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Abstract
Despite its promise, RFID technology presents numerous chal-
lenges, including incomplete data, lack of location and contain-
ment information and very high volumes. In this work, we present
a novel data interpretation and compression substrate over RFID
streams to address these challenges in enterprise supply-chain en-
vironments. Our substrate employs a time-varying graph model
to efficiently capture inter-object relationships such as co-location
and containment. It then employs a probabilistic inference algo-
rithm to determine the most likely location and containment for
each object and an efficient stream compression algorithm to re-
move redundant information from the output stream. We have im-
plemented a prototype of our interpretation and compression sub-
strate and have evaluated it using synthetic RFID streams that em-
ulate a warehouse and supply-chain environment. Our results show
that our inference techniques provide good accuracy while retain-
ing efficiency, and our compression algorithm yields significant re-
duction in data volume.

1 Introduction
RFID is a promising electronic identification technology
that enables a real-time information infrastructure to pro-
vide timely, high-value content to monitoring and tracking
applications. An RFID-enabled information infrastructure
is likely to revolutionize areas such as supply chain man-
agement [14], healthcare [14], pharmaceuticals [14], postal
services [17], and surveillance [18] in the coming decade.

Data stream management is central to the realization of
such a monitoring and tracking infrastructure. While data
stream management has been extensively studied for envi-
ronments such as sensor networks [31, 24, 7, 8, 27, 28], ex-
isting research has mostly focused on sensor data that cap-
tures continuous environmental phenomena. RFID data—
a triplet <tag id, reader id, timestamp> in it’s most basic
form—raises new challenges since it may be insufficient, in-
complete, and voluminous.

Insufficient information: Since RFID is inherently an
identification technology designed to identify individual ob-
jects, a stream of RFID readings does not capture inter-
object relationships such as co-location and containment.
For instance, a RFID stream does not directly reveal what
items are packaged in which cases or which pallets are adja-
cent to one another on a warehouse shelf.

Incomplete data: Despite technological advances, RFID
readings are inherently noisy with observed read rates sig-
nificantly below 100% in actual deployments [10, 19]. This
is largely due to the intrinsic sensitivity of radio frequen-
cies (RFs) to environmental factors such as occluding metal

objects [11] and contention among tags [12]. Missed read-
ings result in lack of information about an object’s location,
making the tasks of determining location, containment and
anomaly detection significantly more complex.

High volume streams: Perhaps the key distinguishing
characteristic of RFID streams are their high volumes—
large deployments are expected to generate unprecedented
volumes of data that can overwhelm the data stream system.
For instance, the largest retailers are expected to generate
millions of terabytes of data in a single day when tagging
each item [29]. Hence, it is imperative that data be filtered
and compressed close to the hardware while preserving all
useful information.

Recent research on RFID data cleaning [13, 19, 20] has
employed temporal and spatial smoothing to alleviate the
problem of missed readings. Although restricted to per-tag
cleaning or multi-tag aggregate cleaning in a given location,
these techniques do not capture relationships between ob-
jects or estimate object locations. Probabilistic RFID pro-
cessing has been recently proposed as a more general solu-
tion [15] but this research is still in its infancy. Compression
techniques for RFID warehouses use expensive disk-based
operations such as sorting and summarization [16] or em-
ploy application-specific logic [30]. Hence, they are unsuit-
able for fast low-level compression of RFID streams.

In this paper, we present SPIRE, a system that addresses
the above challenges. SPIRE departs from the prior work by
building an interpretation and compression substrate over
RFID data streams. Such a substrate enables accurate in-
terpretation of observed data, even though the raw data is
insufficient and incomplete. Further, it infers inter-object re-
lationships such as containment and location. Finally, it en-
ables online compression by discarding redundant data such
as an unchanged object location or an unchanged contain-
ment between objects. Online compression significantly re-
duces data volume, thereby expediting processing and re-
ducing data transfer costs.

Our interpretation and compression substrate employs
three key techniques, which are also main contributions of
this paper: 1) a time-varying graph model that captures pos-
sible object locations and containment relationships with
its stream-driven construction, (2) a probabilistic algorithm
that infers the most-likely locations and containment rela-
tionships of objects, and (3) an output algorithm that trans-
forms an input stream to a compressed, yet informative out-
put stream. We have implemented our interpretation and
compression substrate and have evaluated it using synthetic
RFID streams emulating an enterprise supply-chain environ-
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Figure 1: A sequence of observations in a warehouse.

ment. Our results show that our inference techniques pro-
vide good accuracy while retaining efficiency, and our com-
pression algorithm yields significant reduction in data vol-
ume.

The rest of the paper is organized as follows. Section 2
formulates the problem. Sections 3, 4, and 5 describe our
interpretation and compression substrate. Section 6 presents
our experimental results. Finally, Section 7 presents related
work, and Section 8 our conclusions.

2 Problem Statement
Before defining the problem, we present the notion of the
physical world. A physical world covers a specific geo-
graphical area comprising a set of objects O, a set of pre-
defined, fixed locations L, and an ordered discrete time do-
main T . The set of locations can be either pre-defined logi-
cal areas such as aisle 1 in warehouse A, or (x, y, z) coordi-
nates generated by a positioning system.

At time instant t, the state of the world includes:

1. the set of objects present in each location, encoded
by the boolean function resides(oi ∈ O, lk ∈ L, t)
which is true iff object oi is present at location lk; and

2. the containment relationship between objects, encoded
by the boolean function contained(oi ∈ O, oj ∈ O,
lk ∈ L, t), which is true iff both objects oi and oj are
in location lk and oi is contained in oj .

In this work, we refer to the functions resides and
contained as the ground truth. The state of the world

changes whenever an object enters the world, an object ex-
its the world through a designated channel, or an existing
object changes its location or containment relationship with
other objects. The set of locations L also contains a special
location called unknown. In particular, an object can be in
the “unknown” location if it is not present in any pre-defined
location (e.g., if it is in transit between two locations) or if it
exited the physical world improperly (e.g. was stolen).

RFID readers provide a means to observe the physical
world. The readings produced at time t are collectively
called an observation of the world. In this work, we focus
on readers mounted at fixed locations—a common configu-
ration in today’s RFID deployments. For such fixed readers,
a reading captures the location of the object (which is the
same as the location of the reader). 1 Such readings, how-
ever, are inadequate for capturing the containment between

1The assumption of precise location does not hold when mobile readers
are used. Interpretation and compression of mobile reader data is a topic of
our future work.

objects. The observation of the world may be incomplete
since some objects may not respond to reader queries (due
to technological limitations).

The data interpretation problem is to construct an ap-
proximate yet accurate estimate of the state of the world
based on the observations thus far. We define an approx-
imation using functions resides and contained that given
specific arguments, return probabilistic values representing
the likelihood of the function being true. Then the data in-
terpretation problem can be formulated as: given the current
time now and an object oi, report

1. the most likely location of the object, denoted by
argmaxk resides(oi, lk, now), and

2. the most likely container of the object, denoted by
argmaxj,k contained(oi, oj , lk, now).

Note that in our definition, data interpretation over streams is
only concerned about the present state of the physical world
and not the past or the future.

The data compression problem is to transform the input
stream into an output stream with a reduced data volume
but with no loss of information. Such compression requires
the knowledge of what data is redundant and thus can be
safely discarded; in this work, we use interpretation to ob-
tain such knowledge. The combination of interpretation and
compression yields an output stream that (i) augments the in-
put stream with additional, likely information about objects,
and (ii) has a significantly reduced volume of data.

A running example. A warehouse scenario is depicted in
Figure 1, where RFID readers are installed above the load-
ing dock, the conveyor belt, and the packaging area. At time
t=1, the reader at the loading dock reports objects 1 to 6,
denoted by the shaded nodes. These nodes are arranged ac-
cording to the packaging levels that the reported tag ids in-
dicate [9]. Object 7 is also present but was missed by the
reader, denoted by an unshaded node, i.e. a missed reading.
Containment between objects, depicted by the dashed edges,
is not reported by the readings and often uncertain. Exam-
ples of ambiguous containment are the containment between
items 4, 5, 6 and cases 2, 3 at this time.

At time t=2, case 2 is scanned individually on the con-
veyor belt. It is possible to confirm the containment between
the case and its item(s) now if the domain knowledge of the
deployment reveals such special readers that scan contain-
ers of a particular type one at time. At t=3, case 3 is scanned
on the belt and a new case 9 is read in the packaging area.

At time t=4, item 6 is read at the belt again (it fell off
its case at t=3 and stayed here). A new pallet 8 is assem-
bled from the three cases in the packaging area. Of partic-
ular interest is item 10 that was removed from its case and
reveals no further information, i.e. a missing object. A miss-
ing object should be distinguished from a missed reading of
an existing object (e.g. case 2 at this time).

We have developed a data interpretation and compres-
sion substrate to address the above problem. The substrate,
which is depicted in Figure 2 consists of (i) a data capture
module that implements a stream-driven construction of a
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time-varying graph model to encode possible object loca-
tions and containments; (ii) an interpretation module, which
employs probabilistic inference to estimate the most likely
location and containment for an object, and (iii) a compres-
sion module that outputs stream data in an compressed for-
mat with smoothing. The next three sections describe these
techniques in detail. This substrate runs on a low-level per-
tag cleaning module such as [19]. It is important to note that
the only required functionality of per-tag cleaning for this
work is deduplication, which removes redundant readings
of a tag that resides in overlapping ranges of readers.

3 Data Capture
This section describes our data capture technique to con-
struct a time-varying graph model from the raw stream.

3.1 A Time-Varying Colored Graph Model
Our graph model G = (V,E) encodes the current view of
the objects in the physical world, including their reported lo-
cations and (unreported) possible containment relationships.
In addition, the model incorporates statistical history about
co-occurrences between objects. Example graphs for the ob-
servations in Figure 1 are shown in Figure 3.

The node set V denotes all RFID-tagged objects in the
physical world. Since we are assuming a supply-chain en-
vironment, an object has a packaging level of an item, case
or a pallet; the packaging level is encoded in the RFID tag
ID [9]. Our graph is arranged into layers, with one layer for
each packaging level. Each node has a color that denotes its
location; thus a node may be assigned one of (L − 1) col-
ors, one for each known location. A node is uncolored if its
location is currently unknown. The node colors are updated
using the stream of readings in each epoch (the color of a
node is the color of the location where it is observed by a
RFID reader). If an object is not read by any reader in a
particular epoch, its node becomes uncolored. However, un-
colored nodes retain memory of their most recent color and
the observation time denoted by (recent color, seen at).

The directed edge set E encodes possible containment
relationships between objects. A directed edge oi → oj

denotes that oi contains object oj (e.g., a case i contains
item j). We allow multiple outgoing and incoming edges
to and from each node, indicating an object such as a case
may contain multiple items, and conversely, an item may be

contained in multiple possible cases (our probabilistic infer-
ence will subsequently chose only one of these possibilities).
More generally, edges can exist between different combina-
tions of colored and uncolored nodes, with the exception that
an edge cannot connect two nodes of different colors; that
is, containment is prohibited for two objects resident in two
different locations. We also allow edges to cross layers, for
instance to (temporarily) capture the containment between
objects in non-adjacent layers when the reader fails to read
any of the objects in the adjacent layer at some time. Such
flexibility allows the graph to capture a wide variety of con-
tainment relationships.

To enable inference, the graph also encodes addi-
tional statistics. Each edge maintains a bit-vector re-
cent collocations to record recent positive and negative ev-
idence for the collocation of the two objects. The bit is
set every time the two nodes connected by the edge are
assigned the same color. Further, each node maintains
past certain parent statistics to remember the last confirmed
parent edge, either revealed by a special reader or as a result
of inference with high certainty, the time of confirmation,
and the number of conflicting observations obtained thus far.
Among all incoming edges, only one can be a confirmed
edge, denoted by the edge with double arrows in Figure 3.

3.2 Stream-Driven Graph Construction
We assume that time is divided into epochs and the graph
is updated using stream data from each epoch. Our con-
struction algorithm, shown in Figure 4, takes the graph G
from the previous epoch and a set of readings Rk from each
reader k (1 ≤ k ≤ K) in the current epoch, and produces
a new graph G∗. An important feature of the algorithm is
that it proceeds incrementally as readings arrive from each
reader, guaranteeing a consistent output G∗ after seeing the
readings from all readers in an epoch. This ensures that the
algorithm works even when the various readers are coarsely
synchronized in time.

Given Rk of each reader, the graph update procedure pro-
ceeds in four steps, as shown in Figure 4.

Step 1. Update and color nodes (lines 2-6): If a new
object is observed for the first time, a new node is created
in the graph. For each observed object, the corresponding
node is colored with the color of the reader that observed it
(a reader is colored with the color of the location where it
resides). Figure 5 (a) shows the result of step 1 when the
graph update procedure is applied to Gt=3 with RC .

Step 2. Update edges (lines 9-13): Next, if two nodes
in adjacent layers have the same color, an edge is added be-
tween them if one does not exist. Doing so enumerates all
possible containment relationships (e.g., a blue item can be
contained in any of the blue cases that are present on a shelf).
If an adjacent layer does not contain a node of a particular
color (due to missed readings), an edge may be drawn to a
node of that color in the next higher layer. Thus, if a blue
item is observed but no blue cases are present in the graph,
the item is assigned to a blue pallet.

This step potentially requires us to compare each node in a
layer to all nodes in the adjacent layer. A slight optimization
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Figure 3: Examples of the time-varying colored graph model.

(2)

(3)

(4)

(1)

procedure graph_update(G, Rk)
G: current graph, Rk: set of readings from reader k  
begin
1.      C = location of the reader k
          /* create and color nodes */
2.      foreach reading r ∈ Rk  do       
3.          v = node in G corresponding to the object of the reading r  
4.          if v  == null then                                      // create a new node
5.            v =  a new node created in G for this object
6.          v.recent_color = C, v.seen_at = now        // color each node
          /* create, remove, and update statistics of edges */
7.      foreach packaging level L (starting from 1) present in Rk  do
8.        foreach each node v in color C at level L  do
9.          if C is a new or initial color of v  or then   // create new edges
10.          above = closest level above L  containing nodes colored in  C 

11.          below = closest level below L  containing nodes colored in  C 

12.          create edges from the nodes in level above to v if they don't exist
13.          create edges from v to the nodes in level below if they don't exist
14.        foreach edge e incident to v do               
15.          v' = the other node of e
16.          if v' has a different color as v  then        // remove an edge
17.            drop the edge e from G
18.          if v' is a parent of v and the reader k confirms v as the only 
                       top-level container then                   // remove an edge
19.             drop the edge e from G
20.          if e.update_time = now  then
21.            continue 
22.          right shift e.recent_history to expire old information                 
23.          if v' has the same color as v  then         // update statistics     
24.            e.recent_collocations[0] = True
25.            if v' is a child of v and the reader k confirm that v contains v'  then
26.              v'.set_past_certain_parent(e, now);
27.          else                                                        // update statistics                              
28.            e.recent_collocations[0] = False
29.            if e is set as the past certain edge of v (or v' )  then
30.              v(v').weaken_past_certain_parent(e);
31.          e.update_time = now 
end

Figure 4: Algorithm for stream-driven graph update.

is to restrict such comparisons to the nodes that are assigned
the color C for the first time. Figure 5 (b) illustrates this step.

Step 3. Prune graph (lines 16-19): Whereas the previous
step adds new edges to the graph, in this step, we remove
outdated edges from the graph. An edge is removed if the
corresponding vertices have different colors – this happens
when two previously co-located objects are now reported in
different locations. Similarly, edges can be dropped when
special readers confirm a containment, allowing us to elimi-
nate other possibilities (e.g., if a pallet is confirmed to be the
container of a case, then all other edges between this case
and other pallets can be dropped). Special readers – such
as a belt reader that reads exactly one pallet at a time —
improve the accuracy of the graph model, while helping us
prune unnecessary edges. Figure 5 (c) shows the removal of
an edge between nodes 3 and 6 using readings RB from the
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Figure 5: Intermediate steps of graph update.

conveyor belt. Removing this edge results in the final graph
shown for t=4 in Figure 3.

Step 4. Update Statistics (lines 20-30): This step updates
statistics of the edges that have at least one node colored
in step 1. Given an edge e, if the two linked nodes have the
same color, recent collocations of e is updated by setting the
most recent bit to True. Furthermore, if the reader k is able
to confirm the containment denoted by e, it is used to update
the past certain parent of the child node. If one of the linked
node is uncolored, the most recent bit of recent collocations
is set to False. In this case, we also check if e was set as
the certain parent edge of the child node, and if so count
the current observation as a conflicting observation of the
confirmation. These statistics play a key role in containment
inference as we shall show shortly.

Complexity of graph update. The total cost of updat-
ing a graph G(V,E) using reading sets R1, . . ., RK is

∑
k

cost(Rk). For each reading set Rk, only the colored nodes
and their incident edges are considered. As can be seen from
the above algorithm, The number of colored nodes in step 1
is |Rk|. The cost of step 2 is dominated by the size of the
largest complete bipartite graph (|Rk|/2)2.

Steps 3 and 4 together examine every edge incident to a
colored node. Node that these edges may connect to an un-
colored node or a node of a different color, and thus cannot
be bounded only using |Rk|. However, if we examine steps
3 and 4 across all readers, the following observations hold:
an edge with two different node colors is visited twice, one
for each color, and then removed from the graph; an edge
with the two nodes in the same color or only one node col-
ored is visited only once; finally, an edge with neither node
colored is not visited. We use πR1,...,RK

(G) to denote the
projection of the original graph onto the nodes belonging to
R1, . . . , RK and the edges incident to those nodes. Then
the cost of steps 3 and 4 across all readers is bounded by
the number of newly created edges plus twice the size of
πR1,...,RK

(G).
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So, the total cost becomes:

=
∑

k(cost1(Rk) + cost2(Rk)) +
∑

k cost3,4(Rk)
≤

∑
k(|Rk|+ |Rk|2) + (

∑
k |Rk|2 + 2|πR1,...,RK

(G)|)

This yields a complexity O(
∑

k |Rk|2 + |πR1,...,RK
(G)|) for

complete graph update in an epoch.

4 Data Interpretation
The graph constructed from the data capture step can result
in nodes that are uncolored or possess multiple parent nodes.
The data interpretation step estimates the most likely loca-
tion of an unreported (uncolored) object and the most likely
container (parent) of an (either reported or unreported) ob-
ject. We present a probabilistic inference technique that in-
cludes edge inference to address ambiguous containment,
node inference to address unknown locations, and an itera-
tive algorithm that iteratively applies both to the entire graph
in an alternating fashion.

4.1 Edge inference
Edge inference is applied to each incoming edge of a node v
regardless of whether the node is colored or not. It assigns a
probability value pei

to each edge; the edge with the highest
probability value is then chosen as the most likely container
of this object. Past history is used to compute probability
values, which includes (i) the recent history of co-locations,
as represented by the bit-vector recent collocations and (ii)
the last confirmation of an edge either by a special reader or
as a result of inference with high certainty, as captured in the
data structure past certain parent. The use of past history
makes edge inference less sensitive to missed readings.

Probabilistic Framework. Edge inference at a node con-
sists of two steps, as illustrated in Figure 6(a).

Step 1. Assign weights: The first step computes a
weight wei

for each incoming edge using the bit-vector re-
cent collocations.

wei =
∑S

i=0
recent collocations[i]

iα∑S
i=0

1
iα

(1)

where S is the size of the bit-vector and rece-
nt collocations[i] indexes into the ith bit of this bit vector.
This history is weighted using the parameter α and then nor-
malized. α essentially implements a Zipf distribution, where

α > 0 assigns a higher weight to recent history, while α = 0
weighs all prior co-locations equally.

Step 2. Compute Probabilities: The next step builds a
probability distribution across all incoming edges. It com-
putes a probability pei

for each edge by balancing the rela-
tive weight on this edge against the last confirmation of this
edge. A parameter β is used to weigh these two factors. The
probability pei

of the edge ei is:

pei
= (1− β)m(ei) + βwei

(2)

pei is then normalized across all incoming edges to yield the
final distribution. The memory function mei

takes the value
‘1’ if ei is the last confirmed edge and ‘0’ otherwise; recall
that an edge may be confirmed by special readers such as
belt readers or as a result of inference with high certainty.
Since at most one parent edge of a node can be a confirmed
edge, such an edge gains an extra weight and is favored over
other possibilities until other edges gain sufficient history to
outweigh it. Figure 6(a) shows such distribution across three
parent edges, e1, e2, and e3, with e1 assigned the additional
1− β due to its past confirmation.

Edge inference involves several parameters: (1) S the size
of the collocation history, (2) α, the zipf parameter, (3) β, the
partition of beliefs between the recent history and the past
confirmation, and (4) m(ei), the memory of the past confir-
mation of an edge ei. Section 6 quantifies the sensitivity of
the inference to these parameters.

4.2 Node inference
Node inference is applied to an uncolored node v—an object
with an unknown location—and attempts to infer the most
likely location of the object or confirm its absence from any
known location. The key challenge in node inference arises
from a three-way tradeoff among object dynamics, contin-
uation of past state, and absence with no other knowledge.
These situations are depicted in Figure 6(b) for node 2 at
time t=4. This object was last seen in location B at time
t=2 and has a few possibilities for its current location: it is
still in location B but the reading in this location was missed
(continuation of past state); it moved to location C with its
contained objects and its reading was missed in C (object
dynamics); it disappeared from B and its current location is
unclear (absence with no other knowledge).

Probabilistic Framework. To account for all these pos-
sibilities, the node inference builds a probabilistic distribu-
tion over all possible colors of a node v, including (1) the
most recent color of the node, (2) the colors of its neighbor-
ing nodes that can be propagated through the edges, and (3)
a special color “unknown”. Among all possible colors, the
one with the highest probability represents the most likely
estimate of this object’s location.

The probability of the node v having color c is given as

pc(v) = (1− γ)
1

(now − seen at)θ
δ(v, c) + γ

∑
ei→c

pei

Z
(3)

δ(v, c) =
{

1, c is the most recent color of v
0, otherwise

, Z =
∑

ei→cj

pei
,
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where ei → c means that the edge ei propagates the color
c to v, δ(v, c) is 1 for the most recent color of v and 0 oth-
erwise, and Z is the normalization factor across all edges
of v that propagate colors to v. Parameter γ weighs colors
that originate from the node against colors that propagate
through the edges. Parameter θ controls the rate of fading
for a color. The probability of the special color “unknown”
is:

punknown(v) = (1− γ)(1− 1
(now − seen at)θ

) (4)

Figure 6(b) shows the resulting probability distribution over
three colors, B, C, and “unknown”.

Node inference is influenced by parameters (1) γ which
weighs the previous node colors against colors propagating
from edges; and (2) θ exponent of the function Wfading =
(now−seen at)−θ that controls the probability distribution
between the fading color and the “unknown” color.

4.3 Iterative Inference
Iterative inference combines node and edge inference to it-
eratively cover the entire graph G(V,E) and derive the most
likely location and containment for each object. Traditional
graph traversal algorithms such as breadth-first and depth-
first search can not be applied here due to the dependency
between edge and node inference. Specifically, node infer-
ence at an uncolored node involves the colors of its neigh-
boring nodes and the probabilities of the edges of those
nodes, and can not begin until these dependencies are first
resolved.

The key idea of our inference algorithm is to start in-
ference from the colored nodes—the nodes with known
locations—and run it iteratively across the graph, through
the edges linked to the colored nodes, to the uncolored nodes
incident to these edges, to the edges linked to these nodes,
and so on. In this way, inference sweeps through regions
of the graph in increasing distance from the colored nodes;
the colors and edge probabilities determined at nodes in a
shorter distance can contribute to the inference at nodes in a
larger distance.

For ease of composition, we classify nodes based on their
closest distance, d, from a colored node in the graph. The
iterative inference algorithm runs in increasing value of d,
as illustrated in Figure 7 (we omit detailed pseudo code due
to space constraints). The algorithm first runs edge infer-
ence on all incoming edges into nodes labeled d = 0. These
nodes represent observed objects and are colored in two col-
ors, dark and light, in this example as shown in Figure 7(a).

Only edge inference for containment is made for them. Af-
ter that, the algorithm runs edge inference, followed by node
inference on nodes labeled d = 1, as shown in Figure 7(b).
In this example, node 9 gains the light color and node 4 gains
the dark color from their node inference. Finally, the algo-
rithms runs for nodes labeled d = 2, shown in Figure 7(c).
At this point, node 6 gains the light color and node 8 is iden-
tified as a missing object. Note that node 4 and node 6 now
have different colors. However, since both the colors are in-
ferred, i.e. uncertain, the edge between them is preserved
for use in future inference.

Complexity analysis. Since each node of the graph is
visited only once in the iterative inference algorithm, it is
not hard to see that the complexity of inference is bounded
by the number of edges examined. Given that each edge can
be visited at most twice, once from each node, the overall
complexity is O(|E|).

5 Stream Output with Compression
The output module takes the results of data interpreta-
tion and transforms them into an compressed output event
stream. The key idea behind compression is that only those
readings that indicate a state change need to be included in
the output stream. The state of an object is said to have
changed if its location or its containment changes. In the
absence of a state change, all readings merely confirm the
current state of the physical world and are redundant (and
can be safely discarded). This idea leads to two compression
techniques, location compression for stationary objects, and
containment compression for stationary and mobile objects
alike. Note that such compression is a superset of per-tag
smoothing [19, 20], which is restricted to a single location
and based on past observations of a tag in that location.

The output algorithm takes the results of inference, i.e. the
most likely estimates of the location and container of each
object, and generates output events in a compressed format.
If an object is stationary—resident at the same location for
a period of time—only an initial event needs to be output
to indicate its first arrival at this location and all subsequent
readings in the same location can be safely discarded. This
compression technique is called location compression and
works for stationary objects. Separately, if the containment
between two objects has not changed for a period of time,
only one event needs to be output to indicate the start of
this relationship. The compression technique, called con-
tainment compression, exploits stable containment between
objects and works for both stationary and mobile objects.

The compressed output can comprise five event types. For
location update, there are three types of events, startLoca-
tion(object, location, startTime), endLocation(object, loca-
tion, endTime), and missing(object, location, time). Start
and end location events always occur in pairs. Missing
events are singletons appearing outside any start-end loca-
tion pair. For containment updates, we use events start-
Containment(object, container, startTime) and endContain-
ment(object, container, endTime); these events always occur
in pairs.
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The compression algorithm proceeds in two steps after
each inference.

Step 1. Containment compression: If the current inferred
container c of an object differs from the previously reported
container c′, the previous containment is ended using an
endContainment event and a new containment is begun us-
ing startContainment.

Step 2. Location compression: If the currently inferred
location l differs from the previous location l′ then there are
three scenarios to consider. (i) both l and l′ are known loca-
tions: The algorithm checks if l is an inferred location and
further if it conflicts with an existing containment that was
output or a new containment to be output. If l passes the
conflict check, its previous location is ended by an endLoca-
tion event, and a new location is started with a startLocation
event. (ii) l′ is a known location and l is unknown: the previ-
ous location is ended and a missing event is generated. (iii)
l′ is unknown and l is a known location. Simply a new loca-
tion is started.

The events in the compressed format encode lasting phe-
nomena and such streams can be fed into recently developed
event processors [1] for further processing.

Observe that the above algorithm allows location update
events and containment update starts to be nested in flexible
ways. For an object, a start-end containment pair can span
multiple start-end location pairs, representing an unchanged
containment as the two objects move together through vari-
ous locations. In addition, when an object is reported miss-
ing, the existing containment is not ended. That is, a start-
end containment pair can also enclose the missing events.
On the other hand, it is also possible that a start-end location
pair covers multiple start-end containment pairs, capturing
the containment changes in the same location. Finally, po-
tential conflicts arise when the two objects participating in
an existing containment have different locations to output
(as illustrated in Figure 7). In this scenario, we know that
at least one of the objects has an inferred location—if both
locations were actually reported by RFID readings, the data
capture and interpretation algorithms guarantee that the ex-
isting containment would end and be replaced by a new one.
To resolve potential conflicts in output, we give more weight
to the containment inference and use the existing contain-
ment to suppress the output of an inferred location that is
causing a conflict.

6 Performance Evaluation
We have implemented a prototype of our interpretation and
compression substrate in Java. In this section, we evalu-
ate the accuracy and efficiency of the interpretation tech-
niques under a variety of workloads in a simulated enterprise
supply-chain environment. We also explore the benefits of
compression based on results of interpretation.

6.1 Experimental Setup
To generate synthetic RFID streams, we developed a sim-
ulator that emulates deployments of RFID readers in large
distribution centers. For a given distribution center, pallets
arrive at a certain rate, are read at the entry door (reader

Parameter Value(s) used
Duration of Simulation 3 - 24 hours
Number of Warehouses 1
Rate of Pallet Injection 3 - 30 per hour
Cases Per Pallet 5
Items Per Case 20
Read Rate of Readers 0.5 - 1
Non-Shelf Reader Frequency 2 (interrogations) / sec
Shelf Reader Frequency 1/sec, 1/10 sec, 1/30 sec,

1/min, 1/10 min, 1/30 min
Avg. Duration of Shelving 1 - 10 hours
Frequency of Anomaly 1 / 100 sec, if turned on

Table 1: Parameters used for generating RFID streams.

group 1), and then become unpacked. Cases are scanned on
the receiving belt (reader group 2), placed onto shelves for a
period of stay (reader group 3), and then repackaged (reader
group 4). The newly assembled pallets are rescanned on the
belt (reader group 5) and finally exit the distribution center
(reader group 6). Synthetic RFID stream traces from this en-
vironment are then fed to our interpretation and compression
substrate.

The workload parameters for generating synthetic RFID
stream shown in Table 1. Two separate parameters are used
to control the read frequency of shelf and non-shelf readers.
This design allows flexible settings of the simulation where
items stay on shelves for hours and shelf readers can be con-
figured to read less frequently than other readers.

The default epoch length is 1 second. Data interpretation
is performed after every epoch. To deal with unsynchronized
readers, given each reader active in this epoch, we run infer-
ence for the objects that are either reported by the reader or
believed to be in the reader’s location in the last inference.
We treat door readings as the warm-up for graph construc-
tion and do not run inference for this location.

6.2 Accuracy of Data Interpretation
In the first set of experiments, we evaluate the accuracy of
our inference techniques used in interpretation. We created
data traces with 6 new pallets injected per hour, an average
shelving period of 1 hour and a total simulation time of 3
hours. The metric used in most experiments is inference er-
ror rate, which is the percentage of the inference results,
including both location and containment estimates, that are
inconsistent with the ground truth.

Expt 1: Edge Inference. We first study the effects of the
edge inference parameters, β, S, and α, shown in Equations
1 and 2, on containment inference. Our results show that the
two parameters on the recent history of collocations can be
tuned easily. The size of the history, S, limits the inference
accuracy when it is small, e.g. 4, 8, and offers no additional
benefit after the point of 32. The zipf parameter, α, yields
best accuracy when set to 0, indicating that recent instances
of collocations are equally important to inference. Hence,
we use S=32 and α=0 in the rest of experiments.

The parameter β governs the beliefs between the recent
history, which can be noisy, and the past confirmation, which
may be obsolete. In our simulation, the major source of
noise in containment inference is the collocation of cases
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Figure 8: Experimental Results

on shelves for an extended period of time. To capture such
noise, we generated traces with different shelf reader fre-
quencies, and for each trace, varied β from 0.5 to 1. β=1
gives all the weight to recent history, and β=0.5 results in
an estimate always based on past confirmation. As shown
in Figure 8(a), when the noise is high, e.g. the shelf reader
frequency is 1 per second, high β values give significantly
worse accuracy due to its emphasis on recent history; low β
values are much more accurate. As the noise reduces, i.e.,
the recent history becomes more useful, the accuracy using
high β values improves while the accuracy of lower β value
deteriorates, resulting in a slightly reversed trend for very
infrequent shelf readings.

Expt 2: Node Inference. Location inference uses the
method defined in Equations 3 and 4. We varied the two pa-
rameters θ and γ to study their effects on location inference.

θ is the dampening factor on the belief of the continued
existence of an unobserved object in its last reported loca-
tion. High θ values cause more quickly reduced belief. Fig-
ure 8(b) shows the results. As θ increases, the error rate
quickly declines from nearly 100%, flattens in the mid-range
values, and degrades again with higher values. The initial
decline occurs because with very low θ values, the inference
takes too long to reduce its belief of the continued presence

of an object, causing many errors in inference. The deteri-
oration with high θ values occurs because the inference be-
comes too eager to drop its belief and identify an object as
missing after a few missed readings. Similar trends are ob-
served for different read frequencies with the effect more
pronounced for high frequency readers.

γ weighs the belief of an object’s last observed location
(with low γ values) against the belief of its location inferred
via containment (with high γ values). Figure 8(c) shows the
results for varied γ values. For this particular workload, low
γ values work well due to the fact that inference is incurred
mostly by the shelf readings and they represent stationary
objects. Around the point of 0.5, the inference error rate in-
creases quickly due to the shifting of belief to rely more on
containment, which is a less reliable source for this work-
load. With all emphasis given to containment, most infer-
ence results are wrong. Again, similar trends are observed
for different reader frequencies.

The above experiments provide insights into tuning in-
ference parameters for common workloads in our target do-
main. In the rest of performance study, we use the following
setting unless stated otherwise: β = .7, γ = .4, and θ = 1.25.

Expt 3: Sensitivity to Read Rate. The next experiment
studies the sensitivity of our inference methods to the read
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rate. The shelf reader frequency was set to 1 reading per
minute. As Figure 8(d) shows, the error rates of both con-
tainment and location inference stay below 10% for read
rates between .8 and 1, a common range in many reported
deployments. As the read rate decreases, the location infer-
ence stays fairly accurate due to its appropriate parameter
settings to exploit the last reported location. The contain-
ment inference, however, loses its accuracy due to both the
loss of containment confirmation provided by belt readers
and lack of consistent observations in the recent history.

Expt 4: Accuracy and Delay of Anomaly Detection.
The traces used so far have not captured any abnormal be-
haviors, which are expected to be rare but of significant in-
terest to the application. In this experiment, we simulated
unexpected removals of objects from the warehouse, repre-
senting theft or misplacement, at a rate of 1 removal every
100 seconds with random selection from all objects. We
report on the inference error rate as well as the delay of
anomaly detection in Figure 8(e) and 8(f) as θ is varied.

Regarding the error rate, Figure 8(e) exhibits similar
trends as Figure 8(b) and confirms that the θ values between
0.5 and 1 also work well for anomaly detection. Figure
8(f), however, shows a different trend regarding the delay
of anomaly detection. For a shorter delay, higher values of
θ are preferred to more quickly decay the belief of the con-
tinued presence of an object. This is especially true for low
reader frequencies, where it otherwise takes too long to wait
for the next reading, adjust the belief, and finally recognize
the missing object. These results show an inherent tension
between the optimal setting for short delay of anomaly de-
tection and that for the overall location inference accuracy.

6.3 Efficiency of Data Interpretation
We next evaluate the efficiency of data interpretation in both
memory usage and processing speed. To do so, we created
large data traces with higher pallet injection rates, ranging
from 1 per 85 seconds to 1 per 15 seconds, to simulate a
very large distribution center. The tests were performed on
a linux server with Intel Quad Core 2.33GHz Xeon CPU
and 8GB memory running JVM 1.6.0. The maximum Java
allocation pool size was set to 2GB. Memory usage was cal-
culated using a Java utility package.

Expt 5: Processing speed To measure the processing
speed, we used three injection rates, 1 per 85 seconds, 1
per 42 seconds, and 1 per 28 seconds, and warmed up the
system until the number of objects in the system became
stable. Table 2 reports the number of objects at these steady
states in the first column. It shows the cost of graph up-
date for all active readers and the cost of inference over the
graph for each epoch (i.e. a second) in the second and third
columns. The total cost is reported in the last column. As
can be seen, the costs of both update and inference are small.
The total cost is 31 msec for the case of the smallest injection
rate, which is already high for most distribution centers, and
reaches half a second for the case of the largest rate. These
results show that our data interpretation techniques can keep
up with high-volume RFID streams.

Expt 6: Memory Usage. The memory usage in data in-

Num. Objects Update Inference Total
25547 0.02178 0.00934 .03112
50327 0.06655 0.05225 .11880
95455 0.22429 0.29507 .51936

Table 2: Costs of Update and Inference Operations (sec)

terpretation is dominated by the size of the graph. To capture
the growth of the graph, we further increased the injection
rate to 1 pallet per 15 seconds, and measured the memory
usage as the number of nodes in the graph increased. We
also observed that the graph size can be reduced by pruning
edges for which the containment inference yields very low
confidence. The confidence value here is the value in For-
mula 2 but before normalization and thus is insensitive to the
presence of other edges. To explore this factor, we applied a
threshold for pruning edges and varied it from 0 to .75.

Figure 8(g) shows the results. As the node count grows,
the memory usage with no pruning increases very fast and
less so with increased values of the threshold. After the point
of .5, the threshold has a limited effect on memory usage.
With such decent pruning, the memory usage was kept un-
der 300 MB despite the large number of pallets injected and
objects present in the center. Further, these curves increase
close to linearly, rather than the worse case of edge expan-
sion quadratic in the number of nodes. Finally, we note that
the pruned edges have a small effect on the inference er-
ror rate, with the best accuracy achieved with the pruning
threshold at .5. Details are omitted in the interest of space.

6.4 Compression

Expt 7: Compression Ratio. The last experiment explores
the benefit of compression based on results of interpreta-
tion. Figure 8(h) presents the compression ratio for the small
traces when the read rate was varied. The ratio was com-
puted by comparing the size of our output to that of the orig-
inal data trace. We report on two ratios, one considering only
the location output, and the other including also the contain-
ment output which is the additional information provided by
interpretation. As can be seen, the overall compression ratio
is good with commonly observed read rates between .8 and
1, even with the containment output. As the read rate de-
creases, the ratio degrades, exhibiting its sensitivity to this
factor. Similar trends are observed for larger traces.

Summary of results. Overall, our results show that the
our framework for inference is flexible enough to capture
a variety of workloads in an RFID-based supply chain en-
vironment. Accuracy of the inference is sensitive to the
choice of various parameters. Further, the optimal values
of these parameters are dependent on the workload. How-
ever, when chosen carefully, the error rate of the inference is
small (< 5%). Our results also show that our interpretation
technique easily scales to high stream volumes seen in real-
world warehouse environments and that the memory over-
head of our technique is under 300MB when graph pruning
is used. Finally, our compression technique yields 75-80%
reduction in volume for commonly observed read rates.
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7 Related Work
Data cleaning has traditionally been the purview of data
warehousing. In this context, it addresses a small set of
well-defined tasks, such as rule-based transformation, and
uses offline processing techniques [2]. The nature of RFID
data and its stream-based processing precludes the use of
traditional data cleaning techniques.

RFID stream processing. The most relevant work to our
own is HiFi [13, 19, 20], a declarative framework for RFID
data cleaning and processing. Its techniques focus on per-
tag smoothing or multi-tag aggregation on different tempo-
ral and geographical scales, but do not capture relationships
between objects or estimate object locations. Probabilistic
RFID processing has been recently proposed for a more gen-
eral solution [15] but the research is still underway.

RFID warehouses. Real-world examples are offered in
[3] to motivate RFID management problems including in-
ference. Location and containment compression techniques
are proposed in [16] for RFID warehouses but use expensive
disk-based operations such as sorting and summarization.
Siemens RFID middleware [30] uses application-specific
rules to compress and archive data into databases. These
techniques are unsuitable for fast low-level compression of
RFID streams and further neglect the interpretation problem.

Sensor data management has been an area of intensive
recent research [31, 24, 7, 8, 27, 28]. The sensor data con-
sidered captures environmental phenomena such as temper-
ature and light, and the proposed techniques, such as data
acquisition [24, 7, 6], approximation [5], and sampling [32],
are all geared towards queries natural to such data, e.g.
selection and aggregation, and energy-efficient in-network
processing. In contrast, RFID data captures object identi-
fication and its processing raises challenges related to loca-
tioning and correlation of objects and data volume reduction.

Machine Learning. Interpretation of RFID streams is re-
lated to probabilistic inference over time [26]. When applied
to RFID streams, the state-of-the-art inference techniques
such as Dynamic Bayesian Networks [22, 21, 25] have sig-
nificant drawbacks including large state spaces, expensive
slow parameter learning, and limited efficiency of online in-
ference. SPIRE is designed for stream-based inference by
employing a memory-efficient graph model and an inference
framework with a few tunable parameters.

8 Conclusions
In this paper, we presented a novel data interpretation
and compression substrate over RFID streams to address
the challenges of incomplete data, insufficient information
and high volumes. Our substrate employs a time-varying
graph model to capture inter-object relationships such as co-
location and containment. It then employs a probabilistic in-
ference algorithm to determine the most likely location and
containment for each object and an efficient stream com-
pression algorithm to remove redundant information from
the output stream. We implemented a prototype of our in-
terpretation and compression substrate and evaluated it us-
ing synthetic RFID streams that emulate a warehouse and

supply-chain environment. Our results show that our infer-
ence techniques provide good accuracy while retaining ef-
ficiency, and our compression algorithm yields significant
reduction in data volume. For future work, we plan to en-
hance our interpretation and compression substrate to infer
location and containment information for mobile readers.
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