
Sets in Types, Types in SetsBenjamin WernerINRIA{Roquenourt BP 10578 153 LE CHESNAY edexFRANCEbenjamin.werner�inria.frAbstrat. We present two mutual enodings, respetively of the Cal-ulus of Indutive Construtions in Zermelo-Fr�nkel set theory and theopposite way. More preisely, we atually onstrut two families of en-odings, relating the number of universes in the type theory with thenumber of inaessible ardinals in the set theory. The main result is thatboth hierarhies of logial formalisms interleave w.r.t. expressive powerand thus are essentially equivalent. Both enodings are quite elementary:type theory is interpreted in set theory through a generalization of Co-quand's simple proof-irrelevane interpretation. Set theory is enoded intype theory using a variant of Azel's enoding; we have formally hekedthis last part using the Coq proof assistant.1 IntrodutionThis work is an attempt towards better understanding of the expressiveness ofpowerful type theories. We here investigate the Calulus of Indutive Constru-tions (CIC); this formalism is, with some variants, the one implemented in theproof systems Coq [6℄ and Lego. It is essentially a typed �-alulus with thefollowing features:{ Dependent types, allowing the representation of propositions as types, throughthe Curry-Howard isomorphism.{ An imprediative level, i.e. the alulus is an extension of Girard's systemF , allowing polymorphi types and thus imprediative reasoning.{ A hierarhy of prediative universes, quite similar to Martin-L�ofs' [17℄.{ Indutive types, generalizing the primitive integers of G�odel's system T .From the point of view of normalization and/or onsisteny proofs, the om-bination of these di�erent features is still not fully understood. Known normal-ization proofs, as well as model onstrutions, make use of inaessible ardinals,i.e. go beyond usual set theory. The question we try to address in the presentwork is whether inaessible ardinals are neessary to build a model of CIC,or equivalently whether CIC is as strong as usual Zermelo-Fr�nkel set theory(ZFC).In the next setion we present CIC in a more formal way. In setion 3 wegive an interpretation of CIC in ZFC; these semantis generalize Coquand's



proof-irrelevane semantis and are extremely straightforward. The number ofinaessible ardinals needed is exatly the number of universes of the modelizedtype theory. In setion 4, we do the reverse work by enoding ZFC in CIC,adapting work of Azel [1{3℄. We however have to assume a type-theoretialaxiom of hoie in CIC to be able to enode full ZFC. We then an enode ZFCwith n inaessible ardinals in CIC equipped with n + 1 universes. This giveslead to niely interleaving relative onsisteny proofs. The situation is summedup in the onlusion.The paper paper tries to be as self-ontained as possible. For matters ofspae, we keep our desription of indutive types informal, relying on examplesand referring to the relevant publiations. Some basi notions of �-alulus andset theory are required. The enoding of set theory in CIC is not extensivelydesribed but has been formally heked on the Coq proof-assistant; the bravereader an hek details looking at the proof-�les [21℄.2 De�nition of the Type TheoryWe give a presentation of the type theory in the style of Pure Type Systems(PTS, see [5℄). We distinguish two parts: the rules dealing with the formation offuntion types, �-abstration and appliation on one hand, and indutive typeson the other.2.1 Funtion typesThe sorts of the alulus are Prop and Typei where i is a stritly positive integer;we will generally use s to denote them:s := Prop j TypeiWe give ourselves a ountable set of variables, generally denoted by x; y; z; a; b,,X , et.The terms of the alulus are desribed by the following grammar:t := x j (t t) j �x : t:t j �x : t:tThe �rst three ases orrespond to the usual onstrutors for �-terms: variable,appliation and typed abstration. The term �x : A:B is the type of funtionsmapping terms of type A to type B. The value x of the argument might ourin B sine the alulus allows dependent types. In the ase where x does notour free in B, �x : A:B an be written A! B.We write t[x n u℄ for the term t in whih the free ourrenes of the variablex are replaed by u. The substitution being de�ned the usual way. We write B�for the �-redution whih is de�ned as the ontextual losure of:(�x : A:t u)!� t[x n u℄The reexive, transitive and symmetri losure of B� is alled �-onversion,written =�.



(Prop) [℄ ` Prop : Type1 (Type i) [℄ ` Typei : Typei+1(Cum-Prop) � ` A : Prop� ` A : Typei (Cum i) � ` A : Typei� ` A : Typei+1(Pi-Prop j) � ` A : Prop � ; (x : A) ` B : Typej� ` �x : A:B : Typej(Pi i;j) � ` A : Typei � ; (x : A) ` B : Typej� ` �x : A:B : Typemax(i;j)(Impr) � ` A : Typei � ` P : Prop� ` �x : a:P : Prop(Lam) � ; (x : A) ` t : B � ` �x : A:B : s� ` �x : A:t : �x : A:B(App) � ` u : �x : A:B � ` v : A� ` (u v) : B[x n v℄(Conv) � ` u : A � ` B : s A =� B� ` u : BFig. 1. Rules for the funtional fragment of CICThe typing rules of the system are given for �gure 1. They orrespond toLuo's Extended Calulus of Construtions1 desribed in [16℄.A well-formed type is a term of type some sort in a given ontext. The sortsTypei are alled the universes; they are hierarhally embedded in eah otherthrough the umulativity rules Cumi. Universal quanti�ation is represented bythe �-types. An important point is that in Prop, we an quantify over all uni-verses (imprediativity). In Typei however, quanti�ation is restrited to typesliving below universe i, i.e. over terms of type Typej with j � i.2.2 Indutive typesIndutive types are a very important extension to a type system meant to for-malize atual mathematis. Among others, they are used to de�ne data typesand logial onnetives and they play an essential role in the present work.Coquand and Paulin-Mohring [10℄ motivate this extension and give a formaldesription of generi indutive types. The Coq referene manual [6℄ ontains adesription of the urrently implemented version of indutive de�nitions due toPaulin-Mohring.1 Luo's ECC also inludes �-types whih are a partiular ase of the indutive types desribedbelow.



Notations An indutive type is the smallest type losed by a list of onstrutors.The most well-known example is maybe the de�nition of unary integers:Indutive Nat : Type1 := O : Natj S : Nat! Nat:Whih de�nes three objets Nat, O and S of the given types. To eah indu-tive type are assoiated elimination shemes orresponding to ase analysis andstrutural reursion and indution. In this ase the type of these shemes is:�P : Nat! s:(P O)! (�n : Nat:(P n)! (P (S n)))! �n : Nat:(P n)with s ranging over the sorts Prop and Typei.The redution rules assoiated to these shemes are de�ned as usual, and inthis ase orrespond to the reursor R of system T . In what follows however,we will generally not mention the elimination sheme expliitly and rather usea more expliit ML-like notation whih, we believe is not ambiguous in theonstrutions treated below. For instane:De�nition add : Nat! Nat! Nat :=O n 7! nj (S p) n 7! (S (add p n)):Of ourse, the orresponding new redution rules are taken into aount bythe onversion rule Conv; for instane (add (S O) (S O)) and (S (S O)) areidenti�ed.Restritions Two main restritions assure that indutive de�nitions do notendanger the onsisteny of the system. The �rst one is well-known and of syn-tatial nature: reursive arguments must our in stritly positive position inthe type of onstrutors; see [10℄ for details. Typialy the following de�nition isprohibited sine the �rst ourrene of foo in the type of C is negative:Indutive foo : Typei :=C : (foo! foo)! foo:Semantially, the positivity ondition ensures that the indutive de�nitionorresponds to the least �x-point of a monotone operator.The seond restrition is more interesting and essential to what follows. Ifthe indutive type is of type Typei, then all arguments of its onstrutors mustlive in the same universe or lower, i.e. using the umulativity rule, the argumentsof the onstrutors must be themselves of type Typei. Releasing this restritionwould allow the onstrution of paradoxes and break the onsisteny of thesystem; see [8℄ for instane. The neessity for this restrition will also appearquite learly in the proof-irrelevane interpretation and some of its onsequenesare shown in the next paragraph.



Two de�nitions of the existential An important point is that, in this paper,we do not use indutive de�nitions of type Prop. Some propositions ertainly arede�ned indutively, but they an be onstruted using an imprediative enoding.The key example is the existential quanti�ation. Given A : Typei and P : A! swe de�ne the proposition 9a : A:(P a) as:Indutive 9a : A:(P a) : Prop := 9 i : (a : A)(P a)! 9a : A:(P a):But this indutive de�nition is exatly equivalent to:De�nition 9a : A:(P a) := �X : Prop:(�a : A:(P a)! X)! X:The important point is that there are no elimination rules of indutive propo-sitions towards Typei.There is however an alternative de�nition for the existential quanti�er, name-ly the �-type living in Typei:Indutive �a : A:(P a) : Typei := � : (a : A)(P a)! 9a : A:(P a):Eah of these two de�nitions has it advantages and drawbaks. In the �rstase, the existential lives at the bottom of the universe hierarhy, and thus wean always quantify over it, wherever we are. On the other hand, we annotextrat the witness of an existential proof: proving 9a : A:(P a) does not meanthat we an exhibit a term of type A.In the ase of the �-type, we are able to de�ne � suh that (� (� a p)) B a.But we annot onsider this �-type in types living lower in the hierarhy.We an notie that if one does not use the imprediative level in CIC, theresulting theory is, in spirit, very lose to the one of Martin-L�of [17℄. The way weview the imprediative level in the present work is similar to Churh's Higher-Order Logi: the objets live in the prediative levels, and Prop is used to expressproperties about them; we annot however build objets out of proofs. This ideais obvious in the proof-irrelevane semantis.3 Proof-Irrelevane Semantis for CIC3.1 General IdeaIn this setion, we will write 0 for the empty set, and 1 for the anonial singletonf0g.Sine Reynolds [19℄, it is well-known that \polymorphism is not set-theoreti",i.e. it is not possible to interpret imprediative types (here of type Prop) by set-s. This will however be possible for the prediative fragment of our theory, inwhih the objets live. The proof-irrelevane semantis are an interpretation ofthe type theory in lassial set theory following two simple ideas:{ Propositions are interpreted either by the empty set or by a anonial s-ingleton, depending upon their validity in the model. As a onsequene allproof-terms are identi�ed. In the same way, the interpretation of Prop isf0; 1g.



{ On the prediative level, types are simply interpreted as sets. In partiularthe funtion type �x : A:B is interpreted by the full set of set-theoretifuntion between the interpretations of A and B.The ideas of these interpretation are very ommon. They an be found, forinstane, in [9,11,13℄.We will all A(i) the interpretation of Typei. From the seond assertion aboveand the typing rule Pii;i we need the following losure ondition:8A;B 2 A(i):BA 2 A(i):In partiular this implies that 2A 2 A(i), sine jPropj = f0; 1g 2 A(i). It isatually not too diÆult to hek that the existene of a set A(i) verifying the(�rst) losure ondition above implies the existene of an inaessible ardinal.3.2 Inaessible ardinalsIn what follows, we will assume the existene of an inaessible ardinal to buildthe interpretation of eah universe. The notions of set theory used are quiteommon (see [14,15℄ for instane).De�nition 1 (Inaessible ardinal). An in�nite ardinal � is said to be i-naessible if and only if:{ For any ardinal � < �, 2� < �.{ Let (�i)i2I be a family of ardinals < � indexed by a ardinal I < �; thensupi2i(�i) < �.The main idea behind the notion of inaessible ardinal is that its existeneallows the onstrution of a set whih is a itself a model of ZFC. It thereforeenhanes the expressive power of the theory. The following onstrutions areusual in the literature.We write P for the powerset.De�nition 2. For every ordinal �, we de�ne a set V� by indution over �:{ V0 � 0{ V� � S�<�P(V�) if � > 0.The following result is a onsequene of the foundation axiom and the proofsare well-known.De�nition 3 (Rank of a set). For every set X , there exists a smallest ordinal� suh that X 2 V�. � is alled the rank of X , written rk(X).Lemma 4. If � is an inaessible ardinal, then V� veri�es the axioms of ZFC.In partiular if A 2 V� and for every a 2 A, Ba 2 V�, then �a2ABA 2 V�.



3.3 The InterpretationFrom here on, we assume the existene of an inreasing sequene of inaessibleardinals (�i)i2N. For every i we de�ne A(i) � Vi.We an now de�ne the interpretation. The interpretation j� j of a ontext� of length n is a set of n-tuples. The interpretation j� ` tj of a judgement� ` t : T does not depend upon T and is a funtion of domain j� j.As often for similar onstrutions, [4,18℄ among others, we �rst de�ne theinterpretation as a partial funtion. The de�nition is a strutural indution overthe syntax; here, P exlusively denotes propositions (lauses 3 and 4):j[℄j � 1 (1)j� ; (x : A)j � f(; �);  2 j� j ^ � 2 j� ` Aj()g (2)j� ` pj() � 0 if p is a proof in � (3)j� ` �x : A:P j() � 1 if 8� 2 j� ` Aj():j� ; (x : A) ` P j(; �) = 1 (4)j� ` �x : A:P j() � 0 if 9� 2 j� ` Aj():j� ; (x : A) ` P j(; �) = 0 (5)j� ` �x : A:T j() � ��2j�`Aj()j� ; (x : A) ` T j(; �) (6)j� ` Propj() � f0; 1g (7)j� ` Typeij() � A(i) (8)j� ` �x : A:Bj() � a 2 jAjI 7! jBjI;x a (9)j� ` (u v)j() � juj()(jvj()) (10)j� ` xj() � i (11)Interpretation of indutive types The interpretation of eah indutive typeis de�ned indutively, in the set-theoretial sense. Again, we avoid detailing atedious generi de�nitions and onentrate on an example; onsider the de�nitionof lists: Indutive list : Typei := nil : listj ons : A! list! list:where A : Typei. We enode the onstrutor using set-theoretial natural num-bers 0,1,2. . . . The set jlistj is (if it exists) the smallest subset of A(i) verifying:{ 0 2 jlistj{ if a 2 jAj and l 2 jlistj, then (1; a; l) 2 jlistj.The two lauses orrespond to the two onstrutors; the interpretation of thelatter is natural:{ jnilj � 0{ j(ons a l)j � (1; jaj; jlj) or, to be preise, the (urry�ed) funtion whih toa 2 jAj and l 2 jlistj assoiates (1; a; l).



Note that we deliberately omit the interpretation of the ontext in this ex-ample, sine they do not play a relevant role and would ompliate notations.This interpretation generalizes smoothly to de�nitions with arbitrary many on-strutors of arbitrary arity2.The strit positivity ondition assures that the indutive de�nition aboveorresponds to a monotone operator over sets. Sine the arguments of the on-strutor are all of type Typei, the soundness result below will ensure that theirrespetive interpretations are elements of A(i) and thus this monotone operatorwill atually admit a least �x-point in A(i).The strutural ordering of the elements of the indutive type is reetedby a well-founded ordering of its interpretation. This gives rise to a naturalinterpretation of the elimination shemes we do not detail here.Soundness results We show our interpretation is de�ned and sound on well-formed judgements. In order to treat the onversion rule, we �rst have to hekthat the interpretation is stable by redution. For matters of spae we do notdetail the parts of the proof dealing with indutive types and the orrespondingredutions.Lemma 5 (Substitution). Let � ; (x : A);� ` t : T and � ` a : A be twoderivable judgements. If  2 j� j, � 2 j� ` Aj(), � = j� ` aj(), (; �; Æ) 2j� ; (x : A);�j and j� ; (x : A);� ` tj(; �; Æ) is de�ned, then so is j� ;�[x n a℄ `t[x n a℄j(; Æ) andj� ;�[x n a℄ ` t[x n a℄j(; Æ) = j� ; (x : A);� ` tj(; �; Æ):By indution over the proof that j� ; (x : A);� ` tj(; �; Æ) is de�ned.Lemma 6 (Subjet redution). Let � ` u : U be a derivable judgement. Ifj� j is de�ned and j� ` uj() is de�ned for any  in j� j, if u B� u0, thenj� ` u0j() = j� ` uj()and in partiular, the left-hand part of the equation is de�ned.By indution over the proof that j� ` uj() is de�ned (whih follows the stru-ture of u). The key ase where u is the redued redex is treated by the previouslemma.Corollary 7. Let � ` u : U and � ` u0 : U 0 be two derivable judgements suhthat j� ` u : U j() and j� ` u0 : U j() are de�ned for  2 j� j. Thenj� ` u0j() = j� ` uj():Immediate, by the previous lemma, subjet redution and onuene of B� .2 Note however that we take advantage of the fat that every onstrutor awaits a �xed numberof arguments, whih is always trues in CIC.



Theorem 8 (Soundness). Let � ` t : T be a derivable judgement. Then j� jis de�ned, and for any element  of j� j:j� ` tj() 2 j� ` T j()in partiular, both objets are de�ned.By indution over the struture of the derivation. The previous orollary takesare of the onversion rule.Corollary 9. There is no derivation of [℄ ` �� : Prop:�.De�nition 10. A well-formed ontext � is said to be onsistent if and only ifj� j is not empty.Remark 11. If a ontext � is onsistent, there is no derivation of � ` �� :Prop:�.De�nition 12. We all Type-theoretial Desription Axiom on level i (TTDAi),the following proposition:�A;B : Typei:�P : A! B ! Prop:(�a : A:9b : B:(P a b))!9f : A! B:(�a : A:(P a (f a)))Theorem 13. The following ontext built up from instanes of TTDAi and theexluded middle is onsistent:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn)It is obvious that j�P : Prop:P_:P j = 1. One easily heks that jTTDAij = 1 isequivalent to the usual set-theoretial axiom of hoie; it is thus onsidered true,sine we work in ZFC3. The following alternative type-theoreti formulation ofthe hoie axiom will also be useful.De�nition 14. We all Type-theoretial Choie Axiom on the level i (TTCAi),the following proposition:�A : Typei:�R : A! A! Prop:(equiv A R)!9f : A! A:�x; y : A:(R x y)! (f x) =A (f y)where (equiv A R) expresses that R is an equivalene relation over A, namely:equiv := �A : Typei:�R : A! A! Prop:((x : A)(R x x))^ ((x; y : A)(R x y)! (R y x))^ ((x; y; z : A)(R x y)! (R y z)! (R x z))3 To be preise, the interpretation of TTDAi is equivalent to the axiom of hoie restrited tothe elements of A(i); it is however an easy and usual result that the latter is a onsequeneof the general set-theoretial axiom of hoie.



Again, one easily heks that jTTCAij = 1 is a onsequene of the axiom ofhoie. We might thus onlude:Theorem 15. The following ontext built up from instanes of TTDAi, TTCAiand the exluded middle is onsistent:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn);(a1 : TTCA1); (a2 : TTCA2); : : : ; (an : TTCAn:Let us write CICi for the fragment of CIC where we only use universes up toTypei, and ZFCi for ZFC equipped with i inaessible ardinals. We an remarkthat we an build the interpretation for CICi using only i�1 inaessibles; whihallows us to state a �ner version of the theorem:Theorem 16. If ZFCi�1 is onsistent, then so is the following ontext of CICi:(e : �P : Prop:P _ :P ); (a1 : TTDA1); (a2 : TTDA2); : : : ; (an : TTDAn);(a1 : TTCA1); (a2 : TTCA2); : : : ; (an : TTCAn:3.4 CommentThe type-theoretial desription axiom is valid in the model beause the set-theoretial axiom of hoie is valid in ZFC, but also, and mainly, beause thefuntion type �x : A:B is interpreted by the full spae of set-theoretial fun-tions. Atually we might view the hypothesis TTDA as a way to express, in thetype theory, that the model is full. In the next setion we develop this point byshowing that TTDA is atually a suÆient onstraint to fore the model to befull, sine adding TTDA to the type theory allows to enode full ZF.It is ertainly not obvious how to build a model for the Calulus of IndutiveConstrutions whih would not be full (and not require the existene of inaes-sibles). Atually, it is, to our knowledge, an open problem whether this is at allpossible.We should also say a word about the link with normalization proofs. Al-tenkirh [4℄ has presented a new tehnique in whih proving normalization fora type theory essentially boils down to the onstrution of a ertain kind ofmodel. This idea has been used by Melli�es and Werner in a normalization prooffor Pure Type Systems [18℄. Sine, in the latter work, indutive types where notonsidered, it was possible to avoid using inaessibles at the ost of a notableompliation of the model onstrution. We mention this beause suh normal-ization proofs an be partiularly well be built up along the proof-irrelevaneinterpretation. For matters of spae, and sine this is not the primary topi ofthe present paper, we do not deal further with normalization here.4 Enoding ZFC in CICIn this setion, we present an adaptation of Peter Azel's enoding of set theoryin type theory. We have formalized and heked our version of the enoding usingthe Coq theorem prover[21℄.



Before desribing the tehnial di�erenes with Azel's original work, weshould mention the di�erent motivations that drive us here. Azel uses Martin-L�of prediative type theory; he wanted to demonstrate the pertinene this the-ory as a foundational formalism and was mainly interested in onstrutivity.It was therefore muh more important to him to obtain a onstrutive typetheory than to study the links with the usual lassial (and imprediative andnon-onstrutive) Zermelo-Fr�nkel set theory. Here, we are more primitivelyinterested in \brute fore" expressive power and imprediativity.We parametrize our development by a universe index i. The reader might�nd more details in the Coq proof-�le [21℄ and Azel's original work [1{3℄.4.1 The setsPeter Azel's enoding is a beautyful and very re�ned piee of type theory. Themain idea is that sets an be build up indutively following the foundation axiom:the elements are struturally smaller than the set whih ontains them.Indutive Set : Typei+1 :=sup : �A : Typei:(A! Set)! Set:Intuitively (sup A f) is the set whose elements are the objets of the form(f a) where a ranges over the type A; mixing type and set theory notationswe ould write it ff(a); a : Ag. Note that (sup A f) ontains at most as manyelements as the type A (less if, for instane, f is a onstant funtion).A good �rst example is the onstrution of the pair-set, orresponding to theset-theoretial axiom of pairing. Sine the set fE;E0g has atmost two elements,the obvious hoie is to use the booleans as base type:De�nition Pair : Set! Set! Set :=fun E1 E2 7! (sup bool (fun true 7! E1j false 7! E2)):Another one is the empty set, whih uses the empty type4:De�nition Empty := (sup bot fun : bot! Set):4.2 The propositionsBefore we an prove the de�nitions above atually verify the orresponding set-theoreti axioms, we have to deide how to translate the propositions of settheory. Set theory is a �rst order theory with two (binary) prediates: member-ship and equality. One �rst de�nes equality, by strutural reursion, in a waywhih aptures the extentionality axiom:De�nition Eq : Set! Set! Prop :=fun (sup A f) (sup B g) 7! ((�a : A:9b : B:(Eq (f a) (g b)))^ (�b : B:9a : A:(Eq (f a) (g b))))4 The empty type bot is the indutive type with no onstrutor.



On top of this, one easily de�nes membership:De�nition In : Set! Set! Prop :=fun E (sup A f) 7! 9a : A:(Eq E (f a)):It is in these two last de�nitions that we made a hoie di�erent from Azel's:we hose to represent the propositions of set theory by objets of type Prop asopposed to Azel who translates propositions to objets either of type Typei orof type Typei+1.In any ase, given the two de�nitions above, we an hek the onstrution ofthe unordered pair atually is a witness of the orresponding axiom of Zermeloset theory by proving the three following lemmas:(A;B : Set)(In A (Pair A B)(A;B : Set)(In B (Pair A B)(A;B;C : Set)(In C (Pair A B)! (Eq A C) _ (Eq B C)Note that equality over sets is not represented by the usual Leibniz equality.Thus, we have to prove that all our enodings are extentional. For example:�A;A0; B : Set:(In A B)! (Eq A A0)! (In A0 B):4.3 Comparing the two approahesFrom a onstrutive point of view, the main drawbak of our enoding is that,sine we annot extrat the existential witness of existential proofs, it is to prove9X : Set:(P X) and to atually exhibit a term E of type Set together with aproof of (P E). A side e�et is the diÆulty we have proving the replaementshemata as desribed in setion 4.5.The advantage is that, as opposed to Azel, we gain unbounded quanti�a-tion (over all sets) thanks to imprediativity and avoid umbersome distintionsbetween restrited and unrestrited formulas, leading to various formulations ofthe omprehension sheme.We should however remark that in many ases, we an avoid relying on theusual replaement sheme, using the higher-order features of CIC instead.4.4 The other omputational onstrutionsThe other onstrutions underlying the set theory Z, namely union, omprehen-sion sheme and the powerset an then be de�ned without diÆulty. Possible



de�nitions are:De�nition Power : Set! Set! Set :=fun E 7! (sup (Set! Prop)�P : Set! Prop:(Compr P E)):De�nition Union : Set! Set :=fun (sup A f) 7! (sup �a : A:(�1 (f a))fun(� a b) 7! (�2 (f a) b)):De�nition Comp : Set! (Set! Prop)! Set :=fun (sup A f) 7! (sup �a : A:(P (f a))fun(� a p) 7! (f a)):From there we an, for instane, de�ne the intersetion set in the usual way:De�nition Inter : Set! Set :=fun E 7! (Comp (Union E) �e : Set:�a : Set:(In a E)! (In e a)):Of ourse, one then has to hek the usual properties for all these onstrutions.A very nie onstrution is the set of natural numbers, orresponding to theaxiom of in�nity, obtained using the type of natural numbers:De�nition en : Nat! Set :=O 7! Empty(S n) 7! (Union (Pair (en n) (Power (en n)))):De�nition NAT := (sup Nat en):All these de�nitions are basially Azel's ones, exept the powerset whihobviously strongly relies on imprediativity. A �rst onsequene is:Theorem 17. The set theory Z an be enoded in CCI2+EM.4.5 Non-omputational onstrutions: replaement and hoieThe situation is more ompliated regarding the replaement shemata and the(set theoretial) axiom of hoie. Both axioms rely on assumptions of the form8A:9B: : : :. Sine we work with a non-omputational existential quanti�er, wehave no hane to atually build a set out of this assumption. We an howeverprove, using TTDA, the set theoretial axiom. The proofs are quite straightfor-ward but too long to be detailed here; we refer to the proof-�le [21℄ for details.Formulations of the replaement shemata The enoding of the followingolletion sheme an be proven in CIC, assuming TTDA. It is parametrized bya binary prediate P :(8X : 9Y : P (X;Y ))) 8E : 9A : (8x 2 E : 9y 2 A : P (x; y)):Furthermore, suppose P is a funtional prediate, namely



8x; y; y0 : P (x; y) ^ P (x; y0)) y = y0:Then, assuming TTDA and the exluded middle, we an prove the usual replae-ment shemata:8X : 9Y : 8y : (y 2 Y () 9x 2 X : P (x; y)):We an then state:Theorem 18. The set theory ZF an be enoded in CCI2+EM+TTDA3.A possible enoding of the axiom of hoie Let us, for instane, onsiderthe following formulation of the set-theoretial axiom of hoie:Let E be set suh that:{ all elements of E are non-empty (i.e. bear one element){ the intersetion of two elements of E is non-emptyThen there exists a set X suh that the intersetion of X with any ele-ment of E bears exatly one element.Viewing this statement in the enoding, we may onsider E is of the form(sup A f). Using TTDA, we an prove the existene of a funtion g of typeA ! Set, suh that for any inhabitant a of type A, we have (In (g a) (f a)).Suppose however that a and b are two di�erent inhabitants of A, suh that(Eq (f a) (f b)); we annot onlude that (Eq (g a) (g b)). The set (sup A g) istherefore not an adequate witness for the axiom of hoie: its intersetion withthe element (f a) of E might possibly bear several elements (here (g a) and(g b)). We have to further assume TTCA, to deal orretly with this extention-ality problem and prove the lemma above. The onlusion then is:Theorem 19. The set theory ZFC an be enoded in CCI3 using the assump-tions EM+TTDA3TTCA3.4.6 Inaessible CardinalsUp to here, we have only used two universes Typei and Typei+1. As a onse-quene CIC2 (with axioms) is suÆient to enode ZFC. We now show that weare able to build expliit enodings for inaessible ardinals.The idea is remarkably simple and builds on the only typing rule we havenot used so far, namely umulativity. We dupliate the whole enoding in a newuniverse; for simpliity of notations we suppose that i is at least 2 and rede�nesets one level below:Indutive Set0 : Typei :=sup0 : �A : Typei�1:(A! Set0)! Set0:The new type Set0 then orresponds to A(1), the set of \small sets" whihis obviously losed for all set-theoretial axioms. Indeed we have an obviousinjetion from Set0 to Set:De�nition inj : Set0 ! Set :=fun (sup0 A f) 7! (sup A �a : A:(inj (f a))):



And we an atually de�ne the big set of small sets:Big := (sup Set0 inj):And, for instane, it is surprisingly simple to prove that Big is losed for thepowerset: �E : Set:(In E Big)! (In (Power E) Big):Of ourse this dupliation of the enoding an be repeated several times usingseveral universes.At the urrent day, we have not expliitly proven in Coq the set Big impliesthe existene of an inaessible ardinal. The main reason is that this wouldimply developing the whole theory of ordinals in ZFC enoded in Coq. Preisely,suh a development is under way, along the lines of Paul Taylor's de�nition ofonstrutive ordinals [20℄. It seems however reasonable to antiipate the formalresult of proving the existene of inaessible ordinals in Coq, whih is our �nalrelative onsisteny result:Theorem 20. The set theory ZFC with n inaessible ardinals an be enodedinCICn+2+EM+TTDAn+2.5 ConlusionBuilding on ideas of Azel, Coquand and others, we have presented two familiesof relative onsisteny proofs between ZFC and CIC, depending on how manyinaessible ardinals (resp. universes) we assume. This shows these two familieshave interleaving logial strengths; the situation is summed up in the following�gure.
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CIC1Both proofs are quite simple in spirit, and even the details are still muh lessumbersome than what metatheoretial reasoning an often be.Some work remains to be done. The formal proof of the existene of inaes-sible ardinals of ourse, but also we believe the axioms used in oq in order toenode ZF and ZFC might be slightly simpli�ed. To be preise, we onjeture:1. When enoding ZF in CIC, it should be possible to rely on a weaker (butpossibly more verbose) axiom than TTDA, whose justi�ation unpleasantlyrelies on the set-theoreti axiom of hoie.
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