High-Performance Complex Event
Processing over Streams

Eugene Wu Yanlei Diao Shariq Rizvi
UC Berkeley UMass Amherst Google Inc.

Yanlei Diao, University of Massachusetts Amherst

Complex Event Processing

% Sensor and RFID (Radio Frequency Identification)
technologies are gaining mainstream adoption

< Emerging applications: retail management, food &
drug distribution, healthcare, library, postal services...
+ High volume of events with complex processing

e filtered
* correlated for complex pattern detection

* transformed to reach an appropriate semantic level

% A new class of queries

* translate data of a physical world to useful information

¥

G,
4

= &

[= L]

CRY e

a B =

Yanlei Diao, University of Massachusetts Amherst Qg

A Retail Management Scenario

Shoplifting: an item was first read at a shelf and then at an exit but not at
any checkout counter in between.

SHELF-READING EXIT-READING
REIDtag | tagid: 01.01298.6EF.0A tag id: 01.01298.6EF.0A
= time: 06-27-2006:15:40:05 time: 06-27-2006:16:00:00
ligg ~ ™ location: shelf 2 location: exitl

N

Checkout
Shelves counters Exits W
Yanlei Diao, University of Massachusetts Amherst %rﬁ

A Retail Management Scenario

Shoplifting: an item was first read at a shelf and then at an exit but not at
any checkout counter in between.

Misplaced inventory: an item was first read at shelf 1, then at shelf 2,
without being read at any checkout counter or back at shelf 1 afterwards.

SHELF-READING EXIT-READING
tag id: 01.01298.6EF.0A tag id: 01.01298.6EF.0A

time: 06-27-2006:15:40:05 time: 06-27-2006:16:00:00
/ location: shelf 2 location: exitl

| —

a
a
_
o
r my i 3

Checkout
ShEIVGS Counters EXltS Lés-ﬂ'-'.:ﬁ::%

iy
R T

Yanlei Diao, University of Massachusetts Amherst Qg

Semantic Complexity

Val u e_ A Shelf-reading? No exit-reading

(Id, Location)
Shelf-readingl No shelf-readingl
(1d3, Exit4)
(103, Counter3) * Relevant events
(1d3, Shelf2) are scattered, not
(1d3, Shelf1) .
(1d2. Exitd) continuous
(Id2, Counter3)
(Id2, Shelf2)
(1d2. Shelf1) * Patterns span
(Id1, Exit4) time-value
(Id1, Counter3) di .
(Id1, Shelf1) > T
1 2 3 4|5 6 7 \ Time
Shelf-reading No counter-reading Exit-reading o

Yanlei Diao, University of Massachusetts Amherst

Performance Requirements

+ Low-latency

* Up-to-the-second information

e Time-critical actions
% Scalability

* High-volume event streams

e Large monitoring windows

Yanlei Diao, University of Massachusetts Amherst }Jﬁ;-,.j_,{;d;,ﬁa*"

SASE: Complex Event Language

Language structure

EVENT <event pattern> :structure of an event pattern
|[WHERE <qualification>] :value-based predicates over the pattern
[WITHIN <sliding window>] :sliding window over the pattern

STy,

Yanlei Diao, University of Massachusetts Amherst %Eﬁ

SASE: Complex Event Language

Shoplifting Query
EVENT SEQ(SHELF-READING s, ! (COUNTER-READING c), EXIT-READING e)
WHERE s.tag_id=c.tag_id A s.tag_id=e.tag_id [* equivalence test [tag_id] */

WITHIN 12 hours

Output
Events (S3.€;) (Sg. €9)

ﬁ Closure
Property

Input
S1| Cy| S3 | S4| Ss S6| €,| Cg | €9

Events

>
Timeline

ok atin
& o
=,
1 _! =

Yanlei Diao, University of Massachusetts Amherst %;-,.I_;;J;,ﬁa*

Abstraction of Complex Event Processing

< How can the language be efficiently implemented?

% Query plan-based approach

* Dataflow paradigm with pipelined operators: flexible,
optimizable, extensible

* Existing event systems use fixed data structures

< New abstraction for complex event processing

* Native sequence operators, pipelining query-defined
sequences to subsequent relational style operators

* Existing stream systems use relational joins

\I‘E.:.j. X h'-'{?."-

Yanlei Diao, University of Massachusetts Amherst %;-,.I_,{;J;,ﬁa*"

A Basic Query Plan

EVENT SEQ(Aa,Bb,!(Cc),Dd)
WHERE [attrl, attr2] A

a.attr4 < d.attr4
WITHIN W

* Transformation (TF)
* Negation (NG)

* Window (WD)

* Selection (o)

* Sequence scan &
construction (55C)

| a1 b3 d5

elational
(TF: sequence to composite event

:>

(NG: Ic (b.time<c.time<d.time A b.attry=c.attrq A b.attro=c.attry)

_ — ﬁ a: bs ds
as bz ds (WD: d.time - a.time < W a; bs ds
Ay be dg aq be d7

e — e ﬁ 24 be dy
a- b3 dg
as b ds (G: [attr-, attr;] A a.attr,<d.attry a; bg dg

a bs dy a4 be dg

da be dg ﬁ _ r

< SC<—: (A B. D) Native
Sequence
(SS—>: (A, B, D)
Events a; Co b3 as ds be d; Cs dg

Yanlei Diao, University of Massachusetts Amherst

»

EJJ I"'rh‘

:.":-'\ : ’:"-'-
-] i B
|

1:‘{:- i ad'#

Sequence Scan & Construction

% Finite Automata are a natural formalism for sequences

% Two phases of processing
* Sequence Scan (55—): scans input stream to detect matches

* Sequence Construction (SC<«): searches backward (in a
summary of the stream) to create event sequences.

* Some techniques adapted from YFilter [Diao et al. 2003]

Yanlei Diao, University of Massachusetts Amherst %;-,.I_,{;J;,ﬁa*"

[llustration of SSC

Sub-sequence type
(A, B, D)

Nondeterministic Finite
Automaton (NFA)

DLSGERE LN

O(SeqgLen * Window)

Runtime
stack

Event
Stream

< Sequence construction

Yanlei Diao, University of Massachusetts Amherst

Seqguence scan >

o/olofalof[olofo]o]0
Nelellelerl 11111111
N 22202424 2
~3 ~3] a; b; d
= :> a, b dg
a, ¢, b, a, d. b, d, ¢, d,L| 3, b d,

- i N

s A
o2t
1ht“‘-:cr_f;.s!u-f}'

Optimization Issues

< What are the key issues for optimization?

* Large sliding windows: e.g., “within past 12 hours”

* Large intermediate result sizes: may cause wasteful work

% Intra-operator optimization to expedite SSC
* Cost of sequence construction depends on the window size.

% Inter-operator optimizations to reduce intermediate results
* How to evaluate predicates early in SSC?

* How to evaluate windows early in SSC?

% Indexing relevant events in SSC both in temporal order and
across value-based partitions

Sy,

r. :
& o
& o B
v | | I~

Yanlei Diao, University of Massachusetts Amherst Qg

Optimizing SSC

+ “Sequence index” integrated with the NFA model

NFA @09@

]

Sequence () a, (@) b, x— (by) dg

Index () a, «(a,) bg ' (by) d, &, Es gg
3 a1 6 9
CR () S

Events a, C, by a, dy by d; cg dy

* 55— builds the index in NFA execution
* SC« searches the sequence index for event sequences

Sy,

r. :
& o
& o B
v | | I~

Yanlei Diao, University of Massachusetts Amherst Qg

Pushing An Equivalence Test To SSC

< Equivalence test: equality across all events in a sequence
< “Partitioned sequence index”: sequence + value

DENGERALNG)

NFA attr,

Partitioned par‘tf,ion (.)al‘(al)bsizzz))ii

Sequence -

Index(PASI) | P5°" Toa @bel Blds) i gy

Events a ¢, by a, d; by d; cg d
Values ofattr, 1 1 1 2 1 2 1 2 2

* 55— is extended with transition filtering & stack maintenance
* SC« searches only in a partitioned sequence index

Sy,

r. :
& o
& s W
{1yt
v | | I~

Yanlei Diao, University of Massachusetts Amherst Qg

Other Inter-Operator Optimizations

% Evaluating additional equivalence tests in SSC
* Multi-attribute partitions: high memory overhead
* Single-attribute partitions & cross filtering in SS5—
* Dynamic filtering in SC«

% Evaluating windows in S5C...

* Windows in S5—: coarse grained filtering, pruning
* Windows in SC«: precise checking

Yanlei Diao, University of Massachusetts Amherst %;-,.I_,{;J;,ﬁa*"

Performance Evaluation (1)

+ Effectiveness of query processing in SASE

* Sequence index offers an order-of-magnitude
improvement with large windows & query result sizes.

 Partitioned sequence index is highly etfective. Pushing
one equivalence test to SSC is a must!

* Dynamic Filtering in SC« is memory economical and
best performing for additional equivalence tests.

* Pushing windows down...

* Cost of negation...

G,

Yanlei Diao, University of Massachusetts Amherst %;-,.I_,{;J;,ﬁa*"

Performance Evaluation (2)

< Comparison to a stream system using joins

SASE:

EVENT SEQ(E,, E,, ..., E)
WHERE [attr, (, attr,)?]
WITHIN W

Parameters:

L — Sequence length

W — Window size in # events
V, —domain size of attr,

V, — domain size of attr,

Join-based Stream Processor: L=3, W=10000, [attr,]
With
R As (Select * From ES e Where e.type = ‘E,’)
S As (Select* From ES e Where e.type = ‘E,)
T As (Select * From ES e Where e.type = ‘E;’)
(Select *
From R [range by 10000]
Ss [range by 10000]
Tt [range by 10000]
Where r.attr; = s.attr, and r.attr, = t.attr, and
s.time > r.time and t.time > s.time)

* Offered hint on the most selective predicate to the stream optimizer
* Performance metric is throughput

Sy,
N
RV AT

Yanlei Diao, University of Massachusetts Amherst Qg

Varying Sequence Length

EVENT SEQ(E,, E,, ..., E)) .

WHERE [attr,] S o8- —+ SASE
= —=— Stream-Join

WITHIN W 2 6

Parameters: 2 X

|_ — 2-6 % 0.4

W = 10,000 £ 02,

[Attr,] V, = 100 = ‘

Sequence Length

SASE scales better than Stream-Join for longer sequences.
« Stream Join: N-way joins, postponed temporal predicates

« SASE: NFA for sequences, value index for predicates, both in SSC

APIERLTy
AF B
]

T K

] I =

Yanlei Diao, University of Massachusetts Amherst Qg

g

Varying Selectivity of Predicates

EVENT SEQ(E,, E,, ..., E,)

[

5
WHERE [attr, (, attr,)?] 2 s
S, O
WITHIN W o
= 06
Parameters: —
D 04 —e— SASE 2 equivs
L =3 % —m— SASE 1 equiv
W = 10.000 £ 02 —a— Stream-Join 2 equivs
’ § —>— Stream-Join 1 equiv
10 100 1000 10000
[Attrz] V2 =20 Domain Size of the 1st Equivalence Attribute

SASE produces fewer intermediate results than Stream-Join.
« Stream-Join: cascading joins, postponed temporal predicates

« SASE: both sequencing and predicates in SSC, before producing
any intermediate results

Rubaiing
e

I
(P 4]

Yanlei Diao, University of Massachusetts Amherst *, j;,f,:-*"

iy

g

Conclusions

J
’0

» Compact, expressive complex event language

* Sequence, negation, predicates, sliding windows

% Query processing approach with a new abstraction

* Native sequence operators + subsequent relational-style operators
% Optimization Techniques

* Handling large slide windows

* Reducing intermediate result sizes

% Summary of results
* Relational stream systems not suited for complex event processing
* Native sequence operators + optimized plans efficient and scalable
* Our event processing technology can be integrated into stream systems

- i N

= B
i’l A
RS

% iy :sau-f-k'ﬁr

g

Yanlei Diao, University of Massachusetts Amherst

	High-Performance Complex Event Processing over Streams
	Complex Event Processing
	A Retail Management Scenario
	A Retail Management Scenario
	Semantic Complexity
	Performance Requirements
	SASE: Complex Event Language
	SASE: Complex Event Language
	Abstraction of Complex Event Processing
	A Basic Query Plan
	Sequence Scan & Construction
	Illustration of SSC
	Optimization Issues
	Optimizing SSC
	Pushing An Equivalence Test To SSC
	Other Inter-Operator Optimizations
	Performance Evaluation (1)
	Performance Evaluation (2)
	Varying Sequence Length
	Varying Selectivity of Predicates
	Conclusions

