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ABSTRACT
Today large sequencing centers are producing genomic data at the
rate of 10 terabytes a day and require complicated processing to
transform massive amounts of noisy raw data into biological infor-
mation. To address these needs, we develop a system for end-to-end
processing of genomic data, including alignment of short read se-
quences, variation discovery, and deep analysis. We also employ a
range of quality control mechanisms to improve data quality and
parallel processing techniques for performance. In the demo, we
will use real genomic data to show details of data transformation
through the workflow, the usefulness of end results (ready for use as
testable hypotheses), the effects of our quality control mechanisms
and improved algorithms, and finally performance improvement.

1. INTRODUCTION
Genomics has revolutionized almost every aspect of life sciences

in the past decade. At the same time, technological advancement
such as next-generation sequencing is transforming the field of
genomics into a new paradigm of data-intensive computing [1]. A
large sequencing center such as the Broad Institute of Harvard and
MIT can produce 10 terabytes of genomic data each day. The flood
of data needs to undergo complex processing that mines biological
information from vast sets of small sequence reads while handling
numerous errors inherent in the data. At present, the processing of a
single person’s genomic data takes 10-12 days of machine time at
state-of-the-art sequencing centers.

The genomic data characteristics and complex data processing
needs have severe implications on real-world deployments. First
and foremost, data quality is of paramount concern to diagnostic
labs such as the Genetic Diagnostic Laboratory at Children’s Hospi-
tal Boston (GDL-CHB). In the current practice, GDL-CHB sends
de-identified DNA samples to a certified commercial sequencing
company. The company then delivers the results (about 100-200GB)
containing both short read sequences and detected genomic variants
for each sample, with a turn-around-time of two months. Currently,
a major hurdle is to detect true genomic variations due to a high rate
of false positives (genomic variations reported by data processing
software but invalidated by laboratory work) in the processed data.
Alternatively, diagnostic labs, such as GDL-CHB, have to process
raw genomic data themselves, involving developing software to
align the genome, detect variants, and assess data quality.
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Second, even large research institutes that have the ability to
fully process genomic data feel a pressing need to address daunting
performance and scalability challenges. In particular, the major
challenges are to significantly increase the amount of data processed
each day while reducing the latency in processing an urgent DNA
sample (e.g., to reduce the delay of 12 days for finding a treatment
strategy for a cancer patient or an acute infectious disease).

To address the above challenges, we design and develop a work-
flow system for massive genomic data processing and deep analysis.
Our system has the following key features:

1. End-to-End Processing: Our system provides end-to-end pro-
cessing of genomic data, including (i) alignment of read sequences
of a sample against a reference genome, (ii) variation discovery
based on an aligned genome and the reference genome, and (iii)
deep analysis based on patient information and detected genomic
variations, such as finding associations of genomic variants and
patient phenotypes. The scope of processing in our system stands in
contrast with existing systems that focus only on a particular task.
For instance, well-known systems such as BWA [8], Bowtie [7], and
Wham [10] are designed for alignment only. The Genome Analysis
Toolkit (GATK) [4] focuses on local re-alignment (to improve align-
ment quality) and simple variation detection. Our system provides a
much deeper processing pipeline and eventually outputs patterns of
statistical significance, such as the association of genomic variants
and patient phenotypes, which can be used as testable hypothesis
for immediate validation via lab work.

2. Error Tracking and Diagnosis: Our system is designed to have
data quality as a first-class concept, across input data, immediate
results from alignment and variation discovery, and the final output
of deep analysis. In particular, we extend the notion of “quality
scores” beyond that only for read sequences in existing systems, and
devise new ways to compute quality scores for all intermediate and
final results. We further have a range of quality control mechanisms
that prune low quality data (due to data issues) and reject poor
alignment and variation detection results (due to software issues).

3. Scalable Data Processing: Our workflow further explores
parallel processing to distribute massive input data sets and inter-
mediate data sets to multiple nodes. Our profiling results show that
the most expensive operations in the workflow include alignment,
quality score recalibration, and variation discovery. Our techniques
focus on these operations to improve overall system performance.

As part of a bigger initiative at Children’s Hospital Boston, our
workflow is an important initial step towards genetic diagnosis and
treatment of patients and ultimately the vision of “personalized
medicine.” By returning patterns of statistical significance that can
be used as testable hypotheses, our system can dramatically reduce
the time and human costs of today’s labor-intensive screening for
biological hypotheses. Our system will also help track and mitigate
errors in processed data, which have long plagued genome process-
ing systems. Finally, the improved performance of our system will
be important for analyzing urgent DNA samples to find treatment
strategies for cancers and acute infectious diseases.
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Figure 1: A workflow for genomic data processing and deep analysis.

In our demonstration, we will present a working prototype system
using real genomic data sets and processing workloads. We will run
the workflow from alignment, to variation discovery, and finally to
association mining to find associations between genomic variations
and phenotypes. We will compare our association mining algorithm
against the state-of-the-art [5] to demonstrate the changes needed
for genomic data analysis. We will also compare our system with a
baseline implementation using existing software tools to show the
effectiveness of our quality control mechanisms. Finally, we will
perform parallel processing of expensive operations such as align-
ment and variation discovery, and show the improved performance.

2. SYSTEM OVERVIEW
Our system for genome data processing and analysis works in an

environment shown in Figure 1(a). Users of the system are hospitals
and research institutes. A user starts by sending DNA samples to a
third-party sequencing service and requests the produced genomic
data to be transferred to our system, as shown by the arrow (1) in
the figure. For each DNA sample, a sequencer produces raw images
and then converts the image data to short read sequences (or reads,
for brevity) of the genome. The read sequences are transferred to
our system by shipping hard disks, as shown by the arrow (2). The
data volume is usually hundreds of gigabytes per genome sample.
Once the data arrives at our system, the user can issue a request
to process the data, including alignment of read sequences and
detection of variations against a reference genome, as shown by the
shaded box labeled as “II. Data Processing”. The output of this
module, including a whole genome sequence and variations detected,
are stored in a database for further analysis. Afterwards the user
can upload additional patient information, and initiate extensive
analyses that combine genomic data and patient data. Such analyses
are handled by the module labeled as “III. Deep Analysis”, which
automatically discovers patterns of both statistical significance and
biological meanings.

Details of the workflow for data processing and deep analysis are
shown in Figure 1(b). For completeness, this workflow also includes
data acquisition and pre-analysis at the sequencing service.

1) Data acquisition: A human genome has approximately 3 bil-
lion bases and each base has a letter of ‘A’, ‘C’, ‘G’ or ‘T’. Most
current sequencing technologies capture image data for each base
being sequenced. Such raw data is then parsed into short read se-

quences of l bases (l depends on the sequencing machine), where
each base has a specific base call, a letter of ‘A’, ‘C’, ‘G’ or ‘T’,
and an assigned quality value (the likelihood that the base call is
correct). For each genome sample, a sequencer usually produces
10’s to 100’s millions of read sequences of 30-1000 bases each.

2) Pre-analysis: The pre-analysis step evaluates the quality of
each read sequence, removes poor quality reads, trims the poor
quality bases at the two ends of each read, and formats the data for
downstream processing (e.g., using the FASTQ format).

3) Alignment: Then the short read sequences are aligned against a
reference genome. Figure 2 shows an example where the sequenced
genome differs from the reference genome with two true mutations,
A → C and C → A. In this example, nine read sequences are
aligned against the reference genome with up to five mismatches
allowed per read—such mismatches must be allowed in order to
detect mutations, which occur in every person’s genome. The first
four reads differ from the reference genome on the two bases where
mutations occur among others, but the letters do not agree with
the true genome. Most likely these reads have been mis-aligned
to this fragment of the genome. The bottom five reads have the
correct letters for the two bases where mutations occur, but have
three additional mismatches, in relatively close positions, that differ
from the true genome. Such mismatches can either come from errors
in raw data or indicate that these reads should be aligned somewhere
else. As can be seen, proper alignment for variation detection is a
challenging problem, which we discuss more shortly.

4) Variation discovery: After alignment, the next step detects a
range of genomic variants against the reference genome, including
single nucleotide variants (SNPs), small insertions/deletions (IN-
DELs), and large structure variants such as copy number variants
(CNVs), inversions, and translocations. There is hardly any commer-
cial software that can detect all of these variants. In our system, we
support most forms of variants above using customized algorithms.

5) Validation: In the early phase of the workflow development,
we plug in an additional step to validate detected genomic variations
using other reliable, but labor-intensive methods. The validation re-
sults, e.g., false positives of the detected variations, provide feedback
for improving the alignment and variation detection algorithms.

6) Search and Integration: The reported genomic variations are
used to search existing knowledge bases to obtain associated infor-
mation and integrated with patient information such as phenotypes.
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Figure 2: Examples of poor alignments of read sequences.

7) Deep analysis: The last step produces high-level information
with biomedical meanings from all available data, e.g., for under-
standing associations between genomic variations (e.g., SNPs and
CNVs) and clinical phenotypes, causal relationships between those
variations and phenotypes, or functional pathways in response to
evolutionary, environmental, and physiological changes.

In the following, we discuss several key technical issues.

2.1 Error Tracking and Diagnosis
Today’s genomic data processing systems are plagued with false

positives of processed data: many detected genomic variations are re-
ported to be false based on validation using safer but labor-intensive
methods. Such errors severely affect subsequent biomedical anal-
yses. The reasons for such errors are two-fold: (1) Data errors:
Genomic data is inherently noisy. Due to the limitations of sequenc-
ing technology, errors occur in raw data at the rate of roughly 1 out
of 100 bases. While sequencers usually create 30-50 reads of each
base, the huge amount of noisy data still challenges software for
alignment and variation detection. (2) Software errors: Genome
processing software has to deal with both noisy data and intrinsic
mutations in human genomes. When reads are aligned against a ref-
erence genome, it is hard to distinguish the mismatches due to data
errors and those due to mutations. When such confusion propagates
to variation detection, many false positives occur in output.

Quality scores of input and processed data: Our system is
designed to have data quality as a first-class concept through all
processing steps. We extend the notion of quality score beyond that
for read sequences only in existing systems. More specifically, we
devise techniques to assign quality scores to all forms of data in the
workflow, including input data, intermediate data, and final output:

(1) Input data, the read sequences of a sample, is provided by the
sequencer with a quality score for each base in a read. For example,
the quality score of the ‘A’ letter in the read ‘ACCGTT’ is 10. This
score, called “Phred quality score,” is a property logarithmically
related to the probability that the base-calling ‘A’ is an error.

(2) Propagating quality scores of the bases of a read to the align-
ments of the read is largely an unsolved problem. In our system,
when a read is aligned to a position on the reference genome with
m mismatches, we consider all possibilities of combining data er-
rors and real mutations: Among the m mismatches, m1 of them
arise from data errors with the probabilities indicated by the qual-
ity scores of these m1 mismatched bases, and the rest of m−m1
mismatches are due to mutations, with the probability of having
m − m1 mutations in this part of the genome characterized by a
Poisson distribution. We enumerate m1 from 1 to m, compute prob-

abilities of all these cases, and choose the case with the highest
probability as the best explanation of this alignment. If a read has
multiple alignments, we produce a probability for each of them.

(3) Propagating quality scores through variation detection algo-
rithms is an even harder problem and requires fundamental research
on this topic. We adopt a recent framework, called GASVPro [3],
which combines the probabilities of alignment errors with the possi-
bility that the number of reads per base deviates from an expected
number. GASVPro, however, does not specify how to generate
probabilities of alignment errors; our proposed technique above can
be plugged into the this framework to produce such probabilities.
Furthermore, GASVPro only considers two types of structural vari-
ation, deletion and inversion. Our system extends it to support other
types such as translocation.

(4) Finally, our system further pushes quality scores through the
Deep Analysis module to the final output. Take association rule
mining for example. Each mined rule has structural variants in the
head of the rule and phenotypes in the body of the rule. When
structural variants are annotated with quality scores (probabilities
for being wrong), techniques such as [2] can be used to deal with
association rule mining in the probabilistic setting.

Quality control mechanisms: The quality scores that we de-
velop allow us to employ a range of quality control mechanisms.
Besides the obvious use of these scores to prune low quality data,
they also allow us to mitigate various software errors. For instance,
if a read has multiple possible alignments, existing software makes
rather ad-hoc choices of one alignment or a few alignments. Our
system can choose the top one or top few alignments based on qual-
ity scores. If a read r has two top alignments at locations u1 and u2
with similar scores, we can examine the set of reads mapped to each
of u1 and u2 with their quality scores, derive the consensus for each
location, and choose between u1 and u2 the more likely alignment
of the read r based on its similarity with the consensus. Other quality
control mechanisms are omitted due to space constraints.

2.2 Algorithm Development
We first developed a baseline workflow using existing software

including BWA [8] for alignment, GATK [4] for SNP and INDEL
calling, and association mining for genomic variations and patient
phenotypes [5]. We then improved many algorithms used in the
workflow for more functionality and improved results:

Alignment and variation discovery: Existing algorithms for
alignment and variation discovery have some severe limitations.
One is to use m mismatches for both SNP and INDEL calling. As
the need for detecting large INDELs grows, using a small m value



prevents the software from detecting them. In our system, we allow
a larger value of m for mismatches in INDEL detection. However,
the additional mismatches allowed will cause many false positives
in alignment. Hence, the quality control mechanisms described
above are used aggressively to prune erroneous alignments. Another
limitation of existing software is that only one alignment of a read
is considered for variation detection. As our quality control mecha-
nisms have pruned many bad alignments, we pay the overhead of
considering multiple alignments of a small set of reads in order to
return genomic variations of higher quality.

Association mining: Unlike traditional association mining for
transaction data, the genome-wide association study presents several
main differences: First, as genomic variations are rare in nature, the
extremely low support for such variations makes existing algorithms
highly inefficient or unable to complete. Second, the interestingness
metric for association rules is usually confidence, which produces
too many trivial and repetitive rules in the genomic domain and hides
truly interesting ones. Third, large structural variants such as CNVs
are never fully aligned across different patients. Hence, they cannot
be used as a fixed vocabulary of items as in existing algorithms.
Instead, they should be divided into small fragments and mined
for association by considering proximity of these fragments. Our
algorithm extends a recent one [9] to support a new interestingness
metric, extremely low support, and proximity-aware mining.

2.3 Parallel Processing for Performance
We further consider MapReduce style parallel processing for

improved performance. We profiled our workflow to identify the
cost associated with each step. We found that alignment, quality
score recalibration, and some variation discovery algorithms are
expensive operations. Therefore, we develop ways to parallelize
them using the open-source Hadoop system. In the interest of
space, we highlight a few below: (1) Alignment: Mapping reads
to the reference genome is a computationally expensive step. The
problem, however, is embarrassingly parallel as each sequence can
be aligned independently of each other. We can run instances of the
alignment program on different nodes using Hadoop. (2) Quality
score recalibration: The quality scores returned by the sequencer
often differ from the actual error rates present in the data because
they can be affected by many covariates such as the machine cycle,
the position of a base within a read, neighboring bases etc. To
account for these factors, the quality scores in input data can be
recalibrated (improved) based on the empirical error rates in groups
of data, where the groups are defined by all possible values of user-
defined covariates. We consider two methods to parallelize this step:
we can either sort all the reads based on their mapped locations
and then in parallel on multiple nodes, iterate over the set of reads
overlapping with each location in the reference genome; or we can
iterate over the unsorted reads and for each read probe the reference
genome to update the empirical error rate.

Our design of parallel processing techniques addresses key issues
regarding how to design multiple rounds of MapReduce jobs in a
deep workflow of genomic processing, e.g., how to choose keys of
MapReduce jobs, how to minimize the number of rounds of jobs,
and how to choose between hash based and sort-merge based imple-
mentations of MapReduce. In addition, we consider optimization of
the storage system to minimize intermediate data sizes.

3. RELATED WORK
We survey additional related work in this section. Crossbow [6]

is a parallel pipeline for alignment and SNP detection. However,
it currently does not support gapped alignment, hence of limited
use. Seal [12] has integrated the BWA aligner with the Hadoop

framework using Pydoop, an approach we adopt in our system.
GATK [4] supports the MapReduce interface but not distributed
parallelism. It can parallelize within a single multi-threading process
or by manually dividing a region into independent pieces based on
then chromosome and then running independent GATK instances.
Hadoop-BAM [11] provides access to reads in binary, compressed
BAM format stored in HDFS, which can be leveraged in our system.

4. DEMONSTRATION
In this demo, we will present a working prototype using real

genomic data and real processing and analytical workloads. We
have collected several terabytes of data, including (1) 10 trios (father,
mother, and child) with 30 whole genome sequences and 3TB data,
which is particularly useful for error tracking and diagnosis because
genotypes in the child need to be consistent with those observed
in the parents (otherwise, there is most likely an error); (2) 36
whole exome samples, each of which is 1% of a whole genome
representing functionally relevant data; and (3) structural variants
(CNVs) of four thousand patients with their phenotypes.

We will demonstrate the following features of our system: (1) A
workflow returning high-level biological information: We will run
the workflow from alignment, to variation discovery (including
SNPs, small INDELs, and large structural variants), and finally to
deep analysis. As an example of deep analysis, we find associations
between genomic variations (common or rare) and phenotypes such
as short, normal, or tall stature. We will show the data at each step
of processing, including the relevant attributes and how they are
transformed across steps, as well as how we compute novel quality
scores for intermediate data and final output. (2) Comparison of
association mining algorithms: We will compare our association
mining algorithm against the state of the art [5] to demonstrate the
changes needed for genomic data analysis. (3) Data quality: We will
also compare our system with quality control mechanisms with the
baseline workflow using existing software tools. We will show the
difference in quality of processed results. (4) Parallel processing:
We will run parallel processing of the most expensive components
of the workflow on a cluster of nodes using Hadoop. We will show
the resulting performance improvements.
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