
Massively Parallel Processing of Whole Genome Sequence
Data: An In-Depth Performance Study

Abhishek RoyF, Yanlei DiaoF,�, Uday EvaniN, Avinash AbhyankarN
Clinton HowarthN, Rémi Le Priol�, Toby BloomN

FUniversity of Massachusetts Amherst, USA NNew York Genome Center, USA �École Polytechnique, France
F{aroy,yanlei}@cs.umass.edu

N{usevani,avabhyankar,chowarth,tbloom}@nygenome.org �{remi.le-priol@polytechnique.edu}

ABSTRACT
This paper presents a joint effort between a group of com-
puter scientists and bioinformaticians to take an important
step towards a general big data platform for genome anal-
ysis pipelines. The key goals of this study are to develop a
thorough understanding of the strengths and limitations of
big data technology for genomic data analysis, and to iden-
tify the key questions that the research community could ad-
dress to realize the vision of personalized genomic medicine.
Our platform, called Gesall, is based on the new “Wrapper
Technology” that supports existing genomic data analysis
programs in their native forms, without having to rewrite
them. To do so, our system provides several layers of soft-
ware, including a new Genome Data Parallel Toolkit (GDPT),
which can be used to “wrap” existing data analysis pro-
grams. This platform offers a concrete context for evaluating
big data technology for genomics: we report on super-linear
speedup and sublinear speedup for various tasks, as well as
the reasons why a parallel program could produce different
results from those of a serial program. These results lead to
key research questions that require a synergy between ge-
nomics scientists and computer scientists to find solutions.

1. INTRODUCTION
Recently, the development of high-throughput sequencing

(or next-generation sequencing) has transformed genomics
into a new paradigm of data-intensive computing [4]: se-
quencing instruments are now able to produce billions of
short reads of a complete DNA sequence in a single run,
raising the potential to answer biomedical questions with
unprecedented resolution and speed. For instance, a human
genome has approximately 3 billion bases and each base
has a letter of ‘A’, ‘C’, ‘G’ or ‘T’. The first whole human
genome was completed in 13 years’ time at a cost of $3.8
billion. Since then, the total amount of sequence data pro-
duced has doubled about every seven months [36], far ex-
ceeding Moore’s Law. Today, for a human genome sample
a sequencer can produce one billion short reads of 200-1000

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064048

bases each, totaling 0.5–1 TB of data, within three days and
at a cost of a few thousand dollars. As a result, there is
general excitement that technology advance will soon en-
able population-scale sequencing and personalized genomic
medicine as part of standard medical care, as declared in the
recent Precision Medicine Initiative by the White House.

However, the unprecedented growth of whole genome se-
quence data has led to major computation challenges:

(1) The flood of data needs to undergo complex processing
to mine high-level biological information from vast sets of
short reads while handling numerous errors inherent in the
data. Genomic data analysis pipelines typically consist of
a large number (at least 15-20) of steps, from the initial
alignment for mapping short reads to the reference genome,
to data cleaning for fixing various issues introduced by noisy
input data, to variant calling for detecting small or large
structure variants in the test genome.

(2) Most genomic analysis tools were developed based on
a wide range of algorithms and heuristics to deal with the
complexity of analysis and idiosyncrasies of data as a result
of sequencing limitations. These algorithms, however, were
not designed for efficiency on enormous data sets: most anal-
ysis algorithms can be run only on a single computer, e.g.,
Bwa [17], Bowtie [14], and Wham for alignment [18], Picard-
Tools for data cleaning [29], NovoSort for sorting [25], and
GATK for small variant calling [7]. Some of these algorithms
are further limited to single-threaded execution.

(3) As a result, most genomic analysis pipelines take sig-
nificant time to run. For instance, at the New York Genome
Center (NYGC), which supports user pipelines from a dozen
hospitals and medical institutes, current pipelines can take
3 to 23 days to complete for a human sample based on
our initial profiling [8]. The variation of running time de-
pends on the complexity of analysis. Some algorithms, such
as Mutect [5] and Theta [26] for complex cancer analysis,
alone can take days or weeks to complete on whole genome
data. Such long-running time lags far behind the desired
turnaround time of 1-2 days for clinic use, e.g., to assist in
timely diagnosis and treatment.

To respond to the computing challenges in genomic data
analysis, a number of recent projects have attempted to scale
the processing across multiple machines. We make the fol-
lowing observations about these projects:

Isolated Implementations: Recently, the bioinformatics com-
munity has sought to parallelize existing analysis programs
using MapReduce. These efforts often come with isolated
implementations of a single component in an overall large,
complex infrastructure. For example, GATK asks the user

to manually divide data into subsets and then runs paral-
lel instances over these subsets [20, 7]. Crossbow [13] runs
Hadoop jobs without porting the standard sam/bam for-
mat [32] for genomic data into HDFS. HadoopBAM supports
the sam/bam format in HDFS but does not support logical
partitioning to ensure correct execution of genomic analysis
programs [23]. These systems lack an integrated solution
to the storage, logical partitioning, and runtime support of
large genome analysis pipelines.

Change of Existing Software: ADAM [19] provides new
formats, APIs, and implementations for several genome pro-
cessing stages based on Spark [38] and Parquet [28]. It re-
quires complete reimplementation of genomic analysis meth-
ods using Scala and custom in-memory fault-tolerant data
structures. This approach does not suit a genome center that
supports many analysis pipelines for different species, popu-
lation groups, and diseases. Since the owner of each pipeline
can choose to use any analysis methods he trusts based on
prior research, a genome center cannot afford to reimple-
ment the numerous analysis programs in its pipelines, or
afford the possible consequences of different variant (muta-
tion) detection results due to reimplementation.

Big Data versus HPC Technology: A recent study [35]
compares the Hadoop-based Crossbow implementation to
a single node of conventional high-performance computing
(HPC) resources for alignment and small variant calling.
The study shows that Hadoop outperforms HPC by scal-
ing better with increased numbers of computing resources.
However, this study does not answer the question whether
the Hadoop performance is optimal in terms of key metrics
for parallel computing, such as speedup and utilization.

Objectives. Based on the above observations, we set two
objectives in our study between database researchers and
bioinformaticians at NYGC: (1) The bioinformatics commu-
nity still lacks a general big data platform for genome anal-
ysis pipelines, which can support many analysis programs
in their original implementations. We aim to provide such
a big data platform with an integrated solution to storage,
data partitioning, and runtime support, as well as high qual-
ity results of parallel analysis. (2) Both bioinformatics and
database communities still lack a thorough understanding of
how well big data technology works for genomics and hence
how we can improve it for this new application. Our study
aims to enable such understanding in terms of running time,
speedup, resource efficiency, and accuracy.

More specifically, our contributions include the following:
1. A New Platform (Section 3): We design a general

big data platform for genome data analysis, called Gesall,
by leveraging massive data parallelism. Most notably, we de-
part from existing approaches by introducing the Wrapper
Technology that supports existing genomic data analysis
programs in their native forms, without changing the data
model, data access behavior, algorithmic behavior, heuris-
tics, etc., used in those programs. To do so, our wrapper
technology provides several layers of software that can be
used to “wrap” existing data analysis programs. Of particu-
lar interest is a new Genome Data Parallel Toolkit (GDPT)
that suits the complex data access behaviors in genome anal-
ysis programs. Another feature of Gesall is an extensive
error-diagnosis toolkit for parallel genome pipelines, which
keeps tracks of errors using a variety of biological measures
and the impact on final pipeline output.

2. In-Depth Performance Analysis (Section 4): Our
platform provides a concrete technical context for us to ana-
lyze the strengths and limitations of big data technology for
genomics. We compare our parallel platform to the GATK
best practices [10], a multi-threaded pipeline known as the
“gold standard” for genomic data analysis. Known systems
such as Galaxy [1], Genepattern [31], AWS-GATK [2] pro-
vide interface to run the same set of analysis programs as
recommended by GATK best practices. Although some of
these systems may offer a cluster for use and basic scheduling
tools like scatter-gather, they leave the actual parallelization
of a pipeline to the user.

Our performance study is centered on three questions:
(1) When does big data technology offer linear or superlin-

ear speedup? Our analysis of the CPU-intensive Bwa align-
ment program shows that the rich process-thread hierarchy
of Hadoop allows us to increase the degree of parallelism
without incurring the overhead of the multi-threaded Bwa

implementation. Given 24-threaded Bwa as baseline, which
is a common configuration in existing genomic pipelines, our
parallel platform can achieve super-linear speedup.

(2) When does big data technology offer sublinear perfor-
mance? We also benchmarked a range of shuffling-intensive
programs. On one hand, our parallel platform reduced the
running time of these programs significantly; for instance,
we enabled the first parallel algorithm for Mark Duplicates

which reduced the running time from 14.5 hours to 1.5 hours.
On the other hand, these shuffling-intensive tasks experi-
enced sublinear speedup and low resource efficiency (<50%).
The key overheads in the parallel implementation include
(a) data shuffling due to different degrees of parallelism
permitted in different steps; (b) data shuffling due to the
change of logical partitioning criteria in different steps; and
(c) data transformation between Hadoop and external pro-
grams. The first two factors are intrinsic properties of ge-
nomic pipelines; in particular, the change of degree of paral-
lelism across steps (e.g., from 90 to 1 to 23) is less a concern
in other domains such as relational processing.

(3) Why does data parallelism produce different results
from serial execution? To the best of our knowledge, our
study is the first to analyze why data parallelism produces
different results from serial execution. Contrary to the com-
mon belief that genomic programs such as Bwa alignment are
“embarrassingly parallel”, a parallel program for Bwa, which
is the first step in the genomic pipeline, already produces
results different from the serial execution. The ultimate ac-
curacy measure, as proposed by our bioinformatics team, is
the impact on final variant calls, which is around 0.1% differ-
ences for our parallel pipeline. Our in-depth analysis further
reveals that data partitioning in our parallel pipeline does
not increase error rates or reduce correct calls. The differ-
ences are more likely from the non-determinism of genome
algorithms for hard-to-analyze regions, for which both serial
and parallel versions give low-quality results.

While the above results were obtained from a Hadoop
platform, most of them reflect fundamental characteristics
of genomic workloads. Hence, we expect them to carry value
beyond the specific platform used.

3. Future Research Questions (Appendix C): The
above results lead to a set of research questions that call for
a synergy between bioinformaticians and computer scientists
to improve big data technology for genomics. The questions
include (1) automatic safe partitioning of genomic analysis

Term Explanation
(Short) read a sequence of 100-250 nucleotides (bases)
Paired reads forward and reverse reads of a DNA fragment,

usually with a known distance in between
Read name the unique identifier of a pair of reads
Mate the other read that pairs with a given read
Base call letter ‘A’, ‘C’, ‘G’ or ‘T’ returned by a sequencer

for each base, together with a quality score
Variant call: a change (mutation) from the reference genome
a) SNP single nucleotide polymorphism (1-base change)
b) Indel small insertion/deletion (multi-base change)

Table 1: Basic terminology for genomic data analysis.

programs, (2) a rigorous framework for keeping track of er-
rors in a deep genomic pipeline, (3) data parallelism with
high resource efficiency, and (4) a pipeline optimizer that
can best configure the execution plan of a deep pipeline to
meet both user requirements on running time and a genome
center’s requirements on throughput or efficiency.

2. BACKGROUND
In this section, we provide background on genome data

analysis pipelines. The commonly used genome terms are
summarized in Table 1, while the detailed data format is
deferred to the subsequent technical sections.

2.1 Scope of Our Genome Data Analysis
For simplicity, our discussion in this paper focuses on hu-

man genomes and paired-end (PE) sequencing, a common
practice in next-generation sequencing. A human genome
has approximately 3 billion bases and each base has a letter
of ‘A’, ‘C’, ‘G’ or ‘T’. Given a test genome, lab processes are
used to break the DNA into small fragments. Then a PE
sequencer “reads” each double-stranded DNA fragment from
both sides, and aligns the forward and reverse reads as paired
reads, as shown in Fig. 1(a), with the distance between them
known for a specific sequencer. Then data analysis proceeds
in three phases [21].

Primary Analysis. The first analysis phase is base call-
ing by the sequencer, a machine-specific yet highly auto-
mated process today. For a given sample, a sequencer parses
raw data to produces billions of paired reads, totaling 0.5-
1TB of data. Each read consists of 100-250 bases, depending
on the sequencer. Furthermore, each base has a specific call,
‘A’, ‘C’, ‘G’ or ‘T’, and a quality score capturing the like-
lihood that the base call is correct – sequencing errors may
cause a base call to differ from the true base in the test
genome. All of the reads are stored in the file format called
fastq, where paired reads share the same read name.

Secondary Analysis. The next stage of analysis is the
most resource intensive, including over a dozen steps for
alignment, data cleaning, and variant calling. We built a
pipeline based on GATK best practices [10]. Table 2 lists
the subset of the algorithms that are used in this study.

Alignment : The first main task is to align the short reads
against a reference genome, as shown in Fig. 1(b). Each
aligned read is mapped to one or multiple positions on the
reference genome together with mapping quality scores. Our
pipeline uses the Bwa algorithm [16] because it allows a read
to be mapped to multiple positions in the face of mapping
ambiguity, and assigns a mapping quality score to each po-
sition. The alignment results are encoded in the sam/bam
format [32]: The text-based sam format includes a record
for each mapping of a read, i.e., m records for a read that

Forward
Read

Reverse
Read

(a) Paired reads

ReferenceReference

(b) Alignment to the reference genome

Figure 1: Paired-end sequencing and alignment.

is mapped to m locations on the reference. sam records
are then converted to a binary, compressed indexed format
called bam, which will be detailed in Section 3.

Data cleaning : After alignment, the pipeline goes through
a large number of steps to remove the effect of sequencing
errors from subsequent analysis. Among them, the time-
consuming steps include: Fix Mate Info (step 5 in Table 2)
shares the alignment information and makes other informa-
tion consistent between a pair of reads, which is needed
due to the limitations of alignment software. Mark Dupli-

cates (step 6) flags those paired reads mapped to exactly
the same start and end positions as duplicates. These reads
are unlikely to occur in a random sampling-based sequencing
process, and often originate erroneously from DNA prepa-
ration methods. They will cause biases that skew variant
calling and hence should be removed. We implemented the
above steps using the PicardTools [29]. Base Recalibra-

tor (steps 11-12): The sequencer returns a quality score
for each base to represent the probability that the base was
called incorrectly. The likelihood of an incorrect call is af-
fected by a number of factors, such as the position of a base
in the read (for example, bases at the ends of reads tend to
be lower quality). The base recalibrator uses the alignment
results, along with these other factors, to adjust the qual-
ity scores to better reflect the actual likelihoods of incorrect
base calls. These steps are implemented using GATK [10].

Variant calling aims to detect the variants (mutations)
from the reference genome based on all the reads aligned to
a specific position. Our pipeline aims to include a large num-
ber of such algorithms to serve different clinical or research
needs. Small variant calls include single nucleotide poly-
morphism (SNP) and small insertions/deletions (INDELs).
Our pipeline uses the Unified Genotyper and Haplotype

Caller [10] for these purposes. Large structure variants
span thousands of bases or across chromosomes. We are cur-
rently testing GASV [34] and somatic mutation algorithms
(e.g., [5, 26] for cancer analysis) for our pipeline.

Tertiary Analysis. The detected variants can then be
loaded into databases, statistical tools, or visualization tools
for annotation, interpretation, and exploratory analysis, re-
ferred to as tertiary analysis. Multiple samples may to be
brought together, integrated with phenotype and other ex-
perimental data, and compared to existing databases of ge-
nomic variation. Genomic analysis for clinical purposes usu-
ally attempts to identify likely pathogenic mutation(s) that
account for a specific phenotype. Unlike the previous phases
that process billions of reads per sample, the data volume
in this phase has been reduced to millions of mutations per
sample, sometimes manageable on a single computer.

In this work, we focus on secondary genome analysis,
which takes fastq data and produces variant calls. This
phase is the main “data crunching” part of genome data anal-
ysis and a necessary ETL (extract-transform-load) process to
enable tertiary analysis. This phase causes a significant pro-
cessing delay for analyzing urgent samples in clinic use, or a
substantial computing cost for research use. More broadly

Secondary Analysis: Alignment, Data Cleaning, and Variant Calling Time (hrs)
1. Bwa (mem) Aligns the reads to the positions on the reference genome 26.3
2. Samtools Index Creates the compressed bam file and its index 14.3
3. Add Replace Groups Fixes the ReadGroup field of every read, adds information to header 14.8
4. Clean Sam Fixes Cigar and mapping quality fields, removes reads that overlap two chromosomes 8.5
5. Fix Mate Info Makes necessary information consistent between a pair of reads 23.1
6. Mark Duplicates Flags duplicate reads based on the same position, orientation, and sequence 14.5
...
11. Base Recalibrator Finds the empirical quality score for each covariate (each specific group of base calls) 34.8
12. Print Reads Adjusts quality scores of reads based on covariates 46.6
13.v1 Unified Genotyper Calls both SNPs and small (≤ 20 bases) insertion/deletion variants 20.4
13.v2 Haplotype Caller Like Unified Genotyper, but a newer version of the algorithm 33.2
... ...

Table 2: A pipeline of algorithms based on GATK best practices, and single-server performance for a human genome.

speaking, our secondary analysis results in calling genomic
variants in a single genome, and the existence of a variant
in any one genome from a population or disease cohort is
used in later analyses to assess the quality of variant calls
in other genomes within the cohort. Thus, our work will be
applicable to a much broader range of genomic analysis and
the downstream application to clinical impact.

Regarding architectural choices, most practice for secondary
analysis is based on GATK best practices exploiting only
multi-core technology. A few recent projects [19, 30] scale
out to clusters but require reimplementing analysis meth-
ods (which raise concerns to large genome centers). In con-
trast, tertiary analysis is subject to broader architectural
choices including database systems such as SciDB [37] and
Paradigm4 [27] (currently used at NYGC); distributed NoSQL
systems such as GMQL-GeCo [12] built on Spark and Flink,
and DeepBlue on MongoDB [3]. The extension of our work
to tertiary analysis is left to future work.

2.2 Challenges and Requirements
To illustrate computation challenges in secondary analy-

sis, we ran the pipeline shown in Table 2 for a human genome
sample NA12878 [6] on a server with 12 Intel Xeon 2.40GHz
cores, 64GB RAM, and 7200 RPM HDD. We turned on mul-
tithreading whenever the analysis program allowed so. The
pipeline took about two weeks to finish with the running
times of different steps shown in the last column of Table 2.

We aim to address such computation challenges using a
parallel approach. To begin with, we summarize the require-
ments and constraints posed by NYGC.

Performance Goals. To assist in timely diagnosis and
treatment, the desired turnaround time for processing a whole
human genome is 1-2 days (including complex cancer anal-
ysis). While this indicates an objective of minimizing run-
ning time, NYGC is also concerned with resource efficiency
or throughput (in number of Gigabases analyzed each day),
because its compute farm is intensively shared among many
analysis pipelines from hospitals and research institutes.

Parallelizing the pipelines is subject to a few constraints:
Any Analysis Methods. The platform for parallelizing

the genome pipelines must permit any analysis methods that
a user needs, without requiring rewriting of these methods.

Standard Data Formats. Until such time that new
genome data formats are agreed upon by standards groups,
deviation from existing standards such as sam/bam formats
is unlikely to gain adoption in the bioinformatics community.

Assumption of In-Memory Processing. The size of
individual genomes (0.5-1TB each) and the need to process
a batch of genomes together in some analysis steps make in-
memory processing often untenable, or at most as optimiza-

HDFS

1 2
1

1 3 4 4
4

2 3

Custom block
placement policy

Storage Layer
Rich File Format (FASTQ,BAM,Indexes…)

Group RangeCompound Clustered

Genome Data Parallel Toolkit

Data Transformation ModuleYARN

Runtime Layer

Error D
iagnosis

Toolkit

C Analysis Programs
(BWA,…)

Java Analysis Programs
(Picard,GATK,…)

Figure 2: Gesall Architecture
tion of “local” parts of the computation. A general platform
for genomic pipelines still needs to be designed with full ca-
pacity to process most data to and from disks.

3. BIG DATA PLATFORM FOR GENOMICS
In this section, we present our design of a big data plat-

form, called Gesall, that offers a suite of new features to
support correct and efficient execution of genomic pipelines
based on data parallelism. Most notably, our approach de-
parts from existing approaches by introducing the Wrapper
Technology that aims to support existing genomic data
analysis programs in their native forms, without changing
the data model, data access behavior, algorithmic behavior,
heuristics, etc., used in those programs. This technology
also frees genomic programmers from the burden of rewriting
tens to hundreds of genomic data analysis programs when
porting these programs to a parallel platform.

To do so, our wrapper technology provides several layers
of software that can be used to “wrap” existing data anal-
ysis programs. In this section, we provide an overview of
these software layers, which sets the technical background
for our performance study in the next section. In particu-
lar, we put an emphasis on our new Genome Data Parallel
Toolkit (GDPT), which involves more complex hashing and
range partitioning techniques than traditionally considered
for relational queries due to the complex data access behav-
iors in genomic data analysis programs. As general system
background, we leverage HDFS [11] for storage, YARN [11]
for resource allocation, and the MapReduce (MR) runtime
engine [11] for executing genomic pipelines.

3.1 Distributed Storage of Genomic Datasets
The lowest layer of software that Gesall provides is a

distributed storage substrate for genomic data datasets en-
coded in the standard sam/bam format [32]. Our distributed

storage substrate lies between HDFS and genomic analysis
programs. It is designed to ensure correct execution of ge-
nomic analysis programs on HDFS, because these programs
were developed based on the assumption that they can ac-
cess the whole genome data encoded in the bam format from
a local file system. Since we want to run these programs di-
rectly on subsets of genome data on different nodes, it is
incorrect to let HDFS split a bam file into physical blocks
and distribute them to the nodes. This naive approach not
only breaks the correct bam format assumed in the analysis
programs, but also violates assumptions made in the pro-
grams about the accessibility of all relevant data, causing
incorrect results. We address these issues by adding two
new features in the storage substrate.

1. Distributed Storage of BAM Files. Alignment
results of all the reads are encoded first in a text-based sam
file format. The file starts with a header with metadata
such as the alignment program, the reference sequence name,
the sorting property, etc. Then it contains a series of sam
records. For I/O efficiency, a sam file is always converted to
a binary, compressed bam format to write to disk. The bam
construction method takes a fixed number of bytes from the
sam file, converts the contained records to the binary format,
compresses it using BGZF compression, and appends the
resulting (variable-length) chunk to the existing bam file.

Our goal is to partition a bam file and store it using
HDFS, and later present the local data on each node as a
proper bam file to the analysis programs. When a bam file
is uploaded from an external file system or written from an
analysis program to HDFS, the file is split into fixed-sized
HDFS blocks (default: 128MB), which are distributed and
replicated to different nodes. Each HDFS block can con-
tain multiple, variable-length bam compressed chunks. In
the splitting process, the last bam chunk in a HDFS block
may span across the boundary of a block. We provide a
custom implementation of Hadoop’s RecordReader class to
read bam chunks properly from HDFS blocks. Then to it-
erate over read records in bam chunks, we provide a utility
class that is called with a list of bam chunks as input. The
utility class will fetch the header from the first chunk of the
bam file, and provide an iterator, of the same class as in Pi-
cardTools, over the read records in compressed chunks. This
allows us to have only one-line modification of single-node
programs to switch the reading from local disk to HDFS.

2. Storage Support for Logical Partitions. The
above solution enables correct access to bam records stored
in HDFS. However, it alone does not guarantee the correct-
ness of running analysis programs on subsets of data on each
node. For instance, the Bwa and Mark Duplicates algo-
rithms assume to have both the reads of a pair in the input
data. We call such partitioning criteria the “logical parti-
tioning” of data. Our storage substrate adds the feature
of logical partitions on top of HDFS. It can be used when a
user uploads an external dataset with logical partitions into
HDFS, or when a MapReduce job rearranges data according
to a logical condition and writes such logical partitions back
to HDFS. To support this feature, we implement a custom
BlockPlacementPolicy, which assigns all blocks of a logical
partition file to one data node.

3.2 Genome Data Parallel Toolkit
As stated above, logical partitioning of a large genomic

dataset enables an analysis program to run independently

on the logical partitions. Since most existing analysis pro-
grams were designed for running over a complete genomic
dataset, we next analyze the data access patterns of com-
mon analysis programs and the logical partitioning schemes
that we propose for these programs. We encode these log-
ical partitioning schemes in a library, called Genome Data
Parallel Toolkit, which can be used later to wrap an existing
program that matches the specific data access pattern.

We first summarize the key attributes in sam records that
are used for partitioning in Fig. 3. Recall that there is a sam
record for each aligned position of a read. Within a record,
the QNAME attribute gives the name of a read, which is the
same for its mate in the pair. POS is the leftmost mapping
position of the read on the reference genome. PNEXT refers
to the mapping position of the mate of this read.

We next categorize the partitioning schemes as follows:

1. Group Partitioning The simplest data access pattern
is to require data to be grouped by a logical condition. Ex-
amples include Bwa alignment and Fix Mate Info (partition-
ing by read name), and Base Recalibrator (partitioning by
user-defined covariates). Below, we describe Bwa in detail.

Alignment: The Bwa algorithm requires unaligned reads
to be grouped by the read name. The input fastq files of
unaligned reads are already sorted by the read name, with
one file for each of the forward and reverse reads of a pair.
We first merge them to a single sorted file of read pairs. Then
we split this file into a set of logical partitions and load them
into our HDFS storage system, which ensures that read pairs
in a logical partition are not split to different nodes when
running Bwa in parallel. However, the result of our parallel
program differs slightly from that of a single-node program
due to the inherent uncertainty in genome data analysis,
which we detail in Section 4.5.

2. Compound Group Partitioning refers to the case
that an analysis program imposes two grouping conditions
on a dataset. In general, it is not possible to partition data
once while meeting both conditions. But if the two con-
ditions are related, we may be able to analyze data parti-
tions under both grouping conditions simultaneously. Such
compound group partitioning is unique to the genomic data
model where reads are produced as pairs: grouping by indi-
vidual reads and grouping by read pairs are both required
and exhibit correlated data access patterns.

Mark Duplicates: Recall from Section 2.1 that duplicates
are a set of paired reads that are mapped to exactly the
same start and end positions. Since they often originate
erroneously from DNA preparation methods, they should
be removed to avoid biases in variant calling.

First, the Mark Duplicates algorithm defines duplicates
on a derived attribute, called the 5′ unclipped end, which is
unclipped start position of each read. Note that the align-
ment algorithm may “clip” the end of a read, where quality
may be lower, to get a better alignment of the remaining
bases. Mark Duplicates needs to use the unclipped start of
each read to find true duplicates. For this work, it is suffi-
cient to consider the 5′ unclipped end as a derived attribute
of a read record, which can be computed from the POS and
CIGAR attributes in that record, as shown in Fig. 3.

Second, the algorithm detects duplicates in both complete
matching pairs (both reads of a pair are successfully mapped
to the reference genome), and in partial matching pairs (one
read in a pair is unmapped), using different criteria.

Attribute Type Brief Description

QNAME String Read name
SEQ String Read sequence of size k
QUAL String Base call quality scores of size k
POS Int Leftmost mapping position
MAPQ Int Mapping quality
CIGAR String Mapping details including clipping
PNEXT Int Mapping position of the mate
TLEN Int Read pair length l

5′ unclipped end Int Computed from POS and CIGAR

Figure 3: Basic attributes (in blue) and derived at-
tributes (in red) of a sam read record.

K3#

5’#unclipped#end#

Paired#reads#

K1# K2#

5’#
3’#

3’#
5’#

R1# R2#

R3# R4#

R5#
R7#

R6#

Figure 4: Mark Duplicates partitions enclosed in boxes.
One of (R1, R2) and (R3, R4) pairs is marked as a dupli-
cate. The partial matching, R7, is marked as a duplicate.

Criterion 1: For complete matching pairs, each read pair
is marked by the 5′ unclipped ends of both the reads. Then
to detect duplicates among different read pairs, we need to
group reads by a compound key composed from both un-
clipped 5′ ends of the reads in the pair.

Criterion 2: To detect duplicates in partial matchings,
only the 5′ end of the mapped read in a pair is compared to
the 5′ ends of other reads, which may belong to either com-
plete or partial matchings. Although the reads of complete
matching are not marked as duplicates, they are required to
detect reads from partial matching as duplicates.

Thus, reads in complete matching pairs require two par-
titioning functions: the first based on the 5′ ends of the
paired reads, and the second based on the 5′ end of an indi-
vidual read. Fig. 4 shows an example of 3 complete match-
ing pairs and 1 partial matching. They require generating 5
partitions including 2 paired read partitions, marked by the
red boxes, and 3 individual read partitions, marked by the
green boxes. Between (R1, R2) and (R3, R4) pairs, the one
with a lower quality score is marked as a duplicate. The par-
tial matching, R7, is also marked as a duplicate because it
coincides with reads R2 and R4 in complete matching pairs.

Parallel Algorithms. We propose a parallel implementa-
tion for Mark Duplicates from PicardTools, which is the
first in the literature to the best of our knowledge. It uses
a full round of MapReduce to realize two partitioning func-
tions. In the map phase, the input data must be grouped
by the read name so that the two reads in a pair are read
together. The map function processes the reads in each pair,
and generates two partitioning keys as described above. En-
coding two partitioning functions leads to more data shuffled
than the input data. However, to detect duplicates from the
reads of partial matching pairs, it suffices to have only one
such read from complete matching pairs. We use this intu-
ition to add a map-side filter that emits only one read from
complete matching pairs for each unclipped 5′ position. At
each reducer, reads belonging to different keys are grouped
together and sorted in order to call Mark Duplicates, which
requires reads to be sorted by the mapped position. We refer
to this implementation as MarkDupreg (regular).

As an optimization, we can precompute a bloom filter in a
previous MapReduce round, which records the 5′ unclipped
positions of all the reads in partial matching pairs. The ‘1’
bit for a genome position tells that it is necessary to apply
the second partitioning function to the complete matching
pairs mapped to that position, and unnecessary otherwise.
This method, referred to as MarkDupopt (optimized), has the
potential to decrease the number of records shuffled.

3. Range Partitioning Many analysis programs also con-
sider read pairs as intervals over the reference genome. The
analysis work can be partitioned by dividing the reference

genome into segments, which may be non-overlapping in the
simple case or overlapping in more complex cases. Each
partition consists of all the reads overlapping with a given
genome segment. The reads that overlap with two partitions
are replicated. While such range partitioning is reminiscent
of temporal databases and other systems that model data
as intervals, genomics presents another level of complexity
regarding how segments are defined and how much overlap
is required to ensure best quality of the output of a parallel
program. Two examples are given below.

Unified Genotyper calls single-nucleotide polymorphism
(SNP) and small insertion-deletion (Indel) variants. Bioin-
formaticians at NYGC suggest partitioning reads based on
the chromosome to which they are mapped. Hence, we can
use a (non-overlapping) range partitioning scheme where
a range is a chromosome, permitting 23 partitions to run
in parallel. However, quality control tests show that even
chromosome-level partitioning gives slightly different results
from single-node execution, demonstrating that most genome
analysis programs are non-trivial to partition.

Haplotype Caller is a newer algorithm for small variant
detection. To increase the degree of parallelism, it is possible
to design a fine-grained partitioning scheme that leverages
the knowledge of the internal data access pattern within
a chromosome. Most notably, Haplotype Caller employs a
greedy segmentation method during a sequential walk of the
reference genome. Specifically, it walks across all the posi-
tions of the genome performing three operations: 1) com-
pute a statistical measure over all the reads that overlap
with the current position; 2) greedily define the current seg-
ment (called an active window) based on the trend of the
statistical measures in the recent positions and the mini-
mum and maximum length constraints of an active window;
3) detect mutations inside each active window. We call this
access pattern greedy sequential segmentation. In particular,
this second operation prevents us from simply partitioning
the data by position. In our work, we have designed an
overlapping partitioning scheme that can determine the ap-
propriate overlap between two genome segments and bound
the probability of errors produced by this scheme.

However, the top priority in parallel data processing is
quality. Even coarse-grained partitioning based on chro-
mosomes gives (slightly) different results from single-node
execution. Further diagnosis is needed; only after we under-
stand why differences occur, can more advanced algorithms
be accepted into production genomic pipelines.

3.3 Runtime Data Transformation
Our system also offers runtime support for running anal-

ysis programs coded in C or Java in the Hadoop framework.

Cluster A (Research) Cluster B (Production)
Nodes 1 name node + 1 name data +

15 data nodes 4 data nodes
CPU 24 cores@2.66GHz 16 cores@2.4GHz

with hyper-threading
Memory 64GB 256GB
Disk 1 x 3TB, 140MB/sec 6 x 1TB, 100MB/sec
Network 1Gbps 10 Gbps

Table 3: Two clusters with comparable total memory.

We highlight the key data transformation issues below, but
leave additional details to Appendix A.1.

We use Hadoop Streaming to transfer the data to/from
analysis programs coded in C, such as the Bwa aligner. In
our implementation of a map-only task for Bwa, two external
programs are piped together for the map function – multi-
threaded Bwa, and single-threaded SamToBam. Fig. 8 shows
the dataflow through different programs and pipe buffers.
Even if an analysis program is coded in Java, there is still a
data format mismatch between Hadoop data objects, in the
form of key-value pairs, and the input bam format required
by external programs. We presented an instance of this mis-
match in Section 3.1 where HDFS blocks are transformed to
a complete bam file in the map phase. Similarly for the re-
duce phase, we provide utility classes that can transform a
list of read records to an in-memory bam file with the fetched
header. Such transformation allows us to run single-node
programs, with minimal changes, in the Hadoop framework.

4. EXPERIMENTS & ANALYSIS
We next evaluate the strengths and limitations of Gesall

for genomic data analysis in terms of running time, speedup,
resource efficiency, and accuracy. In particular, we compare
our parallel platform to the GATK best practices [10], a
multi-threaded pipeline known as the “gold standard” for
genomic data analysis.

4.1 Experiment setup
Our experiments were run on two clusters, a dedicated re-

search cluster, referred as Cluster A, and a production clus-
ter at NYGC, referred to Cluster B. They have comparable
aggregate memory but otherwise different hardware char-
acteristics, as listed in Table 3. Both clusters run Apache
Hadoop 2.5.2. On both clusters, the input data to the
pipeline was NA12878 whole genome sample with 64x cov-
erage [6]. This sample has 1.24 billion read pairs in two
FASTQ files. The two uncompressed FASTQ files are 282GB
per file, and 220GB in total with compression.

We ran a pipeline with five MapReduce (MR) rounds, with
the detailed diagrams shown in Appendix A.2.

Round 1 is map-only for Bwa alignment and SamToBam.
Round 2 runs Add Replace Groups and Clean Sam in the
mapper, then shuffling, and Fix Mate Info in the reducer.
Round 3 runs data extraction in the mapper, then shuf-
fling, and Sort Sam and Mark Duplicates in the reducer.
Round 4 sorts the dataset for variant calling. It runs data
extraction in the mapper, then range partitioning, finally
sorting and building the BAM file index in the reducer.
Round 5 runs Haplotype Caller on the partitioned, sorted,
and indexed BAM files to detect variants.

We use four metrics to capture performance:
(1) Wall clock time taken by the program to finish.

Round 1: Alignment
Input files 15 4800
Avg. file size (MB) 38420.5 120.1
Wall clock time (s) 11699 14266

Round 3: MarkDuplicates
Input files 30 510
Avg. file size (MB) 8139.6 478.8
Wall clock time (s) 13172 10548

Table 4: Running time with varied logical partitions.

(2) Speedup =
time taken by the single node program

time taken by the parallel implementation
,

which considers state-of-the-art single node programs.

(3) Resource efficiency =
Speedup

number of cpu cores used
, cap-

turing how effectively extra resources are used for a job.
(4) Serial slot time is the amount of time for which the
tasks of a job are holding on to one or multiple cores. It is
the sum of wall clock time for each task multiplied by the
number of cores requested by each task.

We use a large suite of tools to measure and analyze the
performance. For each data node, we use the sar monitor-
ing tool to report on CPU utilization, IO wait, swap space
usage, network traffic, etc. For a single process, we use perf

stat to get performance statistics like CPU cycles and cache
misses. To capture the call stacks of a single process, we use
gdb and perf record. For Hadoop jobs, we have written
parsers to extract relevant data from log files generated at
the end of each job. We use the MapReduce History API to
generate the job progress plots (as shown in Fig. 7).

4.2 Exploring the Parameter Space
We begin by considering the first three MR rounds (jobs),

while deferring the additional rounds to the later experi-
ments. To run these jobs, we need to first determine the
configuration of a fairly large parameter space, including
(1) granularity of scheduling, defined to be the size of input
logical partitions of each MR job; (2) degree of parallelism,
defined to be the numbers of concurrent mappers and re-
ducers per node in each job. We start by using the research
cluster A with 15 nodes.

Granularity of scheduling. Many analysis steps have
logical partitioning requirements on input data: both Bwa

and Mark Duplicates require input data to be grouped by
read name. The default Hadoop block size is 128MB, which
can be used as the logical partition size. We next show that
the optimal sizes of logical partitions for genomic analysis
differ far from the default Hadoop configuration and require
significant understanding of the workloads.

We first vary the input partition size to the map-only Bwa

job. It was run on 15 data nodes with 1 map task of 6
threads per node. We use two input sizes: (1) Using 15
logical partitions of 38 GB each, we can finish alignment
with one wave of map tasks on each node. (2) We also use
4800 logical partitions with 120 MB each (close to the default
setting). As Table 4 shows, the run time is higher with the
partition size = 120 MB. The reason is that the mappers for
alignment need to each load the reference genome index into
memory. Such loading is done by 15 mappers given 15 logical
partitions, but 4800 times given 4800 logical partitions. The
overheads of repeatedly starting mappers and loading the
reference genome in each mapper are shown by the CPU
cycles and cache misses in Fig. 5(a). So large input partition
sizes amortize per-mapper overheads better.

 1000

 1500

 2000

 2500

 3000

15 4800

C
P

U
 c

y
c
le

s
 (

in
 t
ri
lli

o
n
s
)

Number of input logical partitions

15 4800
 1000

 2000

 3000

 4000

 5000

 6000

C
a
c
h
e
 m

is
s
e
s
 (

in
 b

ill
io

n
s
)

(a) CPU cycles and cache misses in Align-
ment with varied logical partition sizes.

 0

 50000

 100000

 150000

 200000

 250000

30 510 30 510

T
im

e
 (

in
 s

)

Number of input logical partitions

map+sort time
merge time

shuffle+merge time
reduce time

Reduce taskMap task

341

(b) Time breakdown in the MarkDuplicates
MR job with varied partition sizes.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2 4 6 8 10 12 14 16 18 20 22 24

S
p
e
e
d
u
p

Number of Threads

Readahead = 128KB

Readahead = 64MB

Ideal

(c) Bwa speedup on a single node,
with varied readahead buffer sizes

Figure 5: Performance of MR jobs with varied logical partition sizes, and limitations of the multi-threaded Bwa.

MapReduce Round 3: Mark Duplicatesopt MapReduce Round 3: Mark Duplicatesreg

Number of Wall clock Speedup Resource Wall clock Speedup Resource

data nodes time (s) efficiency time (s) efficiency

1 (Gold Standard) 94680 – – 94680 – –

5 10539 8.984 0.299 21967 4.310 0.144

10 5655 16.743 0.279 10846 8.729 0.145

15 (4065) 3724 (23.292) 25.424 (0.259) 0.282 7031 13.466 0.150

Table 5: Scale up to 15 nodes and 90 parallel tasks with reduced running time and similar resource efficiency.

However, we observe a different trend for Mark Dupli-
cates. To illustrate, consider an MR round running the
MarkDupopt algorithm on 5 data nodes with 6 concurrent
map or reduce tasks per node. The map phase requires to
group the input by read name to generate a compound key
for shuffling data to reducers. Table 4 shows that the run
time for 30 and 510 input logical partitions. Here, the larger
partition size gives worse performance. The time breakdown
in Figure 5(b) shows that the key difference between the two
configurations is the time taken by the map side merge.

This is because Hadoop uses the sort-merge algorithm to
sort all shuffled key-value pairs by the key, for which each
mapper performs a local sort of its output. The sort buffer
mapreduce.task.io.sort.mb is set to the maximum Hadoop
value of 2GB. If the sort buffer gets filled, data is first sorted
in-memory and then spilled to disk. When the map func-
tion finishes, a map-side merge phase is run to produce a
single sorted, partitioned file for the reducers. With large
partition sizes there is a significant overlap of the map-side
merge phases of concurrent map tasks on the disk. This re-
sults in increased workload on disk and hence more time to
complete the map-side merge task.

In summary, our system enables better performance by
tuning the input logical partition size for each job. One
should use large partition sizes when aiming to amortize per-
partition overheads specific to genomic analysis, and medium
sizes for better sort-merge performance in data shuffling.

Degree of Parallelism: We next consider the effect of
scaling the degree of parallelism up to 15 nodes. We show
the results of running the MR job for MarkDuplicates, for up
to 15 data nodes. Recall that we have two implementations,
MarkDupregand MarkDupopt, as described in §3.2. We run
both up to 15 nodes, with 6 concurrent map or reduce tasks
per node. Since each mapper/reducer must be given 10GB
of memory to hold its working set, 6 tasks are the most we
can run on one node. As each node has only 1 disk, we defer
the study of parallel disks to §4.5.

First consider MarkDupopt. The number of records shuf-
fled is 1.03 times the input records and the shuffled data in
terms of bytes (with Snappy compression) is 375 GB. Table 5

shows the performance with different numbers of nodes: The
job run time reduces with more nodes, but the resource effi-
ciency decreases slightly with more nodes (in particular, see
the efficiency in parentheses for 15 nodes). This is because
when using more nodes, each node gets less intermediate
shuffle data. By default, Hadoop overlaps the shuffle phase
of reduce tasks with the map tasks. The parameter
mapreduce.job.reduce.slowstart.completedmaps sets the
fraction of the number of map tasks which should be com-
pleted before reduce tasks are scheduled. The default value
of this parameter is 5%. As the amount of shuffled data is re-
duced with 15 nodes, these tasks end up occupying and wast-
ing resources on each node while waiting for more map out-
put. To improve resource efficiency, we configure Hadoop to
start shuffle phase only after 80% of map tasks finish for 15
nodes. The new resource efficiency with 15 nodes increases
from 0.259 to 0.282, enabling constant resource efficiency
(although the number is low). Next consider MarkDupreg,
which presents a workload with large intermediate shuffle
data: it shuffles 1.92 times the input records and 785 GB
in bytes (with Snappy compression). Table 5 again shows
constant resource efficiency (at a low number).

In summary, our system can scale up to 15 nodes and 90
concurrent tasks with reduced running time and similar re-
source efficiency. Hence, we use the maximum degree of
parallelism permitted as the default setting. We did not
consider more nodes because the real computing environ-
ment at NYGC requires us to consolidate parallel tasks on
a relatively small number of nodes, as we detail in §4.5. We
further investigate the overall low resource efficiency in §4.4.

4.3 Linear / Superlinear Speedup
We next seek to understand how well a Hadoop-based

platform supports CPU-intensive jobs, for which we consider
the map-only alignment job. To cope with the high compu-
tation needs, the Bwa aligner already comes with a multi-
threaded implementation. As described in §3, we run align-
ment via Hadoop streaming between the Hadoop Framework
and native Bwa, encoded in C, and SamToBam. This gives us
freedom to explore the degree of parallelism by changing the

Single node Cluster A with 15 data nodes

Wall clock Processes Wall clock Speedup Resource Serial slot

time (s) per node time (s) efficiency time (s)

Round 1: Bwa, SamToBam 99240 1 (24 threads) 7200 13.78 0.92 104106

(24 threads) 6 (4 threads) 4007 24.77 1.65 336090

Round 2: AddRepl,CleanSam,FixMate 154228 6 3612 42.70 0.47 308985

Round 3: SortSam, MarkDuplicatesopt 94680 6 4065 23.29 0.26 293830

Table 6: Performance of the three MapReduce rounds on Cluster A, compared to the single-node performance.

number of nodes, number of mappers per node, and num-
ber of threads per mapper. Since Cluster A has 24 cores
per node, we can run up to 24 threads per node (number of
mappers per node × number of threads per mapper). We
use 90 input partitions so all mappers finish in one wave.

Table 6 shows the metrics for the multi-threaded single
node program and our parallel implementation (in the row
named “Round 1”). We found that (1) resource efficiency is
more when running 6 mappers with 4 threads each, than 1
mapper with 24 threads, per node; (2) resource efficiency is
greater than 1 when we use 6 mappers.

The reason is that multi-threaded Bwa does not use re-
sources efficiently when we increase the number of threads.
The initial speedup of multi-threaded Bwa program is shown
in Fig. 5(c) labeled with Readahead = 128KB. We did inten-
sive profiling and found out that Bwa has a synchronization
point in the form of file read and parse function. To solve
this problem, we set the read ahead buffer size to 64MB. As
the file is accessed in a sequential pattern, the Linux kernel
is able to keep up with the program usage by prefetching
64MB of file at each time. The new speedup is labeled with
Readahead = 64MB in Fig. 5(c). There are more bottlenecks
in the program, which impede the linear speedup, e.g. the
computation threads wait for all other threads to finish be-
fore issuing a common read and parse request. We did not
spend more resources fixing these issues, because Hadoop
provides a very flexible process-thread hierarchy for us to ex-
plore. This hierarchy allowed us to utilize the multi-process
model, rather than only multi-threads within a process, to
increase the degree of parallelism per node.

As can be seen, the rich process-thread hierarchy of Hadoop
allows us to increase the degree of parallelism without incur-
ring the overhead of the Bwa multi-threaded implementation.
Given the 24-threaded Bwa as baseline, we can even achieve
super-linear speedup as shown in Table 6. However, if we
take 1-threaded Bwa as baseline, our speedup is sub-linear,
190.58 as opposed to the ideal case of 24 x 15 = 360. This is
due to the overhead of data transformation between Hadoop
and external C programs via Hadoop streaming.

4.4 Sublinear Performance
We next seek to understand how well a Hadoop-based

platform works for shuffling-intensive jobs. We first consider
Round 2 (data cleaning) and Round 3 (MarkDuplicates) jobs
as described before, which both require shuffling data from
mappers to reducers to rearrange data based on a new log-
ical condition. Table 6 shows the performance of the two
MR jobs. We observe poor resource efficiency, especially for
MarkDuplicates. We examine the reasons below.

1. Data shuffling : Data shuffling from mappers to reduc-
ers incurs a huge overhead for genome data because there is
no reduction of data. As noted in Table 6, the job running
MarkDupopt with bloom filters takes 1 hour 7 minutes, where
72 million more records than the input are shuffled due to
the compound partitioning scheme. Without the bloom fil-

ter, MarkDupreg shuffles 1.92 times the input data and the
job run time increases to 1 hour 57 minutes. To measure the
shuffling overhead, we moved SortSam and MarkDuplicates
programs from reduce() to map(), and the execution time
of this map-only round was only 43 minutes. The 24-min
(74-min) difference for MarkDupopt (MarkDupreg) shows the
cost of data shuffling to reducers.

2. Data transformation between Hadoop and external pro-
grams: To run existing external programs without modify-
ing their source code, we have added data transformation
steps between the Java objects used in the Hadoop frame-
work and the in-memory bam files taken as input by the
external programs. We incur the additional data transfor-
mation cost at each time when we provide input to an exter-
nal program or read the output from an external program.
Fig. 6(a) shows the time spent in external programs and
the time in data transformation for the different map and
reduce tasks of the pipeline. The time taken for data trans-
formation varies between 12%-49%. We have to pay this
copy-and-convert overhead as the external programs work
with only sam/bam file formats.

3. Overhead of calling an external program repeatedly : We
found that the time taken by repeated calling of an external
program on partitions of data in the Hadoop platform can
be significantly higher than the time taken by calling the
program on the complete dataset, where Fig. 6(b) shows the
ratio of these two time measures. A ratio of more than one
means that external programs are taking more time to finish
the job in the Hadoop platform. For example, the sum of
running times of Clean Sam in our parallel implementation
is 11 hours 3 minutes, while the running time of single-node
Clean Sam on complete input data is 7 hours 33 minutes.
In addition, we expected Sort Sam and Mark Duplicates

to take more time as they are processing 72 million extra
records (1.03 times the input data) compared to the single
node version of the programs, but the increase in running
time is greater than the corresponding increase in input data
due to the overhead of repeated program calling. Overall,
this overhead can be attributed to many factors, including
input data being able to fit in memory (rather than spilling
to disk), cache behavior, and fixed startup overheads.

4. Change in degree of parallelism: For some algorithms,
there may not exist fine-grained partitioning scheme that
generates the same results as those from a single node. For
instance, bioinformaticians so far only accept a coarse-grained
partitioning scheme based on chromosomes for Haplotype-
Caller. The program further requires reads in sorted order
of the mapped position. To run it in parallel, we split the
data into 23 partitions (for 23 chromosomes). MR Round
4, which sorts the data by range-partitioning and creates an
index on each partition, took 1 hour 1 minute. We have to
pay this overhead to shuffle the data when the next analysis
requires re-partitioning data. Then with 23 partitions as in-
put, Round 5 which calls HaplotypeCaller ran for 9 hours 27
minutes. During this run our resources were severely under-

49%$
39%$

12%$

AddReplRG$
CleanSam$
Data$Transform$

51%$
49%$

FixMateInfo$
Data$Transform$

27%$

40%$

33%$

MarkDuplicates$
SortSam$
Data$Transform$

(a) Time breakdown for analysis and data transfor-
mation programs in the map and reduce tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

AddReplRGCleanSam FixMateInfo SortSam MarkDup

R
a

ti
o

(b) Ratio of time taken in Hadoop versus
single-node for external programs.

Figure 6: Profiling results to show overheads in shuffling-intensive jobs.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

Node 14

Node 15

 0 1000 2000 3000 4000 5000 6000 7000

L
iv

e
 t
a

sk
s

Time elapsed (s)

map
shuffle+merge

reduce

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

Node 14

Node 15

 0 1000 2000 3000 4000 5000 6000 7000

L
iv

e
 t
a
sk

s

Time elapsed (s)

map
shuffle+merge

reduce

map
map

shuffle+merge
reduce

shuffle+merge
reduce

Node 1

Node 2

Node 3

Node 4

 0 1000 2000 3000 4000 5000

Li
ve

 ta
sk

s

Time elapsed (s)

map
shuffle+merge

reduce

Figure 7: Task progress of MarkDupopt

with 1 disk in Cluster B at NYGC

Configuration Wall Clock Time Avg Map Time Avg Shuffle + MergeTime Avg Reduce Time

Align:Hadoop 4x4x4 4hrs, 57 mins, 16 sec 1 hrs, 10 mins, 40 sec
Align:Hadoop 4x16x1 3hrs, 45 mins, 24 sec 3 hrs, 38 mins, 8 sec

Align:in_house 4x16x1 3hrs, 44 mins, 38 sec 3 hrs, 16 mins, 18 sec

MarkDupreg:Hadoop 1 disk 4 hrs, 43 mins, 26 sec 5 mins, 57 sec 1hrs, 13 mins, 32 sec 2 hrs, 14 mins, 16 sec
MarkDupreg:Hadoop 2 disks 3 hrs, 24 mins, 2 sec 4 mins 45 mins, 18 sec 1 hrs, 46 mins, 18 sec
MarkDupreg:Hadoop 3 disks 3 hrs, 7 mins, 31 sec 3 mins, 51 sec 36 mins, 40 sec 1 hrs, 43 mins, 44 sec
MarkDupreg:Hadoop 6 disks 2 hrs, 55 mins, 36 sec 3 mins, 54 sec 29 mins, 50 sec 1 hrs, 43 mins, 40 sec

MarkDupopt:Hadoop 1 disk 1 hrs, 27 mins, 36 sec 2 mins, 25 sec 17 mins 45 mins, 57 sec
MarkDupopt:Hadoop 6 disks 1 hrs, 22 mins, 40 sec 2 mins, 26 sec 15 mins, 34sec 43 mins, 58sec

MarkDup:in_house 1x1x1 14 hrs, 26 mins, 42 sec

Table 7: Wall clock time and time breakdown in the production cluster (Cluster B) at NYGC.

utilized. Even though we had resources to run up to 90 par-
allel tasks, we could not use all of them with coarse-grained
partitioning. This shows that such programs that dramati-
cally change the degree of parallelism and data arrangement
in the pipeline prevent us from fully utilizing resources.

4.5 Validation at New York Genome Center
We next present the performance and accuracy evaluation

at NYGC, which has a compute farm of servers purchased
specially for genomic analysis. To support this study, NYGC
took 5 production servers from its compute farm to set up a
dedicated cluster, named Cluster B, whose hardware speci-
fication is shown in Table 3. As noted before, the compute
farm of NYGC is intensively shared among different analysis
pipelines. We expect a small number of high-end servers to
be the most likely computing environment for one or a batch
of samples. This means that, instead of spreading an MR
job to many nodes, we need to consolidate a large number
of parallel tasks on a few servers.

Our goals here are to (1) validate our previous results
on these production servers; (2) identify new performance
characteristics on production servers; (3) assess the accuracy
of our parallel pipeline using rigorous biological metrics.

4.5.1 Performance Validation
The performance of our Hadoop programs and an existing

in-house solution at NYGC is summarized in Table 7.
1. Alignment (Bwa and SamToBam). We begin by dis-

cussing the change of Hadoop configuration at Cluster B.
This cluster has much more memory per node than Clus-
ter A, and hence can accommodate more parallel tasks per
node. For our map-only program for alignment, each map-
per needs 13GB memory so we can run 16 concurrent map-
pers per node, denoted as 4 (nodes)×16 (mappers/node)×1
(thread/mapper) in Table 7. (We turn off hyper-threading
because it is an issue orthogonal to our study here.) Since
the Bwa aligner allows multi-threading, for comparison we
also run 4 mappers with 4 threads each per node, denoted

as 4×4×4. We also run the in-house parallel alignment pro-
gram at NYGC with the same numbers of parallel tasks.

Our main results from Table 7 are: (1) 16 mappers per
node work better than 4 mappers per node, even if the total
number of threads is the same. As reported above, running
independent mappers (processes) overcome the limitations
of the multi-threaded Bwa. (2) The in-house solution at
NYGC also achieves the best performance using our sug-
gested configuration of 16 independent tasks per node and
shows similar performance. Even with the overhead of pass-
ing data between Hadoop and C programs, our implementa-
tion offers comparable performance to the in-house solution
for alignment, the most parallelizable step in the pipeline.

2. MarkDuplicates. We again use a full MR job as be-
fore. Cluster B has sufficient memory to run 16 concurrent
map or reduce tasks on each node, with 13GB memory allo-
cated to each task. Recall that our two implementations for
MarkDuplicates: MarkDupreg and MarkDupopt produce inter-
mediate shuffle data of sizes 785 GB and 375 GB respectively
(with Snappy compression of map output). We use the two
implementations to represent workloads of different interme-
diate data sizes for shuffling. Since Cluster B requires us to
consolidate a large number (16) of tasks on each server, we
observe new performance characteristics regarding the rela-
tion between shuffling data sizes, the number of disks, and
the number of reducers.

Due to space constraints, we summarize our results as
follows: (1) When we run a full MR job for genomic data,
there is a large amount of data shuffled and merged. Disk
becomes the bottleneck when we run 16 reducers per node.
Therefore, there must be a correct ratio between shuffled
data and disks, with our observation to be 1 disk per 100 GB
of data shuffled and as many reducers as possible. (2) The
in-house solution can only run this step in a single thread
on a single node, with the running time about 14.5 hours,
while our parallel program completes in less than 1.5 hours.
Details can be found in Appendix B.1.

4.5.2 Accuracy Validation
Besides performance, we must ensure that parallelizing

the analysis programs does not reduce the quality of result-
ing data. With the bioinformatics team at NYGC, we de-
veloped an extensive error diagnosis toolkit involving many
biological metrics. We then performed a thorough analysis
of the different immediate and final results of our parallel
pipeline against those of a serial pipeline.

Error Diagnosis Toolkit. We denote a serial pipeline
with k programs as P ={O1, O2, . . . , Ok}, and the corre-
sponding parallel pipeline as P̄ ={Ō1, Ō2, . . . , Ōk}. We use
Ri to refer the output of the pipeline P up to the step Oi,
and R̄i to refer to the output of P̄ up to Ōi. Since we gener-
ally do not have the ground truth for the correct output of
each step, our error diagnosis focuses on the difference be-
tween Ri and R̄i, for i = 1, . . . , k. In particular, we define:

I Φ+
i = Ri ∩ R̄i, called the concordant result set;

I Φ−i = Ri ∪ R̄i −Ri ∩ R̄i, the discordant result set;

I |Φ−i |, the discordant count (D count).

For all the discordant counts, we consider the reads having
the quality score greater than zero.

Further discussion with bioinformaticians revealed that
the final output produced at the end of our pipeline, the
variant calls, are the most important measure of accuracy.
As long as the final variants remain same through paral-
lelization, the immediate discordant results do not have any
impact on the detection results or any further analysis. To
reflect this intuition, we define another measure that cap-
tures the impact of a parallel pipeline P̄i (up to step i) on
the final variant calls. Formally, we build a hybrid pipeline,
P̃ ={Ō1, . . . , Ōi, Oi+1, . . . , Ok}, which runs parallel pipeline
P̄i (up to step i) and then serial pipeline from step i + 1 to

the final step k. Denote its output as R̃i
k. Then define:

I Ψ(P̄i) = Rk ∪ R̃i
k −Rk ∩ R̃i

k, the discordant variant
set caused by P̄i;

I |Ψ(P̄i)|, the discordant impact (D impact) of P̄i.

Furthermore, not all discordant results (immediate or fi-
nal) are equal. We observed that many genome analysis pro-
grams aim to filter out the records with low quality scores.
So we want to weigh D count and D impact based on the
quality scores. Our weighting function F is a generalized
logistic function which allows flexibility to handle a range
of quality scores. For alignment, our function weights the
aligned reads by the mapping quality (mapq), an attribute
in each sam read record. mapq is a log-scaled probability
that the read is misaligned, and takes the value between 0
and 60. Our logistic weighting function assigns the weight 0
to reads with mapq ≤ 30 and weight 1 to those with mapq
≥ 55 (based on the filtering behaviors of genome analysis
programs), and other weights between 0 and 1 for 30 <
mapq < 55 following the curve of a logistic function. Our
system can accept other customized functions as well. We
also designed a similar weighting function for variant qual-
ity scores. We call the resulting measures the weighted
D count / D impact.

We have written MapReduce programs to compute all the
D count and D impact measures and their weighted versions
for our parallel pipeline.

Major Results: In this experiment, we took three par-
allel pipeline fragments: P̄1 runs up to parallel Bwa; P̄2 runs
up to parallel Mark Duplicates; P̄3 runs up to parallel Hap-
lotype Caller. Table 8 shows the measures.

The discordant count for Bwa is 71,185 (out of 2,504,895,-
008 reads). The weighted D count metric, which weighs
the discordant alignment results by the quality scores, is
0.0002%. To measure D impact of P̄1, we pass the parallel
Bwa output through the serial versions of Mark Duplicates

and Haplotype Caller. The weighted D impact on the vari-
ants is only 0.0837%.

For parallel Mark Duplicates, the D count metric ap-
pears to be higher. This can be attributed to our calculation
which sums the differences in number of duplicates for each
pair. Simply, the Mark Duplicates algorithm can mark
read pairs as duplicates at random when pairs are of equal
quality, which inflates our metrics. We also found that
the difference between P̄2 and P2 output in terms of num-
ber of duplicates is only 259. To measure D impact of P̄2,
we pass the parallel Mark Duplicates output through the
serial Haplotype Caller. We obtain the same D impact
for P̄2 as P̄1. To calculate the D impact value for parallel
Bwa, we run serial Mark Duplicates, followed by serial Hap-
lotype Caller. To calculate the same metric for parallel
Mark Duplicates, we run serial Haplotype Caller. Since
the output of parallel Mark Duplicates is same as that of
serial Mark Duplicates when run on same input data, we
do not see any differences in the results of serial Haplotype
Caller, which runs after Mark Duplicates.

The parallel Haplotype Caller row in Table 8 shows dis-
cordant counts for the complete parallel pipeline. The ab-
solute D count value for parallel Haplotype Caller is 8,710
variants, which is slightly higher than the D impact value
(or, size of discordant variant set) of 8,489 for Mark Dupli-

cates. This is because D impact values are computed by
running a single node Haplotype Caller as the last pro-
gram while the D count values for Haplotype Caller are
computed by running its parallel version on partitioned data.

Further diagnosis of discordant results. We con-
ducted a detailed error diagnosis study of Bwa and its output
records to understand why we get discordant results. Due
to space limitations, we only present a summary of our anal-
ysis. The reader can refer to Appendix B.2 for the detailed
analysis. Our analysis showed that most of the differences
between the serial and parallel implementations of Bwa lie in
the reads with low quality scores. In addition, our analysis
provided an interpretation of the differences from the bio-
logical viewpoint: a large proportion of discordant reads are
gathered around“hard-to-map”regions, known to be anoma-
lous and highly repetitive genome fragments. Further we
found that Bwa embeds data-dependent heuristics, such as
making alignment decisions based on statistics from a local
batch of reads, which can change with data partitions. Bwa

also makes random choices when different alignment options
have the same quality score.

Further diagnosis of discordant impact. We further
analyze in detail the discordant impact (D impact) on vari-
ant calling caused by introduction of a parallel version of Bwa
and Mark Duplicates. To calculate the impact, we used two
pipelines: a hybrid pipeline by following the parallel pipeline
with a serial Haplotype Caller, and a serial pipeline with
Haplotype Caller as the last step. We compare the output
of the two pipelines in detail in Tables 9 and 10, where the
discordant impact is 8,489 variants while we have a total of
5,017,886 concordant variants.

We next seek to analyze the properties of the discordant
variant set and the biological interpretation of discordance.

D count Weighted Weighted D impact Weighted Weighted

D count D count (%) D impact D impact (%)

Bwa 71,185 36,427 0.0002 8,489 4,202 0.0837

Mark Duplicates 1,618,863 176,974 0.0547 8,489 4,202 0.0837

Haplotype Caller 8,710 4,225 0.0841 - - -

Table 8: Discordant counts (D count) and discordant impact (D impact) for the parallel pipeline up to different steps.

We report on several alignment and variant quality metrics
used in bioinformatics analysis. While we refer the reader to
Appendix B.3 for the definitions of these metrics and their
values, we summarize the main observations as follows:

The evaluation of different quality metrics indicates that
the variant calls found only by one of the pipelines have
the following properties: (1) They are a small fraction of
the total number of variant calls. This fraction is close to
0.1%. (2) They are of low quality, relative to the concordant
variant set. (3) They are of low quality as shown by six qual-
ity metrics in Tables 9 and 10. These results indicate that
the concordant variant set comprises the high-quality, likely-
correct variants, and that the serial and hybrid pipelines
differ in only low-confidence calls. We also compared the
variant output of both pipelines with gold standard dataset
for NA12878 sample provided by Genome in a Bottle Con-
sortium [39] and did not observe any significant difference,
as reported in Appendix B.3. Thus, data partitioning in
our parallel pipeline does not increase error rates or reduce
correct calls. The differences are more likely from the non-
determinism of genome algorithms for hard-to-analyze re-
gions and poor quality data.

5. RELATED WORK
National genome centers. The National Center For

Genome Analysis Support (NCGAS) [22] focuses on genome-
level assembly and analysis software running on supercom-
puters. Our approach differs fundamentally as our underly-
ing infrastructure, based on big data technology, is already
shown to outperform HPC technology [35].

Parallel processing for secondary analysis. GATK
[20, 7] can parallelize genomic analysis within a single multi-
threaded process, or asks the user to manually divide data
and then run multiple GATK instances. BioPig [24] and
SeqPig [33] offer low-level libraries for I/O operations, sam
record access, and simple counting tasks, but not complete
programs such as Alignment and MarkDuplicates. Hadoop-
BAM [23] can store binary, compressed bam data in HDFS,
but without advanced features such as logical partitioning
for executing a pipeline of analysis programs. Seal [30] sup-
ports three specific processing steps, by significantly modify-
ing or reimplementing the code, and does not support logical
partitioning schemes. ADAM [19] provides a set of formats,
APIs, and processing step implementations, but requires
reimplementing analysis methods using Scala and RDD’s
(in-memory fault-tolerant data structures in Spark). Cross-
bow [13, 35] implements a Hadoop-based parallel pipeline for
Bowtie alignment and SOAPsnp for SNP calling. It is the
only parallel system that does not require changing exist-
ing analysis programs. But it does not support standard
sam/bam formats in HDFS or logical partitioning schemes
for correctness. Moreover, its supported algorithms do not
overlap with those suggested by NYGC, making it hard for
us to compare empirically. Finally, our recent study profiled
genomic pipelines on a single node to motivate the design of

a parallel platform [8], but did not present design details or
evaluation results.

Cloud computing for secondary analysis. In prior
work, a team at the Broad Institute ported into the Ama-
zon cloud the Picard primary pipeline [29], the GATK uni-
fied genotyper, and GenomeStrip structure variant caller.
This effort, however, only utilizes multi-core technology or
manual partitioning of data across multiple nodes, while our
work investigates the use of Hadoop-based big data technol-
ogy to run full genomic pipelines across a cluster.

Tertiary analysis. A variety of tools can be used for
tertiary analysis operations on the detected variants. The
GenBase [37] benchmark study compares the performance of
storage systems including column stores and array databases
on typical tertiary analysis tasks. Systems like GMQL-
GeCo [12] provide an integrated, high-level query language
for performing algebraic operations over genomic regions
and their metadata. Online data servers (e.g. DeepBlue [3])
allow users to search and retrieve additional genomic and
epigenomic data. FireCloud [9] is a cloud-based platform
that allows users to perform cancer genome analysis. It
includes pre-loaded data, workspaces, and tools tools like
MuTect to detect cancer mutations.

6. SUMMARY AND FUTURE WORK
We presented the design and evaluation of a data parallel

platform for genome data analysis Our main results include:
1) Superlinear speedup: The rich process-thread hierarchy

of Hadoop allows us to increase the degree of parallelism for
CPU-intensive Bwa alignment without the overheads of the
multi-threaded Bwa implementation, achieving super-linear
speedup over a common configuration of 24-threaded Bwa.

2) Sublinear performance: While our parallel platform re-
duced the running time of shuffling-intensive steps signifi-
cantly, we observed sublinear speedup and limited resource
efficiency (<50%) due to the overheads associated with dif-
ferent degrees of parallelism permitted in different steps,
different logical partitioning criteria across steps, and data
transformation between Hadoop and external programs.

3) Accuracy of parallel programs: Starting from Bwa align-
ment, the parallel pipeline produces different results from a
serial pipeline. It is due to the nondeterministic behaviors
of Bwa for low quality mappings and hard-to-map genome
regions. The ultimate accuracy measure is the impact on
final variant calls, which is around 0.1% differences for our
parallel pipeline. Finally, data partitioning in our parallel
pipeline does not increase error rates or reduce correct calls.
The differences are more likely from the non-determinism
of genome algorithms for hard-to-analyze regions, for which
both serial and parallel versions give low-quality results.

Our results lead to a number of areas for future explo-
ration, which are summarized in Appendix C.

Acknowledgments: We would like to thank Prashant Shenoy
for his feedback. This work was supported in part by the
National Science Foundation under the grant DBI-1356486,
and the IDEX chair from Université Paris-Saclay.

7. REFERENCES

[1] E. Afgan, D. Baker, et al. The galaxy platform for
accessible, reproducible and collaborative biomedical
analyses. Nucleic Acids Research, 44(W1):W3–W10, 2016.

[2] E. Afgan, B. Chapman, and J. Taylor. Cloudman as a
platform for tool, data, and analysis distribution. BMC
bioinformatics, 13(1):1, 2012.

[3] F. Albrecht et al. Deepblue epigenomic data server:
programmatic data retrieval and analysis of epigenome
region sets. Nucleic Acids Research, 44(W1):W581, 2016.

[4] M. Baker. Next-generation sequencing: adjusting to data
overload. Nature Method, 7(7):495–499, 2010.

[5] K. Cibulskis, M. S. Lawrence, et al. Sensitive detection of
somatic point mutations in impure and heterogeneous
cancer samples. Nature Biotechnology, 31(3):213–219, 2013.

[6] . G. P. Consortium. A map of human genome variation
from population-scale sequencing. Nature,
467(7319):1061–1073, Oct. 2010.

[7] M. A. DePristo, E. Banks, et al. A framework for variation
discovery and genotyping using next-generation dna
sequencing data. Nat Genet, 43(5):491–498, 2011.

[8] Y. Diao, A. Roy, and T. Bloom. Building highly-optimized,
low-latency pipelines for genomic data analysis. In CIDR,
2015.

[9] Firecloud by broad institute.
https://software.broadinstitute.org/firecloud.

[10] Best practice variant detection with gatk.
http://http://www.broadinstitute.org/gatk/.

[11] Hadoop: Open-source implementation of mapreduce.
http://hadoop.apache.org.

[12] A. Kaitoua, P. Pinoli, et al Framework for supporting
genomic operations. IEEE Transactions on Computers,
66(3):443–457, March 2017.

[13] B. Langmead, M. Schatz, et al. Searching for SNPs with
cloud computing. Genome Biology, 10(11):R134+, 2009.

[14] B. Langmead, C. Trapnell, et al. Ultrafast and
memory-efficient alignment of short dna sequences to the
human genome. Genome biology, 10(3), 2009. R25.

[15] B. Li, E. Mazur, et al. Scalla: A platform for scalable
one-pass analytics using mapreduce. ACM Trans. Database
Syst., 37(4):27:1–27:43, Dec. 2012.

[16] H. Li and R. Durbin. Fast and accurate short read
alignment with burrows-wheeler transform. Bioinformatics,
25(14):1754–1760, 2009.

[17] H. Li and R. Durbin. Fast and accurate long-read
alignment with burrows-wheeler transform. Bioinformatics,
26(5):589–595, 2010.

[18] Y. Li, A. Terrell, and J. M. Patel. Wham: a
high-throughput sequence alignment method. In SIGMOD,
445–456, 2011.

[19] M. Massie, F. Nothaft, et al. Adam: Genomics formats and
processing patterns for cloud scale computing. Technical
Report UCB/EECS-2013-207, University of California,
Berkeley, Dec 2013.

[20] A. McKenna, M. Hanna, et al. The genome analysis toolkit:
A mapreduce framework for analyzing next-generation dna
sequencing data. Genome Research, 20(9):1297–1303, 2010.

[21] S. Moorthie, A. Hall, and C. F. Wright. Informatics and
clinical genome sequencing: opening the black box. Genet
Med, 15(3):165–171, 03 2013.

[22] National center for genome analysis support.
http://ncgas.org/.

[23] M. Niemenmaa, A. Kallio, et al. Hadoop-BAM: directly
manipulating next generation sequencing data in the cloud.
Bioinformatics, 28(6):876–877, Mar. 2012.

[24] H. Nordberg, K. Bhatia, et al. Biopig: A hadoop-based
analytic toolkit for large-scale sequence data.
Bioinformatics, 29(23):3014–9, December 2013.

[25] Custom designed multi-threaded sort/merge tools for bam
files. http://www.novocraft.com/products/novosort/.

LogicalTextInputFormat TextInputWriterInterleaved
FASTQ

BWASamToBam

BytesOutputReader

BytesOutputFormat BAM

Pipe buffer
(64 KB)

Pipe bufferPipe buffer

Plain text,
uncompressed Binary,

compressed

HDFS

HDFS

Figure 8: A map-only task for Alignment via Hadoop
Streaming, allowing custom data transformation.

[26] L. Oesper, A. Mahmoody, and B. Raphael. Theta: Inferring
intra-tumor heterogeneity from high-throughput dna
sequencing data. Genome Biology, 14(7):R80, 2013.

[27] A commercial dbms for scalable scientific data
management. http://www.paradigm4.com/.

[28] Parquet: a columnar storage format for the hadoop
ecosystem. http://parquet.incubator.apache.org.

[29] Picard tools: Java-based command-line utilities for
manipulating sam files. http://picard.sourceforge.net/.

[30] L. Pireddu, S. Leo, and G. Zanetti. Mapreducing a genomic
sequencing workflow. In MapReduce ’11, 67–74, 2011.

[31] M. Reich, T. Liefeld, Jet al. Genepattern 2.0. Nature
genetics, 38(5):500–501, 2006.

[32] Sam: a generic format for storing large nucleotide sequence
alignments. http://samtools.sourceforge.net/.

[33] A. Schumacher, L. Pireddu, et al. Seqpig: simple and
scalable scripting for large sequencing data sets in hadoop.
Bioinformatics, 30(1):119–20, 2014.

[34] S. S. Sindi, S. Onal, et al. An integrative probabilistic
model for identification of structural variation in sequence
data. Genome Biology, 13(3), 2012.

[35] A. Siretskiy, T. Sundqvist, et al. A quantitative assessment
of the hadoop framework for analyzing massively parallel
dna sequencing data. GigaScience, 4(26), June 2015.

[36] Z. D. Stephens, S. Y. Lee, et al. Big data: Astronomical or
genomical? PLoS Biology, 13(7):1117–1123, 2015.

[37] R. Taft, M. Vartak, et al. Genbase: A complex analytics
genomics benchmark. In SIGMOD, 2014.

[38] M. Zaharia, M. Chowdhury, et al. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing. NSDI’12, 2012.

[39] J. M. Zook, D. Catoe, et al. Extensive sequencing of seven
human genomes to characterize benchmark reference
materials. Scientific data, 3, 2016.

APPENDIX
A. TECHNICAL DETAILS

A.1 Runtime Data Transformation
We perform multiple transformations which allow us to

run single node programs coded in different programming
languages, with minimal changes, in the Hadoop framework.
We use Hadoop Streaming framework as the interface be-
tween Hadoop and analysis programs coded in C, such as
Bwa and SamToBam, as shown in Fig. 8.

A.2 Building MapReduce Rounds for a Pipeline
Given a long pipeline of analysis programs, we arrange

them into a series of MapReduce jobs as follows: as soon as
the partitioning scheme of the next analysis program differs
from (or, not compatible with) that of the previous program,
we start a new round of MapReduce. If the map phase of the
new job (e.g., Mark Duplicates) can benefit from the parti-
tioning scheme of the previous step (e.g., data arranged by

Node Node Node Node

bwa mem | SamToBam

Interleaved
FASTQ

BAM BAM BAM BAM

Interleaved
FASTQ

Interleaved
FASTQ

Interleaved
FASTQ

Interleaved
FASTQ

Interleaved
FASTQ

Interleaved
FASTQ

Interleaved
FASTQ

Map (Hadoop Streaming)

Local Disk

HDFS

STDOUTSTDIN

LogicalBlock
PlacementPolicy

LogicalInputFormat

BytesOutputFormat

TextInputWriter BytesOutputReader

File Upload

{ { { {
(a) Alignment map-only round with Hadoop
Streaming

AddOrReplaceReadGroups
CleanSam

FixMateInformation

BAM BAM BAM BAM

Read name

BAM BAM BAM BAM

Map

Reduce

Partition

BamInputFormat

BamRecord

BamInputStream

BamFileWriter{{ { {
(b) Picard Tools cleaning steps
MapReduce round

Find key for each read of pair

BAM BAM BAM BAM

BAM BAM BAM BAM

SortSam
MarkDuplicates

5’ positions of read pair
5’ position of read

Map

Reduce

Partition

LogicalBamInputFormat

BamRecord

BamInputStream

BamFileWriter

{ { { {

(c) MarkDuplicates MapReduce
round

Figure 9: Illustration of the first three MapReduce rounds of the workflow

the read name in Fix Mate Info), we use logical partitions
to feed the output of the previous step to the mappers of
the new job. Otherwise, the mappers simply read physical
blocks. The shuffling phase of the new job is used to rear-
range data according to the new partitioning requirement of
the next analysis program. Based on partitioning require-
ments and order of steps, we designed the MapReduce (MR)
rounds for the pipeline. The first three MR rounds are shown
in Figure 9.

B. MORE EXPERIMENTAL RESULTS

B.1 Shuffling-Intensive Tasks at NYGC
We observe new performance characteristics regarding shuf-

fling intensive tasks on the production servers at NYGC.
Relation between shuffling data sizes and disks: We first

consider the workload of running MarkDupreg. Profiling re-
sults show that the CPU utilization fluctuates widely due to
the fact that one disk is maxed out, as shown in Fig. 10(a).
This is because 1.96 times the input records needs to be
shuffled from mappers to reducers, and Hadoop uses a sort-
merge algorithm to sort all the key-value pairs by the key.
As a reducer receives small files of sorted key-value pairs,
it uses a disk-based merge to bring all data into a sorted
run. Hence the temporary disk used for the merge process
is maxed out. In this case, each temporary disk is handling
approximately 200 GB of intermediate shuffled data. There-
fore, we increase the number of disks for shuffle and merge
from 1 disk to 6 disks, with the performance shown in Ta-
ble 7. The 6 disk configuration gives the best performance
for MarkDupreg, and fixes the CPU and disk utilization issues
as shown in Fig. 10(b).

Then, we run MarkDupopt. Using 1 disk per node, we
do not see the single disk maxing out (Fig. 10(c)). Here,
each disk is handling the merge of approximately 100 GB
of shuffled data, and is able to sustain the load of disk-
based merge. This behavior can be explained using the the
multipass merge model developed [15], which shows that
the number of bytes read and written during the reduce
side merge operation depends on the square of intermediate
data handled per disk. This explains why the running time
is so sensitive to the amount of data shuffled and merged.
Empirically, we observe that one disk can sustain up to 100
GB of shuffled and merged data. Fig. 7 further shows that
with 1 disk, the progress of reducers is already quite even.

When we further increase to 6 disks per node, the reduce
progress is very even with no stragglers.

Impact of reducers on shuffling : We also test the impact
of changing the number of reducers. Both MarkDupreg with
2 disks per node and MarkDupopt with 1 disk per node han-
dle approximately 100 GB of shuffled data per disk. From
Table 7, we observe that it takes less time to shuffle and
merge data in MarkDupopt. In MarkDupopt, the shuffle buffers
of 16 reducers are used in the multi-pass merge algorithm,
whereas in MarkDupreg, shuffle buffers of only 8 reducers are
available per disk. Since the number of bytes read and writ-
ten during the reduce side merge operation is inversely pro-
portional to the number of reducers per disk [15], it is bene-
ficial to set the maximum number of reducers as allowed by
the physical constraints (CPU, memory) of each node.

B.2 Error Diagnosis for Bwa Alignment
In this section we address the differences in results arising

between Bwa run on single machine and multiple machines.
In particular, we make the following observations:

1. Majority of disagreeing reads have low mapping quality.
We plotted the distribution of the mapping quality of the
two primary alignments of each read, one from the serial
execution and the other from the parallel execution, under
the condition that these two alignments differ. Figure 11(b)
shows the mapping quality distribution where x-axis is the
mapping quality in the single node output and y-axis is the
mapping quality in the output of parallel version.

2. A large proportion of disagreeing reads are gathered
around “hard-to-map” regions. First, on each chromosome
we know the locations of centromeres. These regions are
made of repetitive DNA and lack complete information in
the reference genome. As a result, these regions and their
neighborhoods are hard to map . Second, each chromosome
also has a number of blacklisted regions due to their low
mappability or other reasons known to biologists. In Fig-
ure 11(a) we plot the coverage of disagreeing pairs on chro-
mosomes 1, 2, 3 and 4 in logarithmic scale. In Figure 11(a),
the red stripes are centromeres and black stripes are black-
listed regions (obtained from ENCODE data at UCSC). We
observe that a large proportion of disagreeing reads fall in
these sensitive regions, as observed in the spikes.

Regarding the effect on downstream analysis, note that
many algorithms consider only the reads with good mapping
quality score (>30). In addition, some variant detection al-
gorithms ignore the blacklisted regions or the output variant

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ut
il

 (
%)

time elapsed (s)

dev8-48 util

10.3.200.110
10.3.200.111
10.3.200.112
10.3.200.113
10.3.200.114

(a) MarkDupreg: disk utiliza-
tion with 1 disk for 16 reduc-
ers per node.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000

ut
il

 (
%)

time elapsed (s)

dev8-48 util

10.3.200.110
10.3.200.111
10.3.200.112
10.3.200.113
10.3.200.114

(b) MarkDupreg: disk utiliza-
tion with 6 disks for 16 reduc-
ers per node.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

u
ti

l
(%

)

time elapsed (s)

dev8-80 util

10.3.200.110
10.3.200.111
10.3.200.112
10.3.200.113
10.3.200.114

(c) MarkDupopt: disk utiliza-
tion with 1 disk for 16 reduc-
ers per node.

Figure 10: Profiling results of the experiments in the production cluster (Cluster B) at NYGC.

(a) Coverage of disagreeing pairs on chromosomes 1, 2, 3 and 4. (b) Distribution of the mapping
quality of the disagreeing pairs.

Insert size

o

f
d

is
ag

re
ei

ng
 p

ai
rs

(c) Number of disagreeing pairs
as a function of the insert size.

Figure 11: Error diagnosis study of Bwa.

list is filtered to ignore such regions in a post-processing step.
If we apply these two filters, then the differences reduce to
only 0.025% of total read pairs.

3. Some artifacts of the Bwa program also cause instabil-
ity of parallel results. Bwa includes several implementation
choices that cause different results under data partitioning:
a) The insert size distribution changes with each batch. An
optimization in the Bwa program computes the distribution
of the insert size (distance between a read pair) from a batch
of reads These batch statistics are then used to score the
list of alignments for each read of the pair and select the best
pair. The best pair is determined by a pair score. The pair
score is a step function and can quickly change value when
the probability of observing that pair distance is away from
mean of insert size distribution is less than a fixed thresh-
old. We plot the number of disagreeing pairs in Figure 11(c)
when both reads of the pair are properly aligned (and apply-
ing the two widely used filters as described above) against
insert size. We observe that the number of disagreeing pairs
are higher on the edges of the insert size distribution. b)
Random choice among equal pair scoring score. When dif-
ferent pairs of alignment have same alignment score then
Bwa randomly selects a pair of alignment – this is especially
common for alignment against repetitive genome regions.
Thus, the batching behavior and the inherent randomness
in Bwa implementation also prevents parallel version from
reproducing exact same results.

B.3 Discordant Impact Study
In this section we analyze the discordant impact (D impact)

on variant calling caused by introduction of parallel version
of Bwa and Mark Duplicates. To calculate the impact, we
construct two pipelines - a hybrid pipeline by following the
parallel pipeline with a serial Haplotype Caller and a se-
rial pipeline with Haplotype Caller as the last step. For

comparing the outputs of the two pipelines, we use Intersec-
tion to label the set of variants which are common to both
pipelines, Hybrid to label the set of variants found only by
the hybrid pipeline, and Serial to label the set of variants
found only by the serial pipeline.

We evaluated the following metrics, used standardly in
bioinformatics analysis, for the comparison study -
(1) Mapping Quality (MQ): MQ is the root mean square
mapping quality of all the reads at the variant site.
(2) Read Depth (DP): Number of reads at variant site.
(3) Fisher’s Strand (FS): Strand bias estimated using
Fisher’s Exact Test. Strand bias indicates that more reads
come from one strand of DNA vs. the other, and can impact
coverage assumptions.
(4) Allele Balance (AB): Estimates whether the data sup-
porting a variant call fits allelic ratio expectations. For a
heterozygous call, the value should be close to 0.5 whereas
for a variant homozygous call should be to close to 1.0. Di-
vergence from the expected ratio may indicate bias for one
allele. AB = {# ALT reads}/{# REF + ALT reads}
(5) Transition/Transversion Ratio (Ti/Tv): Transi-
tions are changes between C’s and T’s or A’s and G’s. Transver-
sions are changes between A’s and T’s or C’s and G’s. We
expect Ti/Tv ratio to be ∼2 in high quality variant calls.
(6) Het/Hom Ratio: The average ratio of heterozygous
to homozygous variant calls across each sample.

Tables 9 and 10 show the metrics for the variants called
in both pipelines or unique to a single pipeline.

The comparison of variant output of both pipelines with
gold standard dataset for NA12878 sample provided by Genome
in a Bottle Consortium [39] revealed no significant difference.
We obtained the following precision and sensitivity values re-
spectively (1) 99.2816% and 97.055% for serial pipeline, and
(2) 99.2817% and 97.056% for hybrid pipeline.

Intesection Hybrid Serial

Total 5,017,886 (99.831%) 4,287 (0.085%) 4,196 (0.083%)
Ti/Tv 1.94 0.97 0.94

SNP Het/Hom 1.8 12.55 12.51

Table 9: Variant call summary.

Quality Metric Mean Median

Intersection Hybrid Serial Intersection Hybrid Serial

Mapping Quality (MQ) 57.97 45.26 45.06 60.00 47.31 46.49

Fisher Strand (FS) 3.98 14.74 17.45 0.85 5.36 6.25

Allele Balance (AB) 0.66 0.28 0.28 0.54 0.15 0.15

Read Depth (DP) 71.84 272.23 268.22 67.00 95.00 104.50

Table 10: Mean and median of variant quality metrics.

C. FUTURE RESEARCH DIRECTIONS
Our results thus far, in both performance and accuracy,

lead to a number of areas for future exploration, some of
which will require collaboration between genomics scientists
and computer scientists to find solutions.

1. Automatic safe partitioning. We discovered in this
study that the data partitioning method varies with data ac-
cess behaviors and data dependencies in each genomic anal-
ysis program, and there is a large set of such behaviors as
more algorithms are designed in bioinformatics. Finding a
partitioning scheme that retains accurate results and best
improves performance is a time-consuming manual process.
To make our platform widely usable will require automating
the partitioning process, and is a critical piece of our future
work. This automation process will likely require “hints” or
tags on each algorithmic step from genomics scientists, to
describe the internal data dependencies that disrupt parti-
tioning – a systematic way to do so for various data access
behaviors is an interesting research topic.

2. A rigorous framework for error diagnosis in a
deep pipeline. Keeping track of errors in a deep genomic
analysis pipeline is extremely complex, labor-intensive at
present, while it is also vitally critical when the variants
finally reported by the pipeline are mutations in human
genomes and such mutations will be used in diagnosis and
treatment. We are particularly concerned with the differ-
ences introduced by data parallelism, that is, the differences
of a parallel program from the results of a serial program, or
the differences that vary with different numbers of partitions
created. At the moment, there is no rigorous framework for
tracking and reasoning such differences. Provenance from
the database literature is a helpful concept. However, we
need tuple-level provenance to diagnose how different results
occur with partitioning. Tuple-level provenance is hard to
collect because it requires changing the code of each analy-
sis program substantially (e.g., in each object creation line
of the code), let alone the time cost of doing so for billions
of reads per genome. Interesting research directions may
include (1) provenance collection at the granularity of mini-
batches when such mini-batches are used as the data access
pattern in genomic analysis, (2) error diagnosis for data par-
titioning based on such provenance, and (3) error evolution
through a chain of steps.

3. Data parallelism with high resource efficiency.
Our study observed that data parallelism reduced the run-
ning time of individual analysis steps, but the resource ef-
ficiency for shuffling-intensive steps can be lower than 50%.
It is a critical issue for genome centers like NYGC which

have a fixed budget (being non-profit organizations) and
have to support many hospitals and research institutes. Of-
ten, the compute farm is intensively shared among numerous
pipelines and has a long queue of jobs waiting to be submit-
ted. In this case, wasting resources while achieving shorter
running time is not desirable. More specifically, the wasted
resources are due to the overheads of data parallelism, in-
cluding shuffling data when the analysis steps change the
partitioning criteria or degree of parallelism, and the over-
heads of data transformation between Hadoop and external
programs. A research challenge posed here is how to achieve
shorter running time through data parallelism while main-
taining high resource efficiency. The key is to design new
techniques that reduce the overheads, including more effi-
cient algorithms for data shuffling, statistics collected from
the earlier pipeline to reduce data needed in shuffling, or ma-
terialized views that suit different data partitioning schemes
and can be reused through the pipeline.

4. A Pipeline Optimizer: Our study also demonstrates
that large genomic workloads require a pipeline optimizer.
(1) Even for the best studied objective of running time, the
optimal configuration of our parallel execution varies with
the analysis program, involves a large parameter size (the in-
put partition size for mappers, number of concurrent tasks
per nodes, number of disks used, when to start reducers,
etc.), and requires capturing new cost components in ge-
nomic workloads (overhead of building an reference index
per partition, disk-based sort-merge for shuffled data, etc.).
The performance measures from our current tests help form
a basis for the design of an optimizer that can automati-
cally choose the optimal configuration for each analysis step.
(2) The optimizer also faces the challenge of multi-objective
optimization. We observed a tradeoff between running time
and resource efficiency (throughput), which is expected to
persist even if we reduce overheads of data shuffling and
transformation. Given the heterogeneous mix of research
and clinic processing pipelines at NYGC, it is an important
study to determine how to optimize for running time for ur-
gent samples while at the same time, optimize for overall
throughput sustained by the center.

