, y, z) position.
Ôti Binary variable indicating whether object i is observed

at time t
Si True location of shelf tag i
Ŝti Binary variable indicating whether shelf tag i is ob-

served at time t
R Matrix of all true reader locations [R1R2 . . . RT ]

R̂ Matrix of all observed reader locations [R̂1R̂2 . . . R̂T ]
Ot Matrix of all true object locations at time t
O Matrix of all true object locations at all time steps
Ôt Binary vector [Ôt,1 . . . Ôt,M ] of all readings at time t
Ô Matrix of all object readings at all time steps

TABLE I
SUMMARY OF NOTATION IN THIS PAPER.

Rt Rt+1

Ot,1

Ot,2

S1

Ot,1

Ot,2

Ot+1,1

Ot+1,2

Ot+1,1

Ot+1,2

t t+1Rt
^ ^Rt+1

^

^ ^

^

St,1
^ St+1,1

^

shelf tags
(time independent)

reader motion and location sensing

sensor 
model

Fig. 1. Model of reader and object locations. The shaded region at top
contains the reader motion model and reader location sensing model. The
lightly-shaded region at bottom contains the RFID sensor model.

The goal of this section will be to define a joint probability
distribution p(R,O, R̂, Ô) over both hidden and observed
variables. Then, given observed values R̂ and Ô, this joint
model induces a conditional distribution p(R,O|R̂, Ô) over
the true locations, which can be used to predict the objects’
locations. We describe various components of our model in
Section III-A, how we combine them into a single joint
distribution in Section III-B, and how we estimate model
parameters in Section III-C.

A. Components of the Model
Our joint model over the entire world is divided into four

components that separately model different aspects of the
domain. We explain each of the components in detail below.

RFID sensor model: Given that the read rate of an RFID
reader is less than 100%, it is natural to model the reader’s
sensing region in a probabilistic manner: each point in the
sensing region has a non-zero probability that represents
the likelihood of an object being read at that location. To
determine the probabilistic values for different points, we can
represent the sensing region as the likelihood of reading a
tag based on the factors including the distance and angle
to the reader. Since the sensor noise varies with time and

location, it is also possible to introduce other parameters into
the likelihood, and estimate those parameters based on the
specifics of the deployment environment.

Formally, we introduce a flexible parametric model that
describes how the read rate of an RFID reader decays with
distance and angle. Given the true location Rt of the reader and
Oti of the object i, the sensor model is a conditional distribu-
tion p(Ôti|Oti, Rt) that models the probability of reading the
tag. If we denote the reader location by the vector [rxt , r

y
t , r

z
t ],

and the reader angle in relation to the reference coordinate
frame by rφt , then we can compute the distance dti and the
angle θti between the reader and the tag as follows:

δ = Ot,i − [rxt , r
y
t , r

z
t ]

dti =
√
δT δ

cos θti =
δT [cos rφt , sin r

φ
t ]

dti

Empirically, we have found that the read rate decreases
approximately quadratically with distance and with angle,
so that the probability can be written as a function like∑2
c=0 ac(dti)

c +
∑2
c=1 bc(θti)

c, where the {ac} and {bc} are
coefficients that we expect to be negative. But strictly speaking
this quadratic function cannot be a probability distribution,
because it is not restricted to [0, 1]. To fix this, we compose
the quadratic function with the sigmoid function f(x) =
1/(1 + exp{−x}), which has the effect of squashing a real
number into the interval (0, 1). This transformation yields the
logistic regression model, which is a standard technique for
probabilistic binary classification from the statistics literature.
Putting this together, the sensor model is:

p(Ôti = 0|dti, θti) =
1

1 + exp{
P2
c=0 ac(dti)

c +
P2
c=1 bc(θti)

c}
.

(1)
The coefficients ac and bc are real-valued model parameters

that are learned from data in a calibration step, discussed in
Section III-C. We use the same sensor model for both the
object tags and the shelf tags. The only difference is that for
the shelf tags, we write the distribution as p(Ŝi = 0|dti, θti),
but the same model and coefficients are used in both cases.

As our results in Section V show, our sensor model is
a flexible parametric form that can fit a variety of sensing
regions, including conical and spherical regions (examples of
learned sensor models are shown in Figure 5(b)-5(d)).

Reader motion model: This model describes how the
reader moves. We assume that the reader moves with a
constant velocity that varies somewhat over time. In other
words, the new location is the old location plus a noisy version
of the average velocity. Formally, the new location Rt can be
computed from the old location as Rt = Rt−1 + ∆ + ε, where
∆ is the average velocity of the reader, and ε is the noise.
The motion noise ε is a Gaussian random variable with mean
0 and diagonal covariance matrix Σm.

Reader location sensing model: This model describes the
noise in our observations of the reader’s location. For example,
an RFID-equipped robot may compute its location by dead
reckoning, that is, basically by counting how many times its



wheels have revolved. We assume that this measurement noise
is Gaussian with mean µs and covariance Σs. A more complex
noise model is not necessary here, because errors in the reader
location can be corrected by information from the static shelf
tags as shown in our experiments in Section V.

Object location model: Objects in a warehouse are as-
sumed to be stationary but can occasionally change locations;
the object location can change with a probability α at each
time t, in which case the new location is distributed uniformly
across all shelves. We write this model as a conditional
distribution p(Oti|Ot−1,i). This model contains no distinguish-
ing information about the object’s new location, but such
information is not needed: The object location model is used to
temporarily create samples that will be weighted based on the
actual observations in the inference process. The new object
location will be eventually inferred from the readings from that
location, whereas an object missing from the warehouse will
obtain a location distribution close to a uniform distribution
over the entire warehouse, signaling an anomaly about this
object. (Details of this weighting and sampling process are
given in Section IV-A).

B. Formal Definition

Now we describe how the component models can be com-
bined to define a joint model over the entire domain. By
way of illustration, we first describe how the data would
be generated if the world behaved according to our model:
Assume that the initial reader location R1 is known. Sample
initial object locations O1 from a uniform distribution over
the shelf. Then for each time step t, perform the following
five steps. (1) Generate the new reader location Rt from the
previous location Rt−1 by sampling from the reader motion
model p(Rt|Rt−1). (2) Generate a noisy observation R̂t of
the reader location from the reader location sensing model
p(R̂t|Rt). (3) Generate new object locations Ot from the
object location model p(Ot|Ot−1). (4) Decide whether each
object is observed using the sensor model. Each object i is
observed with probability p(Ôti|Rt, Oti). (5) Decide whether
each shelf tag is observed using the sensor model. Each shelf
tag i is observed with probability p(Ŝti|Rt, St).

Now we give the formal description of our model. Any
distribution that can be sampled in the manner above can be
factorized into the product of its local probability distributions:

p(R, R̂,O, Ô|S) = p(R1,O1)
Y
t

p(Rt|Rt−1)p(R̂t|Rt)

×
Y
i∈O

p(Oti|Ot−1,i)p(Ôti|Rt, Oti)×
Y
i∈S

p(Ŝti|Rt, St).
(2)

The factorization of (2) can be depicted as a directed acyclic
graph called a directed graphical model or a Bayesian network,
as shown in Figure 1. Our model is a particular case of a
dynamic Bayesian network (DBN) [24], but with conditional
probability functions specially designed for our problem.

C. Parameter Estimation using Learning

We next describe the self-calibration step in which we
estimate the model parameters from data. The parameters

of our model are the coefficients {ac} ∪ {bc} of the sensor
model, the average reader velocity ∆, the variance Σm of
the reader velocity, and the mean µs and variance Σs of the
noise in reader location sensing. The sensor model in particular
depends not only on the type of reader used, but also on the
specifics of the environment such as metal objects and density
of tags. One way to calibrate the sensor model is to perform
calibration in the lab [17], [10], [18], in which the read rate is
measured when a reader and an RFID tag are placed at various
known distances and angles. Such manual lab calibration is not
only tedious but also inaccurate in real deployments due to the
change of environmental factors in those deployments.

An important benefit of having a flexible parametric model
is that we can automatically learn the model parameters using
a small training data set collected from the same environment
in which the system is to be fielded. The training data includes
the observed reader locations and readings of a small set of
tags, some of which are shelf tags with known locations. We
perform parameter estimation using Expectation-Maximization
(EM), a standard method for parameter estimation in the
presence of hidden variables. In Section V, we show that only
a small number of shelf tags (e.g., less than 20) are needed to
learn accurate sensor models.

IV. EFFICIENT, SCALABLE INFERENCE OVER STREAMS

As noisy, raw data streams emanate from a mobile RFID
reader, the task of translating them into a clean, precise event
stream with location information is treated as an inference
process in our work. Inference is essentially to estimate the
true locations of objects for each time t even if there are no
readings returned for some of the objects. Formally speaking,
from the joint distribution p(R,O, R̂, Ô) defined previously
over both the physical world and noisy readings, inference is
to compute the conditional distribution p(R,O|R̂, Ô). This
conditional distribution can be used to predict true object
locations and optionally the true reader location.

Exact inference for our model is very challenging, because
the true conditional distribution has a complex shape. Instead,
we sample from the distribution approximately using a generic
machine learning algorithm called particle filtering. How to
apply particle filtering to our particular problem is described
in Section IV-A. However, a naive implementation of particle
filtering does not scale to the enormous number of objects
that would be expected in a real warehouse. To handle this,
we augment the basic algorithm in three novel ways:
• We first propose an advanced technique, particle factoriza-

tion, to reduce the number of samples needed for accurate
inference for a large number of objects (Section IV-B).
• We then augment the factorized particle filter with spatial

indexing structures to limit the set of objects that are
actually processed at each time step (Section IV-C).
• At some point in inference, the samples for an object may

stabilize in a small region. In this case, we compress the
sample representation of the object location into a paramet-
ric distribution to save both space and time (Section IV-D).
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A. Particle Filtering

In this section, we describe the main intuitions behind
sampling-based inference for our problem. We also give a for-
mal description of how the generic particle filtering algorithm
[9] is applied to our particular probability distribution, which
provides a technical context for our later extensions.

The basic idea is to maintain a weighted list of samples,
each of which contains a hypothesis about the true location
of each object as well as a hypothesis about the true reader
location. Each sample has an associated weight, representing
the likelihood of the sample being true. The weight of a sample
is assigned based on the following intuitions.

As Figure 2(a) shows, if a reader detects the tag of object
O once, the tag must be in the vicinity of the reader. We can
generate multiple samples about the tag location in the reader’s
sensing region (or a slightly larger area) but cannot further
distinguish these samples. However, if the reader detects the
tag again from a nearby position, then the samples that reside
in the intersection of the sensing regions at the two reader
positions will be assigned higher weights (Figure 2(b)). Re-
garding the reader location, samples are weighted based on the
likelihood of seeing all observed objects from that location. Of
particular importance are the shelf tags with known locations.
As Figure 2(c) shows, an observed shelf tag S can be used to
distinguish good samples of the reader location, from which
the reader can detect the shelf tag, from those bad samples of
the reader location, from which the reader cannot.

At the next time step, these samples are updated to reflect
expected changes of reader and object locations. Their weights
are adjusted based on the new observations from that step.
At any point, we can use this weighted list of samples as
a distribution over the hidden variables, i.e., the true object
locations and reader location, given the observations—exactly
the result that inference aims to compute.

Formally, we denote a set of samples (termed particles in
the literature) at time t using x1

t , · · · , x(J)
t . We denote the

j-th particle by a vector x(j)
t = (R(j)

t , O
(j)
t,1 , . . . , O

(j)
t,n), where

R
(j)
t is a hypothesis about the reader location and O

(j)
t,i is a

hypothesis about an object location. Let the weight of x(j)
t be

w
(j)
t . The particle filtering algorithm in our application is:
Step 1 Initialization. Generate a set of initial particles

{x(j)
1 |j = 1 . . . J} from the prior distribution p(R1,O1).
Step 2 Update. Let the vector yt contain all of the obser-

vations at time t. Then for each time step t:
• Sampling. For each particle x(j)

t−1, generate a new parti-
cle x(j)

t from a proposal distribution q(xt|x(j)
t−1, yt). The

proposal distribution is an arbitrary distribution chosen to

be easy to sample from. In this work, we use the reader
motion model and object location model for sampling.
• Weighting. Compute a new particle weight

w
(j)
t = Cw

(j)
t−1 ·

p(x
(j)
t |x

(j)
t−1, yt)

q(x
(j)
t |x

(j)
t−1, yt)

, (3)

where C is a constant with respect to j, chosen so that∑
j w

(j)
t = 1. This weight adjusts for the fact that the

particles were sampled from the proposal distribution,
rather than the true distribution of the model.
• Re-sample from the particles to reproduce the highest-

weight ones. Each of the new particles is selected by
sampling from the set of old particles with replacement.
A particle is selected with probability equal to its weight.

Step 3 Inference output. At any time step, the posterior
distribution over the hidden variables can be estimated by a
weighted average of the particles. More formally,

p(Oti | R̂1...t, Ô1...t) ≈
JX
j=1

w
(j)
t 1{Oti=O

(j)
ti }

, (4)

where 1{a=b} is an indicator function that is 1 if and only if
a = b. A similar formula is used for the reader location. From
these distributions, it is easy to compute any desired statistics,
such as the mean, the variance, or a confidence region.

Sensible initialization of the particles is also important,
because otherwise many samples will begin far away from the
object’s actual location. In this work, we create new particles
for an object when we see it the first time or at a location far
away from the previous location of observing it. At the current
location, we initialize the particle locations from a uniform
distribution over a cone originating at the reader location. The
width of the cone is chosen to be an overestimate of the true
range of the reader. We call this initialization sensor-model
based initialization.

B. Particle Factorization
So far every particle has included a sample of the locations

of all objects. To get good accuracy, intuitively we expect
to use a large number of particles in the number of objects
(which was observed in our experiments presented in Section
V-D). This is because even if a particle contains good location
estimates for some objects, it may contain bad locations for
other objects, simply through random chance in the sampling
procedure. Figure 3(a) illustrates an example of this: Particle
A (the dark stars) contains a good sampled location for Object
1 but not for Object 2. On the other hand, particle B (the light
stars) contains a good sampled location for Object 2 but not
Object 1. As the number of objects grows, it becomes more
likely that most particles will happen to have sampled a bad
location for some object. One way to overcome this problem
is simply to use more particles, but this becomes prohibitively
expensive when there are large numbers of objects.

In this section, we introduce an advanced technique that
enables the particle filter to scale dramatically in the number of
objects. In this technique, which we call particle factorization,
we break a large particle over all the objects into smaller par-
ticles over individual objects. This allows us to combine good
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Fig. 3. Motivation and data structures for factored particles.

particles from different objects and, essentially, to represent
an exponentially large number of unfactored particles in the
amount of space linear in the number of objects. The challenge
is to ensure that the operations required by the particle filter
can still be performed in this factored representation.

First we explain the data structures that we use to maintain
these factored particles. As shown in Figure 3(b), we maintain
a list of reader particles, each of which contains a hypothesis
about the reader location and an associated weight. Each
object particle contains a hypothesis of the object location
and the reader location (a pointer to the reader particle in our
implementation), a weight, and the object’s tag id. We maintain
two indexes. The first is an index of object particles that maps
from an object’s tag id to the list of object particles for that
tag id; further, each object particle refers to the corresponding
reader particle via the contained pointer (Figure 3(c)). The
second index maps from each reader location to its list of
associated object particles; given a reader location, there may
be zero, one, or multiple particles of an object associated with
this location (Figure 3(d)).

In addition to maintaining factorized particles, we also
maintain factorized weights. Each reader particle R(j)

t has an
associated weight w(j)

rt . The reader particle also has a list of
associated object particles O

(j,1)
ti . . . O

(j,K)
ti for each object

i. Each of these object particles has a weight w(jk)
ti . The

semantics of the factored weights is: If we were to expand
the factored representation into the exponentially-long list of
unfactored particles, then the weight of the unfactored particle
is the factored reader weight times all of the factored object
weights. In our factorized particle filter presented in the rest
of this section, we manipulate these weights without actually
constructing unfactored particles.

Now we explain how these data structures can be used
to efficiently implement the factorized particle filter. First,
the sampling step can be performed entirely on the factored
representation. To sample from the proposal distribution, for
each reader particle, we sample a new reader location from
the reader motion model, and then for each associated object
particle, we sample its location from the object location model.

Second, the weights of the new particles can also be
computed in a factored manner. The important point is that
in the factored representation, the weight of a particle for
object i does not depend on weights of particles for any other
objects. To compute the new weights, the new incremental
weight for each reader particle w

(j)
rt can be computed as

p(R̂t|R(j)
t )

∏
i∈S p(Ŝti|R

(j)
t , St). The new incremental weight

for an object particle O(j,k)
ti is p(Ôti|R(j)

t , O
(j)
ti ).

It can be shown that this weighting step is equivalent to
the standard particle filtering weight step applied to the full
set of unfactored particles. Mathematically, this is because our
proposal distribution and our model factorize in the same way
as our data structures do. To see this, consider the weight
update (3) for unfactored particles:

w
(j)
t = Cw

(j)
t−1 ·

p(R
(j)
t ,O

(j)
t |R

(j)
t−1,O

(j)
t−1, R̂t−1, Ôt−1)

q(R
(j)
t ,O

(j)
t |R

(j)
t−1,O

(j)
t−1, R̂t−1, Ôt−1)

= Cw
(j)
t−1p(R̂t|R

(j)
t )

Y
i∈S

p(Ŝti|R(j)
t , St)

NY
i=1

p(Ôti|R(j)
t , O

(j)
ti )

= Cw
(j)
t−1 · w

(j)
rt

NY
i=1

w
(j)
ti (5)

where in the second line, we substitute definitions; and
in the last line we simply define w

(j)
rt and w

(j)
ti to be the

corresponding terms from the previous equation. This equation
shows that that the weights can be computed separately for
each object, with the same result as if the weight had been
computed for the exponential number of unfactored particles
that is implicit in our representation.

Finally, performing resampling in this representation is
more complicated. First we describe resampling for the ob-
ject particles. Recall that each reader particle is associated
with a list of object particles. For each of these lists, we
perform resampling separately, sampling an object particle
with probability proportional to its weight. When we resample
reader locations, on the other hand, we want to favor reader
particles that are associated with good object particles. To
accomplish this, we consider not only the weight of the
reader particle, but also the aggregate weight of its associated
object particles. Formally, we resample a reader particle R(j)

t

with probability w(j)
rt

∏N
i=1

∑K(j)
k=1 w

(j,k)
ti . When we resample

a reader location particle, we copy the locations of all the
associated object particles. Although this is a computationally
expensive operation, resampling the reader location occurs
infrequently, so this cost is amortized.

Our factorization scheme is related to that of [25], but with
several important differences. The main difference is that our
particle weights are also factorized, while the previous work
ignores the weights entirely by resampling at every time step.
By maintaining factorized weights, our method avoids both the
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cost of resampling at most time steps, and the bias introduced
by resampling in the factorized representation.

C. Spatial Indexing

Even with factored particles, the inference algorithm pre-
sented so far must process all the objects in the world at
every time step. This is because the weighting step described
in Section IV-A is performed for all objects, whether their
tags were read or not. In this section, we introduce spatial
indexing as a further approximation that dramatically reduces
the processing cost. It is important to note that spatial indexing
is possible only after the particles have already been factorized.

The main insight is that even if the number of objects is
large, only a much smaller number of them are near the reader
at any given time. If we can restrict the processing to only
those objects near the reader, a significant amount of work
can be saved. This intuition is more precisely described by
the diagram in Figure 4(a), which classifies objects based on
their distance from the reader location at time t (x axis) and
the result of RFID sensing at t (y axis). There are four cases:

Case 1: If an object is read at time t, no matter how far it
is from the reader, it should be processed in inference.

Case 2: If an object is not read at t but was read before near
the current reader location, the object needs to be processed
so that the particle filter can downweight the particles of the
object that are very close to the current reader location.

Case 3: If an object is near the reader but has never been
detected from its current location, it is simply invisible to the
inference procedure since RFID sensing is the only means of
observing the world.

Case 4: Last, the object is far from the reader and indeed
not detected at t. According to our sensor model, such objects
have a very small (but nonzero) read probability, but rounding
this probability to zero appears to be a good approximation.

Therefore, we design a spatial index to distinguish Case 2
from Case 4 so that we can save work for objects belonging
to Case 4. For each reported reader location, we construct a
bounding box of the sensing region. Then our index has two
components. The first component, shown in Figure 4(b), maps
from bounding boxes to the set of objects that have at least
one particle within the bounding box. The second component,

shown in Figure 4(c), is a standard spatial index (a simplified
R*-tree [2]) over the bounding boxes.

At each time during inference, we construct a bounding box
of the current sensing region and probe the spatial index to
retrieve all potentially overlapping bounding boxes inserted in
the past. For each of those boxes, we retrieve all contained
objects. This gives us the full set of objects belonging to
Case 2. Finally, we run particle filtering as usual, but restrict
sampling and weighting only to the objects in Cases 1 and 2.

D. Belief Compression

We next present a compression technique that can be
embedded in our factorized particle filter to further reduce
space consumption and improve inference speed. Recall that a
weighted set of particles for each object defines a distribution
over the the object’s location. The main advantage of the
particle representation is the ability to represent arbitrary
distributions. For example, when an object is first detected, its
location could be anywhere within a large and oddly-shaped
area. But as more readings arrive, often the location particles
stabilize to a small region. If this occurs, the object location
could be represented much more compactly by a parametric
distribution. For example, the particle-based representation
may require 1000 particles, but a three-dimension Gaussian
requires only 9 real numbers to store its parameters. Therefore,
compression to the parametric distribution saves considerable
space. Compression can also save time as it often allows infer-
ence to use fewer particles on the compressed representation.

Per-object based compression. We first describe how an
object’s particles can be compressed. Suppose that a weighted
set of particles over the location of object i defines a distri-
bution p̂(Ot,i) as in (4), and we wish to compress this into a
Gaussian q(Ot,i) with mean µ and covariance matrix Σ. This
can be done by minimizing the KL divergence KL(p̂‖q), which
is a standard measure of “distance” between distributions.
When q is Gaussian, the KL amounts essentially to a weighted
average of the squared distance between µ and the particles
comprising p̂. It can be shown that the optimal choice of q
uses the sample mean and empirical covariance matrix, that
is, µ =

∑
j w

(j)
t,i O

(j)
t,i and Σ =

∑
j w

(j)
t,i (O(j)

t,i −µ)(O(j)
t,i −µ)T .

The KL divergence at these parameters measures how much
is lost by compression, in the sense of the expected squared
error (e.g., in squared feet) of the resulting Gaussian.

Several methods are possible for choosing individual objects
to compress. One possibility is to compress an object whenever
its tag has not been read for several time steps. This is
applicable if an object leaving the read range means that it
will not be observed for a long time. An alternative method is
to rank the uncompressed objects by the KL of the compressed
representation, and compress the objects that would have the
least compression error. This method can be further augmented
with a threshold. That is, we only compress the particle
representation if the KL is below the threshold.

Decompression (sampling) and re-compression. Later on,
when a compressed object has its tag read again, we need to
perform the particle filtering steps on the compressed represen-
tation. To do this, we sample a small number of particles from



the Gaussian to decompress the representation. Empirically,
we find that many fewer particles are required for accurate
inference after decompression than for the original particle
filter, because the compressed representation tends to be well-
behaved. When the object leaves scope, if its particles are still
well-represented by a Gaussian, it can be re-compressed.

Our idea behind compression is similar to the Boyen
and Koller method [3]. However, their method performs
compression only, while our method embeds compression
within a larger sampling procedure. Moreover, we can employ
compression on a per-object basis and hence has greater
flexibility to explore the benefits of Gaussian and particle-
based representations wherever appropriate.

Comment on accuracy. Theoretically, there are no known
results (even in the machine learning community) that can
quantify the error from compression of arbitrary distributions
like our object location distributions. However, our experi-
ments provide empirical evidence that inference accuracy does
not degrade because object particles can indeed stabilize to a
small region when compression is applied (see Section V-D).

V. PERFORMANCE EVALUATION

We have implemented all our inference techniques in a
prototype system in Java. In this section, we present a detailed
analysis of our system using both real traces from mobile
RFID readers and large-scale synthetic data. Our results show
that our system can (1) offer clean event streams with accurate
location information (e.g., within a range of a few inches)
and is robust to noise; (2) offer significant error reduction
(e.g., an average of 54%) over SMURF [18], a state-of-the-art
RFID data cleaning technique; (3) scale to tens of thousands
of objects at a constant rate of over 1500 readings per second,
while naive particle filtering cannot scale beyond 20 objects.

A. Experimental Setup

Query. In all experiments, we ran the location update query
described in Section II over the event stream generated by
our system. Recall that this query examines the most recent
event of each object, and if the location in this event differs
from the previous event, outputs the tag id and new object
location. We ran this query over both real RFID traces and
simulated streams (detailed below). As noted in Section II,
to avoid fluctuating values in output, our system produced a
location event 60 seconds after an object came into the scope
of the reader during the current scan (although inference was
running in real-time).

Metrics. The accuracy of query output was measured using
two related metrics: The first is the average distance between
reported object locations and true object locations, called the
inference error. Assuming the application has a precision
requirement, e.g., within 0.5 foot from the true location, the
second metric measures the percentage of location updates
that fail to satisfy the requirement, called the error rate. The
performance metric is the average time that our system takes
to process each RFID reading, indicating our throughput.

Simulator. To obtain early insight into factors on perfor-
mance and perform scalability tests, we developed a simulator

for a warehouse scenario that produces synthetic RFID streams
with various controlled properties. The simulated warehouse
consists of consecutive shelves aligned on the y axis, with
objects evenly spaced on the shelves. Both shelves and objects
are affixed with RFID tags. For simplicity, we assume the same
height for all tags and hence ignore the z axis. An RFID reader
is mounted on a robot that moves down the y axis facing the
shelves. In every epoch, it travels about 0.1 foot (which can be
varied), stops, senses its current location and reads objects on
the current shelf with added noise, and sends both its sensed
location and the RFID readings to our system.

RFID readings were generated using a cone-shaped sensor
model as shown in Fig. 5(a) (where white is for high read
rate). The sensor model has a 30 degree open angle for the
major detection range, in which the read rate is uniform and its
value is controlled by a parameter, RRmajor, and an additional
15 degree angle for the minor detection range, in which the
read rate degrades from RRmajor down to 0. The parameters
for data generation include: (1) RRmajor, by default 100%,
(2) read frequency RF , by default once every second, (3) the
Gaussian model for reader motion, by default µm=0, σm=.01
for both x and y dimensions, (4) the Gaussian model for reader
location sensing, by default µs=0, σm=.01 for both x and y,
and (5) shelf area, 6 feet long and 2 feet deep by default. In
each of the following experiments, we varied one parameter
to create a trace. Each trace contained readings from a single
pass of scan of all the tags unless stated otherwise.

Finally, the parameter for inference is the number of parti-
cles P for each object. By default, we set P to 1000.

B. Model Calibration and Initial System Evaluation

In the section, we evaluate our system for its ability to
calibrate the probabilistic model based on the characteristics
of the RFID deployment, and test its sensitivity to various
factors. As a baseline, we also ran a method called uniform
that uniformly randomly samples an object’s location over
the overlapping area of the sensor model and the shelf. This
baseline is used as a bound on the worse-case inference error.
We used simulation in this set of experiments using 20 tags.

Learning RFID sensor model. As noted in Section III-A,
the most challenging part of modeling is the sensor model
because it varies with the type of reader, environmental noise,
etc. To test the flexibility and accuracy of our probabilistic
sensor model, we used a small trace consisting of readings of
20 tags for learning the model using EM. To investigate the
amount of information needed for accurate learning, we varied
the number of tags with known locations, assumed to be shelf
tags, in the training data from 0 to 20. When fewer than 20
tags were used as shelf tags, the rest of the tags were treated
as object tags whose true locations are unknown.

Fig. 5(a) shows the true sensor model used in simulation
and Fig. 5(b) and 5(c) show the sensor models learned with
20 shelf tags and 4 shelf tags, respectively. Most importantly,
our sensor model learned from 20 shelf tags is very close to
the true model. Such approximation degrades only gradually
as we reduce the number of shelf tags. When 4 shelf tags or
fewer are used, the learned sensor model starts to deviate fast



(a) True sensor model used
by the simulator

(b) Learned sensor model
using 20 shelf tags

(c) Learned sensor model
using 4 shelf tags

(d) Learned sensor model
for our lab RFID reader
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Fig. 5. Results of model calibration and initial system evaluation.

from the true model, because EM in this case is likely to be
stuck in some local maxima.

After training, we used the learned sensor models to perform
inference over a test trace with 10 object tags and 4 shelf tags,
using 1000 particles per object. Most learned models (except
those from 0 and 4 shelf tags) result in small inference errors
that are comparable to the results using the true model, and
much better than the baseline, as shown in Fig. 5(e). This
shows that our system can indeed learn accurate sensor models
from small traces with a few tags of known locations.

Handling RFID sensing noise. We then investigate the
sensitivity of our system to RFID sensing noise, for which
we varied the read rate in the reader’s major detection range,
RRmajor, from 100% to 50%. Fig. 5(f) shows the results
using a trace with 16 object tags and 4 shelf tags. Our system
again performs much better than the baseline, and degrades its
accuracy only slowly as RRmajor is reduced. This is because
inference can intelligently exploit the facts from the past to
smooth noisy object readings and derive object locations,
hence not highly sensitive to the changes of the read rate.
A related note that since density of tags essentially affects the
average read rate for the tags, this figure also indicates how
our system could perform when an increasing number of tags

are placed in a small area.
Varying read frequency. We next study the sensitivity of

our system to the read frequency of the reader. We varied
RF from once every second to once every 10 seconds. As
shown in Figure 5(g), our system is much more accurate than
the baseline. Furthermore, it is not very sensitive to the read
frequency because inference only requires a relatively small
number of readings of a tag to stabilize its location particles.

Varying initialization area. We further study the effect of
the shelf size on inference accuracy. We varied the length
of the shelf from 6 to 16 feet. We compared the baseline
and our system with two schemes for particle initilization:
over the whole shelf or over a slightly larger area than the
sensor model (§IV-A). The results are shown in Figure 5(h).
The uniform sampling approach is highly sensitive to the
shelf length, whereas our system using the sensor model-
based initialization is insensitive. Moreover, inference without
this heuristic performs as well when given a large number of
particles (e.g. 1000), since it has enough particles to cover the
increased area. For a smaller number of particles (e.g. 100),
however, its error rate increases more. Similar trends can be
observed for increased shelf depth.

Handling reader location noise. We next evaluate our



system’s ability to handle reader location noise. We generated
traces by varying the parameters of the reader location sensing
model: the systematic error along the y axis µys was varied
from 0 to 1, indicating a constant distance between the
measured location and the true location; the random noise σys
was set to 0.01 or 0.2, denoting little or high variation. Given
the amount of noise present, we used 5000 particles per object
to stabilize the performance. Fig. 5(i) shows the results of σys
= 0.2 (the figure for σys = 0.01 is similar, hence omitted).

Our system’s ability to correct reader location noise is
demonstrated by the difference between the curve (“motion
model On-true”), which is our system using the true location
sensing parameters, and the curve (“motion model Off”),
which is a simplified method that uses the reported location
as true location in inference. As µys increases, our system is
very effective in correcting the systematic error, mostly via the
evidence of shelf tags. In contrast, the lack of motion model
leads to degradation almost linearly in µys . Finally, the curve
(“motion model On-learned”) shows that we can very well
approximate the best performance by learning the parameters
of the location sensing model from a small training trace.

Handling both reader motion and location sensing noise.
We further added the reader motion noise to the trace used
in the previous experiment. In particular, we set the motion
noise parameter σm to 0.1 for both x and y dimensions. Then
we again varied the semantic error in location sensing as the
previous experiment. From Fig. 5(j), we observe similar trends
as before: our system, when supplied with the true parameters
of the reader motion and location sensing models, can correct
most of the error and hence provide high accuracy. In contrast,
the lack of these models results in fast degradation as sensing
becomes less accurate. Moreover, our system using the learned
model parameters can approximate the best performance using
the true parameters, although with a slightly increased gap
(compared to Fig. 5(i)) due to the addition of the motion noise.

In summary, in this initial set of experiments we explored
varies factors such as the read rate, the read frequency, the
noise in reader motion, the noise in reader location sensing,
and the size of shelf area for particle initialization. Overall,
we observed little or limited sensitivity of our system to these
factors. We also verified that our system is able to learn pa-
rameters of our sensor model, reader motion model, and reader
location model in each particular mobile RFID reader setting
and provide good approximation of the best performance that
can be achieved using the true model parameters.

C. Evaluation using a Real RFID Lab Deployment

To evaluate our system in real-world settings, we generated
a lab RFID deployment as shown in Fig. 6(a). We erected two
parallel shelves (assumed to be along the y axis), containing
80 EPC Gen2 Class 1 tags spaced four inches apart. Each shelf
has five evenly-spaced reference tags whose true positions are
known. We constructed a mobile reader by mounting a bi-static
antenna connected to a ThingMagic Mercury5 RFID reader on
an iRobot Create robot. The robot was programmed to scan
one row of tags and turn around to scan the other, at a speed
of .1 foot/sec with readings performed once per second. The

robot computed its location using dead reckoning, with error
in reported location up to 1 foot away from its true location.
To emulate various read rates, we varied the reader’s timeout
setting—the amount of time a tag is given to respond after the
initial signal is sent by the reader—from .25 to .75 second.

We used the shelf tags to create a training trace to learn the
sensor model for our antenna. The result in Fig. 5(d) shows
that our antenna’s read area is spherical with a wide minor
range, whose read rate is inversely related to an object’s angle
from the center of the antenna; this agrees well with manually
calibrated sensor models for similar Thingmagic readers [22].

We next compare our system to SMURF [18] using our lab
traces. SMURF is an adaptive smoothing technique that for
each epoch, decides if a tag has moved away from the sensing
area when there is a missed reading. Given that SMURF
cannot directly translate RFID readings into location events,
we augmented it with additional sampling: In each epoch, if
SMURF decides that the tag is still in range using smoothing,
a location of the tag is obtained by randomly sampling over the
intersection of the read range and the shelf. At some point, if
SMURF decides that the tag is no longer in scope, all sampled
locations generated in those consecutive epochs are averaged
to produce a location estimate. Since SMURF cannot learn the
sensor model from data, we further offer the read range based
on our learned model to enable sampling of the tag location.

Fig. 6(b) shows results of our system, the improved SMURF,
and uniform. The first three rows of results are from runs using
a small imagined shelf, and the next three rows using a large
imagined shelf. Since the read range can be large, such shelf
information helps restrict the area for location sampling in all
three algorithms. As can be seen, the accuracy of our system
is within 0.44 to 0.64 foot. The error of SMURF is 1.6 to 2.0
times of our system when the shelf area is small and over 2.3
times when the shelf area is large. Overall, our system offers
an average of 54% error reduction over SMURF.

These differences are due to two reasons: First, SMURF
can not correct the error in reported reader location present in
our traces. While smoothing is affective, sampling of object
location is always performed from the reported reader location.
This explains the difference between our system and SMURF
along y where the robot drifted significantly away from the
reported location. Second, object location sampling we added
to SMURF is rather primitive compared to the sampling-based
inference used in our system. The difference in their effects
is shown by the error along x: the error of SMURF is strictly
half of the shelf size in x, as inaccurate as uniform sampling.
D. Scalability Evaluation using Simulation

We next show how our system improves over basic particle
filtering in scalability while maintaining high accuracy using
the three advanced techniques presented in §IV. In scala-
bility tests, we assume that the application has an accuracy
requirement of within .5 foot from the true location. We
created synthetic streams from two rounds of scan of a large
warehouse. All measurements were obtained from a 3Ghz
dual-core xeon processor with 6GB memory for use in Java.

Varying number of particles. We first investigate how
many particles are needed to meet the accuracy requirement.



(a) A robot-mounted reader scanning
two rows of tags

Timeout Our System SMURF (improved) Uniform Sampling
(ms) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft) X(ft) Y(ft) XY(ft)

250 (SS) 0.29 0.33 0.44 0.33 0.60 0.70 0.33 1.42 1.46
500 (SS) 0.28 0.39 0.48 0.33 0.88 0.94 0.33 1.42 1.46
750 (SS) 0.27 0.35 0.44 0.33 0.76 0.83 0.33 1.42 1.46
250 (LS) 0.17 0.41 0.44 1.31 0.60 1.44 1.31 1.42 1.93
500 (LS) 0.35 0.36 0.51 1.31 0.58 1.43 1.31 1.42 1.93
750 (LS) 0.55 0.31 0.64 1.31 0.69 1.48 1.31 1.42 1.93

(b) Inference error of three algorithms. SS denotes a small imagined shelf (0.66x4ft) and LS a
large imagined shelf (2.6x4ft).

Fig. 6. Evaluation of our system, an improved version of SMURF, and uniform sampling using a real RFID lab deployment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  100  1000  10000

In
fe

re
nc

e 
E

rr
or

 in
 X

Y
 P

la
ne

 (
ft

)

Number of Particles

Unfactorized
Factorized

(a) Varying numbers of particles
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(b) Scalability test - inference error
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(c) Scalability test - CPU time
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(d) Number of particles used
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(e) Inference error for a noisy trace
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(f) CPU time for a noisy trace

Fig. 7. Scalability results of basic particle filter, factorization, spatial indexing, and belief compression.

Intuitively, a technique that needs more particles is less likely
to scale. We ran the basic particle filter (unfactorized) and our
factorized particle filter. The parameter varied is the number
of particles P : P unfactorized particles for the basic filter and
P particles per object for the factorized filter, which consume
the same amount of space. As Fig. 7(a) shows, our factorized
filter quickly stabilizes its accuracy at around 0.2 foot when
P reaches 1000. In contrast, the basic filter slowly improves
its accuracy and has not reached 0.5 foot even with 10,000
particles. As explained in §IV-B, the basic filter cannot scale
due to its excess need of particles to achieve decent accuracy.

Varying number of objects. We next increased the number
of objects from 10 to 20,000 and ran all three advanced
techniques as well as the basic filter. Fig. 7(b) and 7(c) report
on the inference error and average time taken to process each
reading (on a log scale). As can be seen, given 20 objects, the
basic filter takes about 10 second to process each reading, by
using 100,000 particles yet still violating the accuracy require-
ment. The factorized filter, by using 1000 particles per object,
well meets the accuracy requirement and improves processing
cost significantly. However, this cost still degrades fast as the
object count increases. Adding a spatial index to the factorized
filter reduces the objects processed at each time to a small
number, yielding a much reduced cost at a constant 10 msec

per reading. Finally, belief compression is applied whenever
an object leaves the scope of the reader. Then inference over
the compressed representation in a subsequent round of scan
in the warehouse can use fewer particles (in this case only
10) after decompression, leading a drastically reduced cost
of 0.1 msec per reading. Neither spatial indexing nor belief
compression causes obvious degradation in accuracy.

Fig. 7(d) further shows the number of particles P used
by those techniques. Most notably, factorization requires a
linear number in the object count, whereas belief compression
reduces it to a constant because objects that are not seen can
undergo compression and yield their particles to the objects
to be processed. Even for 20,000 objects, belief compression
only requires 20MB memory to run inference.

We also ran the scalability test with more noise in reader
location sensing, in particular, µs=0.2, and σs=0.2 for both x
and y dimensions. This trace requires more particles to handle
the noise. Fig. 7(e) and Fig. 7(f) show the accuracy and time
per reading measurements of our system when using all three
advanced techniques. To explore the accuracy and efficiency
tradeoff, we also ran our system using a simplified model
(labeled ‘motion model off’) that omits the reader motion and
location sensing models, always using the reported location
as the true location. In addition, we varied the number of



particles used in decompression (e.g., 50 and 100) in the
belief compression technique. As Fig. 7(e) shows, all four
configurations of our system ((‘motion model on’, ‘motion
model off’) x (50, 100)) satisfy the accuracy requirement,
while having the motion model provides better accuracy than
otherwise and using 100 particles is more accurate than using
50 particles. For time per reading, Fig. 7(f) shows that most
configurations of our system increase the cost only slowly as
the object count goes up. Moreover, the trend among the four
configurations is exactly reversed; omitting the motion model
and using 50 particles offers the best performance, which can
handle over 1500 readings per second when given 20,000
objects. The memory usage of all these runs was within 20MB.

VI. RELATED WORK

Directly relevant research has been addressed in previous
sections. We survey broader areas of related work below.

RFID stream processing. The HiFi project[13] offers a
declarative framework for RFID data cleaning and processing.
Its techniques focus on temporal and spatial smoothing of
readings generated by a fixed set of static readers. SMURF
[18] is a particular cleaning approach employed in HiFi and
we experimentally demonstrate the benefits of our approach
over SMURF for mobile readers. Architectural issues for
probabilistic RFID processing have discussed in context of
Data Furnace [15] but the research is still underway.

Sensor data management [6], [8], [23], [30] mostly consid-
ers environmental phenomena such as temperature and light.
Techniques for data acquisition [5], [23] and model-based
processing [6] are geared towards queries natural to such
data (e.g., aggregation). In contrast, RFID data captures object
identification and to support querying, such noisy, primitive
data needs to be first transformed to clean, precise location
events. Model-based views over sensor streams [7] employ
probabilistic inference but are restricted to GPS readings that
already reveal object locations and small numbers of objects.

RFID databases. RFID data management issues including
inference are discussed in [4]. A high-level design of a
large-scale RFID system is presented in [34]. Application-
specific rules are used to archive and compress RFID data
into databases [33]. Inside RFID databases, advanced data
compression techniques are available [16], data cleansing is
integrated with query processing [27], and high-level infor-
mation is recovered from incomplete, noisy data by exploiting
known constraints and prior statistical knowledge [36].

Object and person tracking [21], [26], [29] focuses on track-
ing moving targets when the association between observed
features and object identities is uncertain. In the RFID setting,
however, object identities are given as part of the readings; the
challenge is to translate high-volume noisy readings into clean
precise location events. Hence, models from this research area
are not suitable for our problem. Some probabilistic models
are developed for GPS readings [21], [26], but these do not
apply to our problem, because unlike GPS, RFID readings do
not reveal locations directly. Moreover, the work in this area
is designed for small numbers of objects (on the order of 10
objects), and does not scale to a warehouse setting.

RFID-equipped robots have been used to estimate locations
of robots [19] or RFID-affixed objects [17], [10]. Most impor-
tantly, this line of work is not designed to produce queriable
streams for scalable stream query processing—existing work
does not support online inference over RFID streams [10] or
does so only for a small set of objects without considering
the performance [17]. In contrast, our work employs a suite of
techniques to produce queriable streams and scale inference to
large numbers of objects at stream speeds. Second, modeling
in previous work is limited. The sensor model is manually
calibrated [17], [10], which is problematic because reader
performance depends greatly on the characteristics of the
environment. The reader motion model is also omitted in [10],
which loses the ability to correct reader location noise.

VII. CONCLUSIONS

In this paper, we presented a probabilistic approach to
translate noisy, raw data streams from mobile RFID readers
into clean, rich event streams with location information. Our
experiments show that our approach offers 54% error reduc-
tion over a state-of-the-art RFID cleaning approach such as
SMURF while scaling to read rates of over 1500 readings/sec
for numerous objects. In future work, we plan to address full
query processing over inferred data for various monitoring
applications. We will also enhance our techniques to address
inter-object containment relationships and support handheld
readers that lack reader location information.
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