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Abstract. We define a generic notion of cut that applies to many first-order theories.

We prove a generic cut elimination theorem showing that the cut elimination property

holds for all theories having a so-called pre-model. As a corollary, we retrieve cut elimi-

nation for several axiomatic theories, including Church’s simple type theory.

Deduction modulo [11] is a formulation of first-order logic, that gives a formal
account of the difference between deduction and computation in mathematical
proofs. In deduction modulo a theory is formed with a set of axioms and a
congruence, often defined by a set of rewrite rules. For instance, when defining
arithmetic in deduction modulo, we can either take the usual axiom ∀x x+0 = x
or orient this axiom as a rewrite rule x + 0 → x, preserving provability. In the
same way, when defining the theory of integral domains, we can chose to take
the axiom ∀x ∀y (x × y = 0 ⇔ (x = 0 ∨ y = 0)) or to orient this axiom as a
rewrite rule (x × y = 0) → (x = 0 ∨ y = 0).

Axioms and rewrite rules play different roles in proofs and the structure of
proofs is deeply affected when axioms are oriented as rewrite rules. In particu-
lar, the cut elimination property may hold for one formulation, but not for the
other. Cut elimination is a much more powerful result (and hence more difficult
to prove) when axioms are oriented as rewrite rules. In particular, for axiom free
theories, cut elimination implies consistency as well as properties such as disjunc-
tion property and the witness property in the intuitionistic case. An important
point is that deduction modulo permits to define a uniform notion of cut for
all first-order theories that can be presented by rewrite rules only. This notion
of cut subsumes that of Church’s simple type theory (also called higher-order
logic) since simple type theory can be defined as an axiom free first-order theory
modulo. More generally, it subsumes the notion of cut introduced by Prawitz
[27] and used for various theories, in particular for set theory [6, 18, 1, 7, 12]
(see [10] for a discussion on this point).

This paper is an attempt to characterize the rewrite systems which define
theories in deduction modulo for which cut elimination holds. The first part of
the paper presents counter-examples to cut-elimination showing that termination
and confluence are not sufficient conditions for the rewrite system to ensure cut
elimination for the corresponding theory modulo. The second result is a generic
cut elimination theorem, along the lines of Tait and Girard, showing that the cut
elimination property holds, provided the congruence has a so-called pre-model.
As a corollary, we obtain cut elimination for many theories, in particular for
theories presented by a quantifier free confluent and terminating rewrite system,
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for theories presented by a confluent and terminating positive rewrite system
and for simple type theory. This way, we obtain a modular cut elimination proof
for simple type theory where all the specificities of this theory are concentrated
in the pre-model construction; the lemma that cut elimination holds in some
theory if it has a pre-model remains completely general.

§1. Deduction modulo.

1.1. Natural deduction modulo and sequent calculus modulo. De-
duction modulo gives a formal account of the difference between deduction and
computation. This idea can be traced back to several sources, either in the field
of equational unification and automated deduction [26, 14, 20, 28, 3], in the
analysis of substitution in simple type theory [8, 4, 19, 27] or in modern type
theories and λ-calculus [23, 22, 5, 21, 25, 31, 24].

This work is an attempt to study this distinction from a proof-theoretic point
of view and independently of any particular application or formalism, i.e. in
“plain” first-order logic.

More precisely, the notions of language, term, proposition are that of many-
sorted first-order logic [13, 15]. We thus consider a set of sorts, an infinite set of
variables of each sort, and a set of function symbols and of predicate symbols,
that come with their rank. The formation rules for objects and propositions are
the usual ones.

• Variables of sort s are terms of sort s.
• If f is a function symbol of rank 〈s1, . . . , sn, s′〉 and t1, . . . , tn are respec-

tively objects of sort s1, . . . , sn, then f(t1, . . . , tn) is a term of sort s′.
• If P is a predicate symbol of rank 〈s1, . . . , sn〉 and t1, . . . , tn are respectively

objects of sort s1, . . . , sn, then P (t1, . . . , tn) is an atomic proposition.

Propositions are built-up from atomic propositions with the usual connectors
and quantifiers ⇒,∧,∨,⊥, ∀ and ∃. Remark that, implicitly, quantification in
∀x P or ∃x P is restricted over the sort of the variable x.

The characteristic of deduction modulo is that a theory is formed by a set
of axioms Γ and a congruence ≡ over propositions. Figure 1 gives the rules
of natural deduction modulo and figure 2 those of sequent calculus modulo.
As usual, intuitionistic natural deduction is obtained by dropping the excluded
middle rule and intuitionistic sequent calculus by restricting to sequents with at
most one conclusion; this requires a slight adaptation of the cut rule and the
⇒-left rule.

Γ, A ⊢≡ ∆ Γ ⊢≡ B
cut if A ≡ B

Γ ⊢≡ ∆

Γ ⊢≡ A Γ, B ⊢≡ ∆
⇒-left if C ≡ (A ⇒ B)

Γ, C ⊢≡ ∆

Proposition 1.1 (Equivalence). For every congruence ≡ there is a set of ax-
ioms T such that Γ ⊢≡ P if and only if T , Γ ⊢ P .

Proof. Take for instance all the axioms of the form ∀x1 ... ∀xn (P ⇔ Q)
where P ≡ Q. ⊣
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axiom if A ∈ Γ and A ≡ BΓ ⊢≡ B

Γ, A ⊢≡ B ⇒-intro if C ≡ (A ⇒ B)
Γ ⊢≡ C

Γ ⊢≡ C Γ ⊢≡ A ⇒-elim if C ≡ (A ⇒ B)
Γ ⊢≡ B

Γ ⊢≡ A Γ ⊢≡ B ∧-intro if C ≡ (A ∧ B)
Γ ⊢≡ C

Γ ⊢≡ C ∧-elim if C ≡ (A ∧ B)
Γ ⊢≡ A

Γ ⊢≡ C
∧-elim if C ≡ (A ∧ B)

Γ ⊢≡ B

Γ ⊢≡ A
∨-intro if C ≡ (A ∨ B)

Γ ⊢≡ C

Γ ⊢≡ B
∨-intro if C ≡ (A ∨ B)

Γ ⊢≡ C

Γ ⊢≡ D Γ, A ⊢≡ C Γ, B ⊢≡ C
∨-elim if D ≡ (A ∨ B)

Γ ⊢≡ C

Γ ⊢≡ B
⊥-elim if B ≡ ⊥Γ ⊢≡ A

Γ ⊢≡ A
〈x,A〉 ∀-intro if B ≡ (∀x A) and x 6∈ FV (Γ)

Γ ⊢≡ B

Γ ⊢≡ B
〈x,A, t〉 ∀-elim if B ≡ (∀x A) and C ≡ [t/x]A

Γ ⊢≡ C

Γ ⊢≡ C
〈x,A, t〉 ∃-intro if B ≡ (∃x A) and C ≡ [t/x]A

Γ ⊢≡ B

Γ ⊢≡ C Γ, A ⊢≡ B 〈x,A〉 ∃-elim if C ≡ (∃x A) and x 6∈ FV (ΓB)
Γ ⊢≡ B

B excluded middle if A ≡ (B ∨ (B ⇒ ⊥))
Γ ⊢≡ A

Figure 1. Natural deduction modulo

When the congruence ≡ is decidable, proof-checking is decidable also, since
we provide the information necessary for proof-checking in the quantifier rules.
In many cases the congruence ≡ is generated by a set of rewrite rules, when this
rewrite system is terminating and confluent, the congruence ≡ is decidable.

Like in usual natural deduction, a cut in a proof is an elimination rule, whose
main premise is the introduction rule of the same connector or quantifier.

1.2. An example: Church’s simple type theory. As mentioned above
deduction modulo permits to express (intentional) simple type theory [4] without
any axiom.

The sorts are simple types inductively defined by:

• ι and o are sorts,
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axiom if A ≡ BA ⊢≡ B

Γ, A ⊢≡ ∆ Γ ⊢≡ B, ∆
cut if A ≡ BΓ ⊢≡ ∆

Γ, B1, B2 ⊢≡ ∆
contr-left if A ≡ B1 ≡ B2Γ, A ⊢≡ ∆

Γ ⊢≡ B1, B2, ∆ contr-right if A ≡ B1 ≡ B2Γ ⊢≡ A,∆

Γ ⊢≡ ∆
weak-leftΓ, A ⊢≡ ∆

Γ ⊢≡ ∆
weak-right

Γ ⊢≡ A,∆

Γ ⊢≡ A, ∆ Γ, B ⊢≡ ∆
⇒-left if C ≡ (A ⇒ B)

Γ, C ⊢≡ ∆

Γ, A ⊢≡ B,∆
⇒-right if C ≡ (A ⇒ B)

Γ ⊢≡ C, ∆

Γ, A, B ⊢≡ ∆
∧-left if C ≡ (A ∧ B)

Γ, C ⊢≡ ∆

Γ ⊢≡ A, ∆ Γ ⊢≡ B, ∆
∧-right if C ≡ (A ∧ B)

Γ ⊢≡ C, ∆

Γ, A ⊢≡ ∆ Γ, B ⊢≡ ∆
∨-left if C ≡ (A ∨ B)

Γ, C ⊢≡ ∆

Γ ⊢≡ A,∆
∨-right1 if C ≡ (A ∨ B)

Γ ⊢≡ C, ∆

Γ ⊢≡ B, ∆
∨-right2 if C ≡ (A ∨ B)

Γ ⊢≡ C, ∆

⊥-left if A ≡ ⊥Γ, A ⊢≡ ∆

Γ, C ⊢≡ ∆ 〈x,A, t〉 ∀-left if B ≡ (∀x A) and C ≡ [t/x]A
Γ, B ⊢≡ ∆

Γ ⊢≡ A,∆ 〈x,A〉 ∀-right if B ≡ (∀x A) and x 6∈ FV (Γ∆)
Γ ⊢≡ B, ∆

Γ, A ⊢≡ ∆ 〈x,A〉 ∃-left if B ≡ (∃x A) and x 6∈ FV (Γ∆)
Γ, B ⊢≡ ∆

Γ ⊢≡ C, ∆ 〈x,A, t〉 ∃-right if B ≡ (∃x A) and C ≡ [t/x]A
Γ ⊢≡ B, ∆

Figure 2. Sequent calculus modulo

• if T and U are sorts then T → U is a sort.

The language is composed of the individual symbols

• ST,U,V of sort (T → U → V ) → (T → U) → T → V ,
• KT,U of sort T → U → T ,

• ⇒̇, ∧̇ and ∨̇ of sort o → o → o, ⊥̇ of sort o,
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• ∀̇T and ∃̇T of sort (T → o) → o,

the function symbols

• αT,U of rank 〈T → U, T, U〉,

and the predicate symbol

• ε of rank 〈o〉.

The combinators ST,U,V and KT,U are used to express functions. The objects

⇒̇, ∧̇, ∨̇, ⊥̇, ∀̇T and ∃̇T allow to represent propositions as objects of sort o. Finally,
the predicate ε allows to transform such an object t of type o into the actual
corresponding proposition ε(t). This typical reflection operation appears clearly
in the rewrite rules.

α(α(α(ST,U,V , x), y), z) → α(α(x, z), α(y, z))

α(α(KT,U , x), y) → x

ε(α(α(⇒̇, x), y)) → ε(x) ⇒ ε(y)

ε(α(α(∧̇, x), y)) → ε(x) ∧ ε(y)

ε(α(α(∨̇, x), y)) → ε(x) ∨ ε(y)

ε(⊥̇) → ⊥

ε(α(∀̇, x)) → ∀y ε(α(x, y))

ε(α(∃̇, x)) → ∃y ε(α(x, y))

1.3. Proof-terms. Cut-elimination can be viewed as a proof-transformation
process. In order to study these transformations, we adopt a compact notation,
representing proofs as λ-terms, for which the deduction rules act as typing rules;
this is a typical use of the Curry-Howard isomorphism. In other words, we define
a family of type systems parametrized by a congruence.

In this language, the proof-terms can contain both variables of the first-order
language (written x, y, . . . ) and proof variables (written α, β, . . . ). Terms of the
first-order language are written t, u, . . . while proof-terms are written π, ρ, . . .

Definition 1.1 (Proof-terms).

π := α

| λα π | (π π′)

| 〈π, π′〉 | fst(π) | snd(π)

| i(π) | j(π) | (δ π1 απ2 βπ3)

| (δ⊥ π)

| λx π | (π t)

| 〈t, π〉 | (δ∃ π xαπ′)

Notice that the variables α, β and x are bound in the constructions λα π, λx π
(δ π1 απ2 βπ3) and (δ∃ π xαπ′). Alphabetic equivalence is defined accordingly.
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axiom if α : A ∈ Γ and A ≡ BΓ ⊢≡ α : B

Γ, α : A ⊢≡ π : B ⇒-intro if C ≡ (A ⇒ B)
Γ ⊢≡ λα π : C

Γ ⊢≡ π : C Γ ⊢≡ π′ : A ⇒-elim if C ≡ (A ⇒ B)
Γ ⊢≡ (π π′) : B

Γ ⊢≡ π : A Γ ⊢≡ π′ : B ∧-intro if C ≡ (A ∧ B)
Γ ⊢≡ 〈π, π′〉 : C

Γ ⊢≡ π : C ∧-elim if C ≡ (A ∧ B)
Γ ⊢≡ fst(π) : A

Γ ⊢≡ π : C
∧-elim if C ≡ (A ∧ B)

Γ ⊢≡ snd(π) : B

Γ ⊢≡ π : A ∨-intro if C ≡ (A ∨ B)
Γ ⊢≡ i(π) : C

Γ ⊢≡ π : B ∨-intro if C ≡ (A ∨ B)
Γ ⊢≡ j(π) : C

Γ ⊢≡ π1 : D Γ, α : A ⊢≡ π2 : C Γ, β : B ⊢≡ π3 : C
∨-elim if D ≡ (A ∨ B)

Γ ⊢≡ (δ π1 απ2 βπ3) : C

Γ ⊢≡ π : B
⊥-elim if B ≡ ⊥Γ ⊢≡ (δ⊥ π) : A

Γ ⊢≡ π : A 〈x,A〉 ∀-intro if B ≡ (∀x A) and x 6∈ FV (Γ)
Γ ⊢≡ λx π : B

Γ ⊢≡ π : B 〈x, A, t〉 ∀-elim if B ≡ (∀x A) or C ≡ [t/x]A
Γ ⊢≡ (π t) : C

Γ ⊢≡ π : C
〈x, A, t〉 ∃-intro if B ≡ (∃x A) and C ≡ [t/x]A

Γ ⊢≡ 〈t, π〉 : B

Γ ⊢≡ π : C Γ, α : A ⊢≡ π′ : B
〈x,A〉 ∃-elim if C ≡ (∃x A) and x 6∈ FV (Γ, B)

Γ ⊢≡ (δ∃ π xαπ′) : B

Figure 3. Typing rules

Each proof-term construction corresponds to a natural deduction rule: terms
of the form α express proofs built with the axiom rule, terms of the form λα π
and (π π′) express proofs built respectively with the introduction and elimina-
tion rules of the implication, terms of the form 〈π, π′〉 and fst(π), snd(π) express
proofs built with the introduction and elimination rules of the conjunction, terms
of the form i(π), j(π) and (δ π1 απ2 βπ3) express proofs built with the introduc-
tion and elimination rules of the disjunction, terms of the form (δ⊥ π) express
proofs built with the elimination rule of the contradiction, terms of the form λx π
and (π t) express proofs built with the introduction and elimination rules of the
universal quantifier and terms of the form 〈t, π〉 and (δ∃ π xαπ′) express proofs
built with the introduction and elimination rules of the existential quantifier.



PROOF NORMALIZATION MODULO 7

(λα π1 π2) → [π2/α]π1

fst(〈π1, π2〉) → π1

snd(〈π1, π2〉) → π2

δ(i(π1), απ2, βπ3) → [π1/α]π2

δ(j(π1), απ2, βπ3) → [π1/β]π3

(λx π t) → [t/x]π

(δ∃ 〈t, π1〉 αxπ2) → [t/x, π1/α]π2

Figure 4. Proof reduction rules

All this materializes in the typing rules of the calculus, given in figure 3. In
this formulation, deduction modulo is a regular λ-calculus with dependent types,
whose only originality is that types are identified modulo ≡.

That provability is preserved in this presentation is quite straightforward.

Proposition 1.2. A sequent A1, . . . , An ⊢≡ B is derivable in intuitionistic
natural deduction modulo if and only if there exists a term π such that the judg-
ment α1 : A1, . . . , αn : An ⊢≡ π : B is derivable in the system of figure 3.

In the definition of such a calculus some usual practical choices have to be
made. Here we have chosen a λ-calculus à la Curry, i.e. where abstracted proof
variables are not explicitly typed and where the same proof-term λα α is a proof
of the proposition A ⇒ A and of the proposition B ⇒ B. We have also chosen to
define the proof-terms first and then the well-typed proof-terms. So a proof-term
does not need to be well-typed (i.e. to correspond to a meaningful proof).

1.4. Proof reduction rules. As usual, the process of cut elimination is
modeled by (generalized) β-reduction. We consider the contextual closure of
the reduction rules given figure 4. These rules correspond to proof reduction in
natural deduction. In order to obtain cut elimination in sequent calculus, we
will have to consider their extension to the so-called reductions of commutative
cuts in subsection 3.6.

We write π →1 π′ if π reduces in one step to π′, π →+ π′ if π reduces in at
least one step to π′, and π → π′ if π reduces in an arbitrary number of steps to
π′.

A proof is said to be normal if it contains no redex. It is said to be normalizing
if it has a normal form and strongly normalizing if all reduction sequences issued
from this proofs are finite. We write SN for the set of strongly normalizing
proofs.

Proposition 1.3 (Subject reduction). If Γ ⊢≡ π : P and π → π′ then Γ ⊢≡

π′ : P .

Theorem 1.1. Provided ≡ is defined by a confluent rewrite system, which
rewrites terms to terms and atomic propositions to propositions, there is no
normal proof of the sequent ⊢≡ ⊥.
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Proof. The properties of the rewrite system ensure that ⊥ and any other non-
atomic proposition (like A ∧ B) have no common reduct. Thus, by confluence,
they are not congruent.

By induction over proof-term structure, one easily checks that a normal closed
proof can only end with an introduction rule; i.e. the proof-term has the form
λα π, 〈π, π′〉, i(π), j(π), λx π, 〈t, π〉. By the remark above, it is obvious that
none of these terms can be a proof of ⊥. ⊣

1.5. Deduction modulo and conversion rules. An alternative presenta-
tion of deduction modulo, would be to keep the usual deduction rule and add a
conversion rule

Γ ⊢≡ A
if A ≡ B

Γ ⊢≡ B

Although both presentations are obviously equivalent from the provability point
of view, this latter presentation obscures the notion of cut, as a cut needs now
to be defined as a sequence formed by

• an introduction,
• an arbitrary number of conversions,
• and an elimination

(see for instance [9]).
When considering proof-terms, it is usual in modern type theory ([22, 5, 2, 25,

31]) to take the conversion rule

Γ ⊢≡ π : A
if A ≡ B

Γ ⊢≡ π : B

where the conversion steps are not recorded in the proof-terms. In this case the
reduction rules are those of figure 4, but this bears a discrepancy between the
structure of the proof and that of the term.

An alternative would be to introduce a cast construction and to take the rule

Γ ⊢≡ π : A
if A ≡ B

Γ ⊢≡ (castB π) : B

In this case, like above, a redex must be defined as a term formed by

• an introduction,
• an arbitrary number of casts,
• and an elimination.

§2. Counter-examples to cut elimination. For some congruences, deduc-
tion modulo enjoys cut elimination, while it does not for others. We provide, in
this section, examples of congruences modulo which proof normalization fails.

In particular it may be noticed that normalization may fail even when the
congruence is defined by a confluent and terminating rewrite system.

2.1. Russell’s paradox. Consider the following rewrite rule

R → (R ⇒ S)

Modulo this rewrite rule, the proof λα (α α) λα (α α) has type S. The only way
to reduce this proof is to reduce it to itself and hence it is not normalizable.
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An instance of this rewrite rule is skolemized naive set theory. In naive set
theory we have the following axiom scheme

∀x1 . . . ∀xn ∃y ∀z (z ∈ y ⇔ P )

for any propositional expression P . Skolemizing this scheme, we introduce for
each proposition P a symbol fx1,...,xn,z,P and an axiom

∀x1 . . . ∀xn ∀z (z ∈ fx1,...,xn,z,P (x1, . . . , xn) ⇔ P )

This axiom can be turned into the rewrite rule

z ∈ fx1,...,xn,z,P (x1, . . . , xn) → P

In particular we have a rewrite rule

z ∈ fz,(z∈z)⇒⊥ → (z ∈ z) ⇒ ⊥

and hence writing R for the proposition fz,(z∈z)⇒⊥ ∈ fz,(z∈z)⇒⊥ and S for the
proposition ⊥ we have

R → (R ⇒ S)

2.2. Crabbé’s counter-example. Even if Zermelo’s set theory is considered
consistent, it is well-known that cut elimination is problematic and does generally
not hold. The proof of non normalization is called Crabbé’s counter-example
[6, 18, 12].

Consider the following (non terminating) rewrite rule

C → E ∧ (C ⇒ D)

Modulo this rewrite rule, the proof

λα (snd(α) α) 〈β, λα (snd(α) α)〉

is a proof of D in the context E. The only way to reduce this proof is to reduce
it to

(snd(〈β, λα (snd(α) α)〉) 〈β, λα (snd(α) α)〉)

and then to itself

(λα (snd(α) α) 〈β, λα (snd(α) α)〉)

Hence it is not normalizable.
An instance of such a rule is skolemized set theory. In set theory, we have an

axiom scheme

∀x1 . . . ∀xn ∀w ∃y ∀z (z ∈ y ⇔ (z ∈ w ∧ P ))

skolemizing this scheme, we introduce for each proposition P a symbol fx1,...,xn,z,P

and an axiom

∀x1 . . . ∀xn ∀w ∀z (z ∈ fx1,...,xn,z,P (x1, . . . , xn, w) ⇔ (z ∈ w ∧ P ))

This axiom can be turned into the rewrite rule

z ∈ fx1,...,xn,z,P (x1, . . . , xn, w) → z ∈ w ∧ P

In particular we have a rewrite rule

z ∈ fz,(z∈z)⇒⊥(w) → z ∈ w ∧ (z ∈ z ⇒ ⊥)
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and hence writing C for the proposition fz,(z∈z)⇒⊥(w) ∈ fz,(z∈z)⇒⊥(w), D for
the proposition ⊥ and E for the proposition fz,(z∈z)⇒⊥(w) ∈ w we have

C → E ∧ (C ⇒ D)

2.3. A terminating presentation of Russell’s paradox. This is the most
interesting counter-example, since is takes place in a theory defined by a con-
fluent and terminating rewrite system. It is a refined version of the example of
section 2.1 where termination is obtained by adding a condition in the right-hand
part which freezes the redex.

Let ¬A stand for A ⇒ ⊥. Instead of taking the (non terminating) rule R ∈
R → ¬R ∈ R, we take the (terminating) rule

R ∈ R → ∀y (y ≃ R ⇒ ¬y ∈ R)

where ≃ must be chosen such that R ≃ R holds and we can prove R ∈ R from
R ∈ y and y ≃ R.

One possibility is to chose y ≃ z to stand for ∀x (y ∈ x ⇒ z ∈ x) (which is a
possible set-theoretical definition of Leibniz equality). This leads to the proofs:

π = λαR∈R (α R (λx λβR∈xβ) α) : ¬R ∈ R
π′ = λy λα∀x.y∈x⇒R∈x λβy∈R (π (α R β)) : R ∈ R

We have (π π′) : ⊥ hence the theory is inconsistent. Moreover, this proof does
not normalize. Indeed the proposition ⊥ has no cut free proof. Thus, the theory
does not verify the cut elimination property.

§3. Proof Normalization in Natural Deduction. Let us now identify
some congruences for which normalization holds. We want to prove that proofs
normalize modulo congruences defined by a confluent and terminating quantifier
free rewrite system, (as in the example x × y = 0 → x = 0 ∨ y = 0), mod-
ulo congruences defined by a confluent and terminating positive rewrite system,
i.e. one containing no negative occurrences of atomic propositions and modulo
the congruence defining simple type theory above. All these results are conse-
quences of a unique theorem stating that deduction modulo a congruence has
the normalization property if this congruence has a pre-model.

3.1. Ultra-reduction. In order to allow the lift of the normalization theo-
rem from natural deduction to natural deduction with commutative cuts and to
the sequent calculus, we need to generalize slightly the result and prove strong
normalization for ultra-reductions.

Ultra-reductions are inspired by Girard [16], and are obtained by adding to
the rules of figure 4 three more rules yielding the rules of figure 5. We keep the
notation → for reduction and we write � for ultra-reduction. Obviously strong
normalization of ultra-reduction implies that of reduction. On the other hand,
confluence is obviously lost.

A technical point is that some variables may get freed in the reduct. A rigorous
presentation would involve introducing a fresh variable for each occurrence of an
ultra-reduction in order to avoid capture of these variables. Moreover subject
reduction is not preserved for these reductions. A fully safe presentation of
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(λα π1 π2) � [π2/α]π1

fst(〈π1, π2〉) � π1

snd(〈π1, π2〉) � π2

δ(i(π1), απ2, βπ3) � [π1/α]π2

δ(j(π1), απ2, βπ3) � [π1/β]π3

(λx π t) � [t/x]π

(δ∃ 〈t, π1〉 αxπ2) � [t/x, π1/α]π2

(δ π1 απ2 βπ3) � π2

(δ π1 απ2 βπ3) � π3

(δ∃ π1 xαπ2) � π2

Figure 5. Ultra-reduction rules

ultra-reductions would be to replace the freed variables by a dummy proof:

(δ π1 απ2 βπ3) � π2[(δ⊥γ0)/α]

with γ0 a proof variable of type ⊥ in the context.
Since subject reduction is not really an issue here, we stick to the presentation

of figure 5 and disregard the variable capture problems.

3.2. Reducibility. The basic tool used hereafter is reducibility; the main
concepts are due to Tait [29] and Girard [16, 17]. In particular, since we want
to treat the case of Higher-Order Logic, we need some form of reducibility can-
didates. We here chose a definition similar to Girard’s [17], but other ones like
Tait’s saturated sets would also apply [30].

Definition 3.1 (Neutral proof-term). A proof-term is said to be neutral if it
is an axiom or an elimination (i.e. α, (π t), (π π′), fst(π), snd(π), (δ π απ1 βπ2),
(δ⊥ π), (δ∃ π1 xαπ2)).

Definition 3.2 (Reducibility candidate). A set R of proof-terms is a reducibil-
ity candidate if

• if π ∈ R, then π is strongly normalizable,
• if π ∈ R and π � π′ then π′ ∈ R,
• if π is neutral and if for every π′ such that π �

1 π′, π′ ∈ R then π ∈ R.

Let C be the set of all reducibility candidates.

Mostly, we follow the main scheme of reducibility proofs. That is we try to
construct for every proposition A a set of proof-terms RA such that

• all elements of RA are strongly normalizing,
• and if Γ ⊢≡ π : A holds, then π ∈ RA.

The first condition is ensured by verifying that all RA are reducibility candi-
dates. The second one is proved by induction over the derivation of Γ ⊢≡ π : A
using closure conditions due to the definition of RA. Typically:
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• If π ∈ RA⇒B and π reduces to a proof-term of the form λα π1, then for
every proof-term π′ of RA, [π′/α]π1 is an element of RB .

• If π ∈ RA∧B and π reduces to a proof-term of the form 〈π1, π2〉, then π1 is
an element of RA and π2 is an element of RB.

• If π ∈ RA∨B and π reduces to a proof-term of the form i(π1) (resp. j(π2))
then π1 is an element of RA (resp. π2 is an element of RB).

• If π ∈ R∀x A and π reduces to a proof-term of the form λx π1 then for
every term t of the same sort as x, [t/x]π1 is an element of R[t/x]A.

• If π ∈ R∃x A and π reduces to a proof-term of the form 〈t, π1〉 then [t/x]π1

is an element of R[t/x]A.

If we read the conditions above as a partial definition of the family of sets
RA, we understand that the crucial step is the choice of the sets RA when A
is atomic. In first-order logic, we usually take SN for the set RA when A is
atomic, but this is not possible here. Indeed, an atomic proposition A can be
reduced to a non atomic one, say B ⇒ C. Thus a proof-term π1 of A may
be applied to a proof-term π2 of B to form a proof-term (π1 π2) of C. The
strong normalization of (π1 π2) cannot be deduced from that of π1 and that of
π2 because the proof-term (π1 π2) itself may be a redex. Hence, as A rewrites to
B ⇒ C we have to take the same conditions on RA than on RB⇒C . A solution
is to take RA = RB⇒C . More generally we require that RA = RB when A ≡ B.

To define the family RA, for A atomic, it is enough to define for every n-ary
predicate symbol P the sets RP (t1,...,tn), or equivalently to give a function P̂
that maps n-tuples of terms to some well-chosen reducibility candidate.

It is well-known that a reducibility proof essentially boils down to the construc-
tion of a particular syntactical model. This comparison is particularly striking
here since, in first-order logic, to define a model, we also need to provide, for
every predicate symbol P a function P̂ that maps every n-tuple of terms to a
truth value.

We can pursue this comparison. If two terms t1 and t′1 are congruent then the

sets P̂ (t1, . . . , tn) and P̂ (t′1, . . . , tn) must be identical. The function P̂ is then
better defined as a function from an abstract object (for instance, the class of t1
and t′1) that t1 and t′1 denote.

Then the condition that two congruent propositions must have the same de-
notation can be expressed as the fact that the congruence is valid in the model.

3.3. Pre-model. Formalizing the discussion above, we end-up with the fol-
lowing notion.

Definition 3.3 (Pre-model). Let L be a (many sorted) first-order language.
A pre-model for L is given by:

• for every sort T , a set MT ,

• for every function symbol f of rank 〈T1, . . . , Tn, U〉, a mapping f̂ from the
set MT1

× · · · ×MTn
to the set MU ,

• for every predicate symbol P of rank 〈T1, . . . , Tn〉, a mapping P̂ from the
set MT1

× · · · ×MTn
to the set C of reducibility candidates.
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Definition 3.4. Let t be a term and ϕ an assignment mapping all the free
variables of t of sort T to elements of MT . We define the object |t|ϕ by induction
over the structure of t.

• |x|ϕ = ϕ(x),

• |f(t1, . . . , tn)|ϕ = f̂(|t1|ϕ, . . . , |tn|ϕ).

Definition 3.5. Let A be a proposition and ϕ an assignment mapping all the
free variables of A of sort T to elements of MT . We define the set |A|ϕ of
proof-terms by induction over the structure of A.

• A proof-term is an element of |P (t1, . . . , tn)|ϕ if it is in P̂ (|t1|ϕ, . . . , |tn|ϕ).
• A proof-term is an element of |A ⇒ B|ϕ if it is strongly normalizable and

when it reduces to a proof-term of the form λα π1 then for every π′ in |A|ϕ,
[π′/α]π1 is an element of |B|ϕ.

• A proof-term is an element of |A ∧ B|ϕ if it is strongly normalizable and
when it reduces to a proof-term of the form 〈π1, π2〉 then π1 and π2 are
elements of |A|ϕ and |B|ϕ.

• A proof-term is an element of |A ∨ B|ϕ if it is strongly normalizable and
when it reduces to a proof-term of the form i(π1) (resp. j(π2)) then π1

(resp. π2) is an element of |A|ϕ (resp. |B|ϕ).
• A proof-term is an element of |⊥|ϕ if it is strongly normalizable.
• A proof-term is an element of |∀x A|ϕ if it is strongly normalizable and

when it reduces to a proof-term of the form λx π1 then for every term t of
sort T (where T is the sort of x) and every element E of MT , [t/x]π1 is an
element of |A|ϕ+〈x,E〉, where ϕ + 〈x, u〉 is the function that coincides with
ϕ everywhere except in x where it takes value u.

• A proof-term is an element of |∃x A|ϕ if it is strongly normalizable and
when it reduces to a proof-term of the form 〈t, π1〉 there exists an element
E of MT (where T is the sort of x) such that π1 is an element of |A|ϕ+〈x,E〉.

Definition 3.6. A pre-model is a pre-model of ≡ if, whenever A ≡ B, then
for every assignment ϕ, |A|ϕ = |B|ϕ.

Proposition 3.1. For every proposition A and assignment ϕ, |A|ϕ is a re-
ducibility candidate

Proof. By induction over the structure of A.
If A is an atomic proposition, |A|ϕ is a reducibility candidate by definition.
If A is a composed proposition, then, by definition, |A|ϕ contains only nor-

malizable proof-terms.
It is routine to prove closure by reduction.
Now, we assume that π is a neutral proof-term and for every π′ such that

π �
1 π′, π′ ∈ |A|ϕ; we want to prove that π is in |A|ϕ. Following the definition

of |A|ϕ, we first prove that π is strongly normalizable and then that if it reduces
to an introduction, the subproofs belong to the appropriate sets.

We first prove that π is strongly normalizable. Let π = π1, π2, . . . be a reduc-
tion sequence issued from π. If this sequence is empty it is finite. Otherwise we
have π �

1 π2 and hence π2 is an element of |A|ϕ thus it is strongly normalizable
and the reduction sequence is finite.
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Then we prove that if π reduces to a introduction then the subproofs belong
to the appropriate sets. Let π = π1, π2, . . . , πn be a reduction sequence issued
from π and such that πn is an introduction. This sequence cannot be empty
because π is neutral and hence not an introduction. Thus π �

1 π2 � πn. We
have π2 ∈ |A|ϕ and thus if πn is an introduction the subproofs belong to the
appropriate sets. ⊣

Proposition 3.2 (Substitution). Given any proposition A, term t and vari-
able x we have

|[t/x]A|ϕ = |A|ϕ+〈x,|t|ϕ〉

Proof. By induction on the structure of A. ⊣

3.4. The normalization theorem. In this section we prove that if a system
bears a pre-model then proof-terms modulo this system normalize.

Theorem 3.1. Let ≡ be a congruence, M be a pre-model of ≡, Γ ⊢≡ π : A be
derivable judgment. Consider:

• θ a substitution mapping the variables of any sort to terms of the same sort,
• ϕ an assignment mapping variables of any sort T to elements of MT ,
• σ a substitution mapping any proof variable bound to proposition B in Γ to

an element of |B|ϕ. Then σθπ is an element of |A|ϕ.

Proof. By induction over the structure of π. We detail the various cases.

3.4.1. Axiom. If π is a variable α, we have (α : B) ∈ Γ with A ≡ B. By
definition σθα = σα which is an element of |B|ϕ. Since M is a pre-model,
|A|ϕ = |B|ϕ and σθα ∈ |A|ϕ.

3.4.2. ⇒-intro. The proof-term π has the form λα ρ where α is a proof vari-
able of some proposition B and ρ a proof of some proposition C. We have
σθπ = λα σθρ, consider a reduction sequence issued from this proof-term. This
sequence can only reduce the proof-term σθρ. By induction hypothesis, the
proof-term σθρ is an element of |C|ϕ, thus the reduction sequence is finite.

Furthermore, every reduct of σθπ is of the form λα ρ′ where ρ′ is a reduct of
σθρ. Let then τ be any proof of |B|ϕ, the proof-term [τ/α]ρ′ can be obtained by
reduction from ([τ/α] ◦ σ)θρ. By induction hypothesis, the proof-term ([τ/α] ◦
σ)θρ is an element of |C|ϕ. Hence, as |C|ϕ is a reducibility candidate, the proof-
term [τ/α]ρ′ is an element of |C|ϕ.

Hence, the proof-term σθλα ρ is an element of |A|ϕ.

3.4.3. ∧-intro. The proof-term π has the form 〈ρ1, ρ2〉 where ρ1 is a proof
of some proposition B and ρ2 a proof of some proposition C. We have σθπ =
〈σθρ1, σθρ2〉. Consider a reduction sequence issued from this proof-term. This
sequence can only reduce the proof-terms σθρ1 and σθρ2. By induction hypoth-
esis these proof-terms are in |B|ϕ and |C|ϕ. Thus the reduction sequence is
finite.

Furthermore, any reduct of σθπ is of the form 〈ρ′1, ρ
′
2〉 where ρ′1 is a reduct of

σθρ1 and ρ′2 one of ρ2. These proof-terms are in |B|ϕ and |C|ϕ because these
sets are candidates.

Hence, the proof-term σθ〈ρ1, ρ2〉 is in |A|ϕ.
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3.4.4. ∨-intro. The proof-term π has the form i(ρ) (resp. j(ρ)) and ρ is a
proof of some proposition B. We have σθπ = i(σθρ) (resp. j(σθρ)). Consider a
reduction sequence issued from this proof-term. This sequence can only reduce
the proof-terms σθρ. By induction hypothesis this proof-term is an element of
|B|ϕ. Thus the reduction sequence is finite.

Furthermore all reducts of σθπ are of the form i(ρ′) (resp. j(ρ′)) where ρ′ is
a reduct of σθρ. Then ρ′ is an element of |B|ϕ since this set is a candidate.

Hence, the proof-term σθi(ρ) (respectively σθj(ρ)) is an element of |A|ϕ.

3.4.5. ∀-intro. The proof-term π has the form λx ρ where ρ is a proof of some
proposition B. We have σθπ = λx σθρ.

Consider a reduction sequence issued from the proof-term σθπ = λx σθρ.
This sequence can only reduce the proof-term σθρ. Let E be an element of MT

(where T is the sort of x). By induction hypothesis, the proof-term σθρ is an
element of |B|ϕ+〈x,E〉, thus the reduction sequence is finite.

All reducts of σθπ are of the form λx ρ′ where ρ′ is a reduct of σθρ. The
proof-term [t/x]ρ′ is obtained by reducing the proof-term [t/x]σθρ. By induction
hypothesis again, the proof-term [t/x]σθρ is an element of |B|ϕ+〈x,E〉.

Hence σθλx ρ is an element of |A|ϕ.

3.4.6. ∃-intro. The proof-term π has the form 〈t, ρ〉, A ≡ ∃x B and ρ is a
proof of [t/x]B. We have σθπ = 〈θt, σθρ〉. Consider a reduction sequence issued
from this proof-term. This sequence can only reduce the proof-term σθρ. By
induction hypothesis this proof-term is in |[t/x]B|ϕ. Thus the reduction sequence
is finite.

Furthermore, let E = |t|ϕ. Any reduct of σθπ is of the form 〈θt, ρ′〉 where ρ′

is a reduct of σθρ. This proof-term is an element of |[t/x]B|ϕ, i.e. of |B|ϕ+〈x,E〉,
because |B|ϕ+〈x,E〉 is a candidate.

Hence, the proof-term σθ〈t, ρ〉 is an element of |A|ϕ.

3.4.7. ⇒-elim. The proof-term π has the form (ρ1 ρ2) and ρ1 is a proof
of some proposition B ⇒ A and ρ2 a proof of the proposition B. We have
σθπ = (σθρ1 σθρ2). By induction hypothesis σθρ1 and σθρ2 are in the sets
|B ⇒ A|ϕ and |B|ϕ. Hence these proof-terms are strongly normalizable. Let
n be the maximum length of a reduction sequence issued from σθρ1 and n′

the maximum length of a reduction sequence issued from σθρ2. We prove by
induction on n + n′ that (σθρ1 σθρ2) is in the set |A|ϕ. Since this proof-term
is neutral we only need to prove that every of its one step reducts is in |A|ϕ.
If the reduction takes place in σθρ1 or in σθρ2 then we apply the induction
hypothesis. Otherwise σθρ1 has the form λα ρ′ and the reduct is [σθρ2/α]ρ′. By
the definition of |B ⇒ A|ϕ this proof-term is in |A|ϕ.

Hence, the proof-term σθ(ρ1 ρ2) is an element of |A|ϕ.

3.4.8. ∧-elim. We only detail the case of left elimination. The proof-term
π has the form fst(ρ) where ρ is a proof of some proposition A ∧ B. We have
σθπ = fst(σθρ). By induction hypothesis the proof-term σθρ is in |A ∧ B|ϕ.
Hence, it is strongly normalizable. Let n be the maximum length of a reduction
sequence issued from this proof-term. We prove by induction on n that fst(σθρ)
is in the set |A|ϕ. Since this proof-term is neutral we only need to prove that
every of its one step reducts is in |B|ϕ. If the reduction takes place in σθρ then
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we apply the induction hypothesis. Otherwise σθρ has the form 〈ρ′1, ρ
′
2〉 and the

reduct is ρ′1. By the definition of |A ∧ B|ϕ this proof-term is in |A|ϕ.
Hence, the proof-term σθfst(ρ) is an element of |A|ϕ.

3.4.9. ∨-elim. The proof-term π has the form (δ ρ1 αρ2 βρ3) where ρ1 is a
proof-term of some proposition B ∨ C and ρ2 and ρ3 are proof-terms of A. We
have σθπ = (δ σθρ1 ασθρ2 βσθρ3). By induction hypothesis, the proof-term
σθρ1 is in the set |B ∨ C|ϕ, and the proof-terms σθρ2 and σθρ3 are in the set
|A|ϕ. Hence, these proof-terms are strongly normalizable. Let n, n′ and n′′ be
the maximum length of reduction sequences issued from these proof-terms. We
prove by induction on n + n′ + n′′ that (δ σθρ1 σθαρ2 βσθρ3) is in |A|ϕ. Since
this proof-term is neutral we only need to prove that every of its one step reducts
is in |A|ϕ. If the reduction takes place in σθρ1, σθρ2 or σθρ3 then we apply the
induction hypothesis. Otherwise, if σθρ1 has the form i(ρ′) (resp. j(ρ′)) and the
reduct is [ρ′/α]σθρ2 (resp. [ρ′/β]σθρ3). By the definition of |B ∨C|ϕ the proof-
term ρ′ is in |B|ϕ (resp. |C|ϕ). Hence by induction hypothesis ([ρ′/α] ◦ σ)θρ2

(resp. ([ρ′/β] ◦ σ)θρ3) is in |A|ϕ.
At last, if the proof-term is reduced by the ultra-reduction rule then the reduct

is σθρ2 or σθρ3 and these proof-terms are in |A|ϕ.
Hence, the proof-term σθ(δ ρ1 αρ2 βρ3) is an element of |A|ϕ.

3.4.10. ⊥-elim. The proof-term π has the form (δ⊥ ρ) with ρ being a proof-
term of ⊥. We have σθπ = (δ⊥ σθρ). By induction hypothesis, the proof-term
σθρ is an element of |⊥|ϕ. Hence, it is strongly normalizable. Let n be the
maximum length of reduction sequences issued from this proof-term. We prove
by induction on n that (δ⊥ σθρ) is in |A|ϕ. Since this proof-term is neutral, we
only need to prove that every of its one step reducts is in |A|ϕ. The reduction
can only take place in σθρ and we apply the induction hypothesis.

Hence, the proof-term σθ(δ⊥ ρ) is an element of |A|ϕ.

3.4.11. ∀-elim. The proof-term π has the form (ρ t) where ρ is a proof of
some proposition ∀x B and A = [t/x]B. We have σθπ = (σθρ θt). By induction
hypothesis, the proof-term σθρ is in |∀x B|ϕ. Hence, it is strongly normalizable.
Let n be the maximum length of a reduction sequence issued from this proof-
term. We prove by induction on n that (σθρ θt) is in the set |A|ϕ. As this
proof-term is neutral, we only need to prove that every of its one step reducts
is in |A|ϕ. If the reduction takes place in σθρ then we apply the induction
hypothesis. Otherwise σθρ has the form λx ρ′ and the reduct is in [θt/x]ρ′. By
the definition of |∀x A|ϕ this proof-term is in |A|ϕ.

Hence, the proof-term σθ(ρ t) is an element of |A|ϕ.

3.4.12. ∃-elim. The proof-term π has the form (δ∃ ρ1 αxρ2) where ρ1 is a
proof of some proposition ∃x B and ρ2 is a proof of A. We have σθπ =
(δ∃ σθρ1 αxσθρ2). By induction hypothesis, the proof-term σθρ1 is in the
set |∃x B|ϕ and the proof-term σθρ2 is in the set |A|ϕ. Hence, these proof-
terms are strongly normalizable. Let n and n′ be the maximum length of re-
duction sequences issued from these proof-terms. We prove by induction on
n + n′ that (δ∃ σθρ1 xασθρ2) is in |A|ϕ. As this proof-term is neutral we
only need to prove that every of its one step reducts is in |A|ϕ. If the re-
duction takes place in σθρ1 or σθρ2 then we apply the induction hypothesis.
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Otherwise, if σθρ1 has the form 〈t, ρ′〉 and the reduct is [ρ′/α][t/x]σθρ2 =
([ρ′/α] ◦ [t/x]σ)([t/x] ◦ θ)ρ2. By the definition of |∃x A|ϕ, there exists an el-
ement E of such that the proof-term ρ′ is in |B|ϕ+〈x,E〉. Thus, by induction
hypothesis, the proof-term ([ρ′/α] ◦ [t/x]σ)([t/x] ◦ θ)ρ2 is in |A|ϕ+〈x,E〉, i.e. in
|A|ϕ.

At last, if the reduction rule is a ultra-reduction rule, then the proof-term
reduces to σθρ2 that is in |B|ϕ.

Hence, the proof-term σθ(δ∃ ρ1 αxρ2) is an element of |A|ϕ. ⊣

Corollary 3.1. If a congruence ≡ has a pre-model, then every proof modulo
≡ is strongly normalizable.

Proof. Every proof of A is in |A|∅ and hence strongly normalizable. ⊣

3.5. Pre-model construction. Constructing the pre-model for a given the-
ory, is the part of the consistency proof that bears the logical complexity, i.e. it
is the part of the proof that cannot be done in the theory itself. The construction
for simple type theory follows essentially the original proof of Girard [16, 17].
The others are more typical of deduction modulo.

3.5.1. Simple type theory.

Proposition 3.3. Simple type theory has a pre-model, hence proof-terms nor-
malize in simple type theory.

Proof. We construct a pre-model as follows. The essential point is that
we anticipate the fact that objects of sort o actually represent propositions, by
interpreting them as reducibility candidates.

Mι = {0}

Mo = C

MT→U = MMT

U

ŜT,U,V = a 7→ (b 7→ (c 7→ a(c)(b(c))))

K̂T,U = a 7→ (b 7→ a)

α̂(a, b) = a(b)

ε̂(a) = a

ˆ̇⇒(a, b) = {π ∈ SN |π � λα π1 ⇒ ∀π′ ∈ a.[π′/α]π1 ∈ b}
ˆ̇∧(a, b) = {π ∈ SN |π � 〈π1, π2〉 ⇒ π1 ∈ a ∧ π2 ∈ b}
ˆ̇∨(a, b) = {π ∈ SN |(π � i(π1) ⇒ π1 ∈ a) ∧ (π � i(π2) ⇒ π2 ∈ b)}

ˆ̇⊥ = SN
ˆ̇∀T (a) = {π ∈ SN |π � λx π1 ⇒ ∀t : T.∀E ∈ MT .[t/x]π1 ∈ a(E)}
ˆ̇∃T (a) = {π ∈ SN |π � 〈t, π2〉 ⇒ ∃E ∈ MT .π2 ∈ a(E)}

We do not detail the proof that if A ≡ B then |A|ϕ = |B|ϕ. ⊣



18 GILLES DOWEK AND BENJAMIN WERNER

In section 4.2, we study cut elimination for classical sequent calculus. This is
done using a, so-called, ¬¬-translation. To this matter, we need the following
proposition.

Proposition 3.4. The variant of simple type theory with the following rewrite
system has a pre-model

α(α(α(ST,U,V , x), y), z) → α(α(x, z), α(y, z))

α(α(KT,U , x), y) → x

ε(α(α(⇒̇, x), y)) → ¬¬ε(x) ⇒ ¬¬ε(y)

ε(α(α(∧̇, x), y)) → ¬¬ε(x) ∧ ¬¬ε(y)

ε(α(α(∨̇, x), y)) → ¬¬ε(x) ∨ ¬¬ε(y)

ε(⊥̇) → ⊥

ε(α(∀̇, x)) → ∀y ¬¬ε(α(x, y))

ε(α(∃̇, x)) → ∃y ¬¬ε(α(x, y))

where ¬A is a notation for A ⇒ ⊥.

Proof. We take the same pre-model as above, but for the interpretation of
the symbols ⇒̇, ∧̇, ∨̇, ⊥̇, ∀̇ and ∃̇. We first define the following functions.

⇒̃(a, b) = {π ∈ SN |π � λα π1 ⇒ ∀π′ ∈ a.[π′/α]π1 ∈ b}

∧̃(a, b) = {π ∈ SN |π � 〈π1, π2〉 ⇒ π1 ∈ a ∧ π2 ∈ b}

∨̃(a, b) = {π ∈ SN |(π � i(π1) ⇒ π1 ∈ a) ∧ (π � i(π2) ⇒ π2 ∈ b)}

⊥̃ = SN

∀̃T (a) = {π ∈ SN |π � λx π1 ⇒ ∀t : T.∀E ∈ MT .[t/x]π1 ∈ a(E)}

∃̃T (a) = {π ∈ SN |π � 〈t, π2〉 ⇒ ∃E ∈ MT .π2 ∈ a(E)}

¬̃(a) = ⇒̃(a, ⊥̃)

Then we take
ˆ̇⇒(a, b) = ⇒̃(¬̃(¬̃(a)), ¬̃(¬̃(b)))
ˆ̇∧(a, b) = ∧̃(¬̃(¬̃(a)), ¬̃(¬̃(b)))
ˆ̇∨(a, b) = ∨̃(¬̃(¬̃(a)), ¬̃(¬̃(b)))

ˆ̇⊥ = ⊥̃
ˆ̇∀T (a) = ∀̃(x 7→ ¬̃(¬̃(a(x))))
ˆ̇∃T (a) = ∃̃(x 7→ ¬̃(¬̃(a(x))))

⊣

3.5.2. Quantifier free rewrite systems. In the case of simple type theory, it
is the presence of the quantifier ∀ on the right hand part of one of the rewrite
schemes that is responsible for the impredicativity of the resulting theory. Quan-
tifier free rewrite systems define predicative theories and have a generic and
predicative proof of cut elimination.

Definition 3.7 (Quantifier free). A rewrite system is said to be quantifier
free if no quantifier appears on the right hand side of any of its rules.
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Proposition 3.5. A quantifier free confluent terminating rewrite systems has
a pre-model, hence proof-terms normalize in deduction modulo such a rewrite
system.

Proof. By induction over proposition structure, we associate a set of proof-
terms to each each normal closed quantifier free proposition.

Ψ(A) = SN if A is atomic
Ψ(A ⇒ B) = {π ∈ SN |π � λα π1 ⇒ ∀π′ ∈ Ψ(A).[π′/α]π1 ∈ Ψ(B)}
Ψ(A ∧ B) = {π ∈ SN |π � (π1, π2) ⇒ π1 ∈ Ψ(A) ∧ π2 ∈ Ψ(B)}
Ψ(A ∨ B) = {π ∈ SN |π � i(π1) ⇒ π1 ∈ Ψ(A) ∧ π � i(π2) ⇒ π2 ∈ Ψ(B)}

Ψ(⊥) = SN

We define a pre-model as follows.
Let MT be the set of normal closed terms of sort T .

f̂(t1, . . . , tn) = f(t1, . . . , tn) ↓

P̂ (t1, . . . , tn) = Ψ((P (t1, . . . , tn)) ↓).

where A ↓ (resp. t ↓) is the normal form of the proposition A (resp. term t).
We prove, by an easy induction, that |A|ϕ = |B|ϕ when A ≡ B. ⊣

Remark 3.1. In this normalization proof we use the fact that some sets are
reducibility candidates, but we never quantify over all reducibility candidates,
reflecting the fact that we here deal with predicative systems.

3.5.3. Positive rewrite systems. Finally, for some rewrite systems, pre-models
can be constructed by a fixed point construction.

Definition 3.8. A rewrite system is said to be positive if it rewrites atomic
propositions to propositions containing only positive occurrences of atomic propo-
sitions.

Definition 3.9. A pre-model is said to be syntactical if

• MT = TT / ≡ where TT is the set of closed terms of sort T ,

• If f is a function symbol, f̂ is the function that maps the classes e1, ..., en to
the class of the term f(t1, . . . , tn) where t1, ..., tn are elements of e1, ..., en

(since the relation ≡ is a congruence, this does not depend of the choice of
representatives).

A syntactical pre-model is defined solely by the interpretation of predicate
symbols.

Definition 3.10. Let M1 and M2 be two syntactical pre-models. We write
P̂1 for the denotation of P in M1 and P̂2 for the denotation of P in M2

We say that M1 ≤ M2 if and only if for any predicate symbol P and closed
terms t1, . . . , tn we have

P̂1(t1, . . . , tn) ⊆ P̂2(t1, . . . , tn)

The set of syntactical pre-models is a complete lattice for the order ≤.

Proposition 3.6. Let R be a confluent and normalizing rewrite system. If
the system R is positive then it has a pre-model, hence proof-terms normalize
modulo R.
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Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

F(M)(P )(t1, . . . , tn) = |P (t1, . . . , tn) ↓ |M,∅.

As the system R is positive the function F is monotone. Hence, as the set of
syntactical pre-models is a complete lattice, it has a fixed point. This fixed point
is a pre-model of the rewrite system. ⊣

This construction also applies for a non terminating rewrite system, provided
it is deterministic.

Proposition 3.7. Let R be a rewrite system such that any atomic proposition
has at most one one-step reduct. If the system R is positive then it has a pre-
model, hence proof-terms normalize modulo R.

Proof. Let F be the function mapping syntactical pre-models to syntactical
pre-models defined by

F(M)(P )(t1, . . . , tn) = |P (t1, . . . , tn) + |M,∅

where A+ is the unique one-step reduct of A if it exists and A otherwise. Again,
since the system R is positive the function F is monotone and again, since the
set of syntactical pre-models is a complete lattice, it has a fixed point. This fixed
point is a pre-model of the rewrite system. ⊣

3.5.4. The term case.

Proposition 3.8. A a congruence induced by a congruence on terms has a
pre-model and hence proof-terms normalize modulo this congruence.

Proof. Take SN for all atomic propositions, i.e. for all P , P̂ is the constant
function equal to SN . ⊣

3.6. Normalization with commutative cuts. In order to lift the cut elim-
ination theorem from natural deduction to sequent calculus we need a cut elim-
ination theorem, taking into account the so-called commutative cuts.

A usual cut is an introduction rule immediately followed by an elimination
rule on the same symbol. A commutative cut is a introduction followed by an
elimination, but separated by a sequence of eliminations of symbols ∨, ⊥ or ∃.
When a proof-term contains a commutative cut, it is possible to permute the
eliminations until the introduction and the elimination form a usual cut that
then can be reduced. Typically, we want a rule transforming the proof

Γ ⊢≡ A ∨ B Γ, A ⊢≡ C ⇒ D Γ, B ⊢≡ C ⇒ D
∨-elim

Γ ⊢≡ C ⇒ D Γ ⊢≡ C
⇒-elim

Γ ⊢≡ D

into the proof

Γ ⊢≡ A ∨ B

Γ, A ⊢≡ C ⇒ D Γ, A ⊢≡ C
⇒-elim

Γ, A ⊢≡ D

Γ, B ⊢≡ C ⇒ D Γ, B ⊢≡ C
⇒-elim

Γ, B ⊢≡ D
∨-elim

Γ ⊢≡ D
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Which, using the notation of proofs as terms, corresponds to the additional
rule

((δ π1 απ2 βπ3) π) →֒ (δ π1 α(π2 π) β(π3 π))

More generally reductions with commutative cuts are obtained by adding more
rules to those of figure 4 yielding the rules of figure 6. We write →֒ for reduction
with commutative cuts. Notice that, unlike �, the relation →֒ enjoys subject
reduction.

We now want to prove that each proof has a normal form for this rewrite
system.

Definition 3.11 (Elimination context). An elimination context is a proof-
term of the form

E := () | (E π) | fst(E) | snd(E) | (δ E π1 π2) | (δ⊥ E) | (E t) | (δ∃ E xαπ)

where () is a distinguished variable.
We write E(π) for the proof-term [π/()]E.

Definition 3.12 (Simple proof-term). A simple proof-term is a proof-term of
the form

S := α | (S π) | fst(S) | snd(S) | (S t)

Proposition 3.9. Every →-normal proof-term π is either an introduction, a
simple proof-term or has the form E(δ S απ1 βπ2), E(δ∃ S xαπ1) or E(δ⊥ S).

Proof. By induction over the structure of the proof-term π.

• If π is a variable then it is simple.
• If π is an introduction then it is an introduction.
• If π is an elimination, then it has the form (ρ ρ1), fst(ρ), snd(ρ), (δ ρ αρ1 βρ2),

(δ⊥ ρ), (ρ t) or (δ∃ ρ xαρ1).
In all these cases, by induction hypothesis the proof-term ρ is either

an introduction, a simple proof-term or has the form E(δ S απ1 βπ2),
E(δ∃ S xαπ1) or E(δ⊥ S).

Since π is normal, ρ is not an introduction.
If ρ is simple then π is either simple or has the form (δ S αρ1 βρ2),

(δ⊥ S), (δ∃ S xαρ1).
If ρ has the form E(δ S απ1 βπ2), E(δ∃ S xαπ1) or E(δ⊥ S), then π has

the form E′(δ S απ1 βπ2), E′(δ∃ S xαπ1) or E′(δ⊥ S).

⊣

Proposition 3.10. A simple proof-term can reduce to simple proof-terms only.

Proposition 3.11 (Weak normalization). Every proof has a →֒-normal form.

Proof. Let π be a proof-term, we write n(π) for the length of the longest
�-reduction in π and p(π) for the size of π. By induction over the lexicographic
ordering 〈n(π), p(π)〉, we prove that every proof-term π has a →֒-normal form.

• If the proof-term π is not →-normal then it →-reduces to some proof-term
π′. We have n(π′) < n(π). By the induction hypothesis π′ has a →֒-normal
form. Hence π has a →֒-normal form.
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(λα π1 π2) →֒ [π2/α]π1

fst(〈π1, π2〉) →֒ π1

snd(〈π1, π2〉) →֒ π2

(δ i(π1) απ2 βπ3) →֒ [π1/α]π2

(δ j(π1) απ2 βπ3) →֒ [π1/β]π3

(λx π t) →֒ [t/x]π

(δ∃ 〈t, π1〉 αxπ2) →֒ [t/x, π1/α]π2

((δ π1 απ2 βπ3) π) →֒ (δ π1 α(π2 π) β(π3 π))

fst(δ π1 απ2 βπ3) →֒ (δ π1 αfst(π2) βfst(π3))

snd(δ π1 απ2 βπ3) →֒ (δ (π1 αsnd(π2) βsnd(π3)))

(δ (δ π1 απ2 βπ3) α′π′

1 β′π′

2) →֒ (δ π1 α(δ π2 α′π′

1 β′π′

2) β(δ π3 α′π′

1 β′π′

2))

(δ⊥ (δ π1 απ2 βπ3)) →֒ (δ π1 α(δ⊥ π2) β(δ⊥ π3))

((δ π1 απ2 βπ3) t) →֒ ((δ π1 α(π2 t) β(π3 t)))

(δ∃ (δ π1 απ2 βπ3) xα′π) →֒ (δ π1 α(δ∃ π2 xα′π) β(δ∃ π3 xγπ))

((δ∃ π1 xαπ2) π) →֒ (δ∃ π1 α(π2 π))

fst(δ∃ π1 xαπ2) →֒ (δ∃ π1 xαfst(π2))

snd(δ∃ π1 xαπ2) →֒ (δ∃ π1 xαsnd(π2))

(δ (δ∃ π1 xαπ2) α′π′

1 β′π′

2) →֒ (δ∃ π1 xα(δ π2 α′π′

1 β′π′

2))

(δ⊥ (δ∃ π1 xαπ2)) →֒ (δ∃ π1 xα(δ⊥ π2))

((δ∃ π1 xαπ2) t) →֒ (δ∃ π1 xα(π2 t))

(δ∃ (δ∃ π1 xαπ2) x′α′π) →֒ (δ∃ π1 xα(δ∃ π2 x′α′π))

((δ⊥ π1) π) →֒ (δ⊥ π1)

fst(δ⊥ π1) →֒ (δ⊥ π1)

snd(δ⊥ π1) →֒ (δ⊥ π1)

(δ (δ⊥ π1) α′π′

1 β′π′

2) →֒ (δ⊥ π1)

(δ⊥ (δ⊥ π1)) →֒ (δ⊥ π1)

((δ⊥ π1) t) →֒ (δ⊥ π1)

(δ∃ (δ⊥ π1) xα′π) →֒ (δ⊥ π1)

Figure 6. Reduction rules with commutative cuts

• If the proof-term π is →-normal then, using proposition 3.9, it is either an
introduction, a simple proof-term or a proof-term of the form E(δ S απ1 βπ2),
E(δ∃ S xαπ1) or E(δ⊥ S).

– If π is an introduction, it has the form λα π1, 〈π1, π2〉, i(π1), j(π1),
λx π1, 〈t, π1〉.
In all theses cases, we have n(πi) ≤ n(π) and p(πi) < p(π) hence by
induction hypothesis the proof-terms πi have a →֒-normal forms π′

i.
The proof-term λα π′

1, (resp. 〈π′
1, π

′
2〉, i(π′

1), j(π′
1), λx π′

1 or 〈t, π′
1〉) is

a →֒-normal form of π.
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– If π is simple then we prove by structural induction that it has a normal
form.
∗ If it is a variable then it is its own normal form.
∗ If it has the form (S π1) then by induction hypothesis S has a

normal form S′. This proof-term is simple. We have n(π1) ≤ n(π)
and p(π1) < p(π), hence, by induction hypothesis, π1 has a normal
form π′

1. The proof-term (S′ π′
1) is a normal form of π.

∗ If π has the form fst(S) or snd(S) then by induction hypothesis
the proof-term S has a normal form S′. This proof-term is simple.
The proof-term fst(S′) or snd(S′) is a normal form of π.

∗ If π has the form (S t) then by induction hypothesis S has a
normal form S′. This proof-term is simple. The proof-term (S′ t)
is a normal form of π.

– If π has the form E(δ S απ1 βπ2), E(δ∃ S xαπ1) or E(δ⊥ S), then it
→֒-reduces to (δ S αE(π1) βE(π2)), (δ∃ S xαE(π1)) or (δ⊥ S).
We have n(S) ≤ n(π) and p(S) < p(π) hence, by induction hypothesis
the proof-term S has a normal form S′. This proof-term is simple.
We have π �

+ E(πi) (recall that � stands for ultra-reduction). Hence
n(E(πi)) < n(π). Thus, by induction hypothesis the proof-term E(πi)
has a →֒-normal form π′

i.
The proof-term (δ S′ απ′

1 βπ′
2), (δ∃ S′ xαπ′

1) or (δ⊥ S′) is a normal
form of π.

⊣

§4. Cut elimination in sequent calculus modulo.

4.1. Cut elimination for the intuitionistic sequent calculus modulo.

Following a usual proof, we show that →֒-normal proof-terms in natural deduc-
tion can be translated as cut free proofs in sequent calculus.

Remark 4.1. In natural deduction, the context of the main premise of an
elimination is the same as that of the conclusion.

Proposition 4.1. If a sequent Γ ⊢≡ P has a →֒-normal proof in intuitionistic
natural deduction modulo, then it has a cut free proof in intuitionistic sequent
calculus modulo.

Proof. By induction on the size of the normal proof-term of Γ ⊢≡ P

• If the last rule is an axiom then the result is obvious.
• If the last rule is an introduction rule, we apply the induction hypothesis,

to the subproofs and we use the corresponding right rule.
• If the last rule is an elimination rule, then the proof ends with a sequence

of elimination rules on the main premise and we consider the first rule that
is not an elimination. This rule cannot be a introduction rule because the
proof is normal, thus it is an axiom. We focus on the first rule after this
axiom.
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– If this rule is a ⇒-elim rule. The proof has the shape

axiom
Γ ⊢≡ C

π1

Γ ⊢≡ A
⇒-elim

Γ ⊢≡ B
π2

Γ ⊢≡ P

where C ≡ A ⇒ B.
Adding the proposition B in every context of π2 we get a proof of
Γ, B ⊢≡ P under the assumption Γ, B ⊢≡ B, we can close this proof
with an axiom and the proof π′

2 obtained this way is shorter than the
proof we started with.
We apply the induction hypothesis to π1 and π′

2 yielding cut free proofs
ρ1 and ρ2 in sequent calculus of Γ ⊢≡ A and Γ, B ⊢≡ P .
The context Γ contains the proposition C. We build the proof

ρ1

Γ ⊢≡ A
ρ2

Γ, B ⊢≡ P
⇒-left

Γ, C ⊢≡ P
contraction

Γ ⊢≡ P

– If this rule is a ∧-elim rule. The proof has the shape

axiom
Γ ⊢≡ C

∧-elim
Γ ⊢≡ A

π
Γ ⊢≡ P

where C ≡ A ∧ B.
Adding the propositions A and B in every context of π we get a proof
of Γ, A, B ⊢≡ P under the assumption Γ, A, B ⊢≡ A, we can close this
proof with an axiom and the proof π′ obtained this way is shorter than
the proof we started with.
We apply the induction hypothesis to π′ yielding a cut free proof ρ in
sequent calculus of Γ, A, B ⊢≡ P
The context Γ contains the proposition C. We build the proof

ρ
Γ, A, B ⊢≡ P

∧-left
Γ, C ⊢≡ P

contraction
Γ ⊢≡ P

– If this rule is a ∨-elim rule. The proof has the shape

axiom
Γ ⊢≡ D

π1

Γ, A ⊢≡ C
π2

Γ, B ⊢≡ C
∨-elim

Γ ⊢≡ C
π3

Γ ⊢≡ P

where D ≡ A ∨ B.
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As the proof is →֒-normal and π3 contains only eliminations, π3 is
empty and the proof has the shape

axiom
Γ ⊢≡ D

π1

Γ, A ⊢≡ P
π2

Γ, B ⊢≡ P
∨-elim

Γ ⊢≡ P

We apply the induction hypothesis to π1 and π2 yielding cut free proofs
ρ1 and ρ2 in sequent calculus of Γ, A ⊢≡ P and Γ, B ⊢≡ P .
The context Γ contains the proposition D. We build the proof

ρ1

Γ, A ⊢≡ P
ρ2

Γ, B ⊢≡ P
⇒-left

Γ, D ⊢≡ P
contraction

Γ ⊢≡ P

– If this rule is a ⊥-elim rule. The proof has the shape

axiom
Γ ⊢≡ B

⊥-elim
Γ ⊢≡ A

π
Γ ⊢≡ P

where B ≡ ⊥.
As the proof is →֒-normal and π contains only eliminations, π is empty
and the proof has the shape

axiom
Γ ⊢≡ B

⊥-elim
Γ ⊢≡ P

The context Γ contains the proposition B. We build the proof

⊥-left
Γ, B ⊢≡ P

contraction
Γ ⊢≡ P

– If this rule is a ∀-elim rule. The proof has the shape

axiom
Γ ⊢≡ B

〈x, A, t〉∀-elim
Γ ⊢≡ C

π
Γ ⊢≡ P

where B ≡ ∀x A and C ≡ [t/x]A.
Adding the proposition C in every context of π we get a proof of
Γ, C ⊢≡ P under the assumption Γ, C ⊢≡ C, we can close this proof
with an axiom and the proof π′ obtained this way is shorter than the
proof we started with.
We apply the induction hypothesis to π′ and yielding a cut free proof
ρ in sequent calculus of Γ, C ⊢≡ P .



26 GILLES DOWEK AND BENJAMIN WERNER

The context Γ contains the proposition B. We build the proof

ρ
Γ, C ⊢≡ P

〈x, A, t〉 ∀-left
Γ, B ⊢≡ P

contraction
Γ ⊢≡ P

– If this rule is a ∃-elim rule. The proof has the shape

axiom
Γ ⊢≡ C

π1

Γ, A ⊢≡ B
〈x, A〉 ∃-elim

Γ ⊢≡ B
π2

Γ ⊢≡ P

where C ≡ ∃xA.
As the proof is →֒-normal and π2 contains only eliminations, π2 is
empty and the proof has the shape

axiom
Γ ⊢≡ C

π1

Γ, A ⊢≡ P
〈x, A〉 ∃-elim

Γ ⊢≡ P

We apply the induction hypothesis to π1 yielding a cut free proof ρ1 in
sequent calculus of Γ, A ⊢≡ P .
The context Γ contains the proposition C. We build the proof

ρ1

Γ, A ⊢≡ P
〈x, A〉 ∃-left

Γ, C ⊢≡ P
contraction

Γ ⊢≡ P

⊣

Corollary 4.1. If the congruence ≡ has a pre-model, then the cut rule is
redundant in intuitionistic sequent calculus modulo ≡.

Proof. Consider a proof of a sequent Γ ⊢≡ P in sequent calculus, this proof
can easily be translated into natural deduction. The →֒-normal form of this
proof can be translated as a cut free proof of Γ ⊢≡ P in sequent calculus. Hence
the sequent Γ ⊢≡ P has a cut free proof in sequent calculus. ⊣

4.2. Cut elimination for the classical sequent calculus modulo. In
this section we prove cut elimination for classical sequent calculus. We use a tra-
ditional style reduction to intuitionistic cut elimination through a ¬¬-translation.

Definition 4.1. Let A be a proposition, the double negation of A is the propo-
sition obtained by adding a double negation before each sub-proposition:

• A′ = ¬¬A if A is atomic,
• (A ⇒ B)′ = ¬¬(A′ ⇒ B′),
• (A ∧ B)′ = ¬¬(A′ ∧ B′),
• (A ∨ B)′ = ¬¬(A′ ∨ B′),
• ⊥′ = ¬¬⊥,
• (∀x A)′ = ¬¬(∀x A′),
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• (∃x A)′ = ¬¬(∃x A′).

the light double negation of A is the proposition obtained by adding a double
negation before each sub-proposition except at the root of the proposition:

• A′′ = A if A is atomic,
• (A ⇒ B)′′ = A′ ⇒ B′,
• (A ∧ B)′′ = A′ ∧ B′,
• (A ∨ B)′′ = A′ ∨ B′,
• ⊥′′ = ⊥,
• (∀x A)′′ = ∀x A′,
• (∃x A)′′ = ∃x A′.

To a rewrite system R Ai → Pi we associate the rewrite system R′ Ai → P ′′
i .

Proposition 4.2. If A →R B then A′ →R′ B′ and A′′ →R′ B′′.

Proof. By induction on the structure of A. ⊣

Corollary 4.2. If A ≡R B then A′ ≡R′ B′ and A′′ ≡R′ B′′.

Proposition 4.3. If R is terminating and confluent, then so is R′.

Proof. From a reduction sequence in R′ we can build one of the same length
in R. Hence all reduction sequences in R′ are finite and R′ is terminating.

By Newman’s theorem, to prove that R′ is confluent, we only need to prove
that all critical pairs can be closed. If A is atomic, A →1

R′ B and A →1
R′ C,

then there exists propositions b and c such that A →1
R b, A →1

R c, B = b′′ and
C = c′′. As the system R is confluent there exists a proposition d such that
b →R d and c →R d. We have B →R′ d′′ and C →R′ d′′. ⊣

Proposition 4.4. If a sequent A1, . . . , An ⊢≡ B1, . . . , Bp is provable in clas-
sical sequent calculus, then A′

1, . . . , A
′
n,¬B′′

1 , . . . ,¬B′′
p ⊢≡ is provable in intu-

itionistic sequent calculus.

Proof. The proof is an easy induction on the structure of the proof of

A1, . . . , An ⊢≡ B1, . . . , Bp.

As an example, let us detail one case. If the last rule is ∨-right

π
A1, . . . , An ⊢≡ C, B1, . . . , Bp ∨-right
A1, . . . , An ⊢≡ E, B1, . . . , Bp

Where E ≡ C ∨ D. By induction hypothesis we have an intuitionistic proof π′

of
A′

1, . . . , A
′
n,¬B′′

1 , . . . ,¬B′′
p ,¬C′′ ⊢≡

We have E′′ ≡ (C ∨ D)′′ = C′ ∨ D′ = ¬¬C′′ ∨ ¬¬D′′. We build the following
proof

π′

A′
1, . . . , A

′
n,¬B′′

1 , . . . ,¬B′′
p ,¬C′′ ⊢≡

¬-right
A′

1, . . . , A
′
n,¬B′′

1 , . . . ,¬B′′
p ⊢≡ ¬¬C′′

∨-right
A′

1, . . . , A
′
n,¬B′′

1 , . . . ,¬B′′
p ⊢≡ (¬¬C′′ ∨ ¬¬D′′)

¬-left
A′

1, . . . , A
′
n,¬B′′

1 , . . . ,¬B′′
p ,¬(¬¬C′′ ∨ ¬¬D′′) ⊢≡
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⊣

Definition 4.2. Consider an intuitionistic sequent Γ ⊢≡ ∆, i.e. a sequent
such that ∆ contains at most one proposition. The sequent Γ ⊢≡ ∆ is said to
represent a classical sequent A1, . . . , An ⊢≡ B1, . . . , Bp if there exists a one-to-
one correspondence ξ between the formulas of the two sequents such that

• if ξ(Ai) ∈ Γ then ξ(Ai) is either equal to A′′
i or A′

i

• if ξ(Ai) ∈ ∆ then ξ(Ai) = ¬A′′
i

• if ξ(Bi) ∈ ∆ then ξ(Bi) is either equal to B′′
i or B′

i

• if ξ(Bi) ∈ Γ then ξ(Bi) = ¬B′′
i .

Proposition 4.5. If an intuitionistic sequent Γ ⊢≡ ∆ represents a classical
sequent A1, . . . , An ⊢≡ B1, . . . , Bp and is provable in the cut free intuitionis-
tic sequent calculus modulo R′, then the sequent A1, . . . , An ⊢≡ B1, . . . , Bp is
provable in the cut free classical sequent calculus modulo R.

Proof.

• If the last rule is logical rule applied to a proposition of the form ¬A′′
i , ¬B′′

i ,
A′

i of B′
i, then the obtained sequent is also a representation of A1, . . . , An ⊢≡

B1, . . . , Bp and we can apply the induction hypothesis.
• If the last rule is a logical rule applied to a proposition of the form A′′

i

or B′′
i , a structural rule or an axiom rule, we apply the same rule to the

corresponding proposition in A1, . . . , An ⊢≡ B1, . . . , Bp and we conclude by
the induction hypothesis.

⊣

Theorem 4.1. If the rewrite system R′ has a pre-model then the cut rule is
redundant in the classical sequent calculus modulo R.

Proof. If the system R′ has a pre-model then the intuitionistic sequent cal-
culus modulo R′ has the cut elimination property. Let Γ ⊢≡ ∆ be a sequent and
Γ′ ⊢≡ ∆′ its double negation.

If Γ ⊢≡ ∆ has a proof in the classical sequent calculus modulo R, then Γ′ ⊢≡ ∆′

has a proof in the intuitionistic sequent calculus modulo R′, Γ′ ⊢≡ ∆′ has a cut
free proof in the intuitionistic sequent calculus modulo R′ and Γ ⊢≡ ∆ has a cut
free proof in the classical sequent calculus modulo R. ⊣

Corollary 4.3.

• The classical sequent calculus modulo the rules of simple type theory has
the cut elimination property.

• The classical sequent calculus modulo a confluent and terminating quantifier
free rewrite system has the cut elimination property.

• The classical sequent calculus modulo any confluent and terminating posi-
tive rewrite system has the cut elimination property.

• The classical sequent calculus modulo a positive rewrite system such that any
atomic proposition has at most one one-step reduct has the cut-elimination
property.

• The classical sequent calculus modulo a congruence induced by a congruence
on terms has the cut-elimination property.
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Proof. The ¬¬-translation of the rewrite system of simple type theory is
that of proposition 3.4. The ¬¬-translation of a quantifier free rewrite system is
a quantifier free rewrite system. The ¬¬-translation of a positive rewrite system
is a positive rewrite system. The ¬¬-translation of a term rewrite system is a
term rewrite system. ⊣
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