
A computational approach to Pocklington

certi�cates in type theory

Benjamin Grégoire1, Laurent Théry1, and Benjamin Werner2

1 INRIA Sophia-Antipolis, France
[Benjamin.Gregoire|Laurent.Thery]@sophia.inria.fr

2 INRIA Futurs, France Benjamin.Werner@inria.fr

Abstract. Pocklington certi�cates are known to provide short proofs
of primality. We show how to perform this in the framework of formal,
mechanically checked, proofs. We present an encoding of certi�cates for
the proof system Coq which yields radically improved performances by
relying heavily on computations inside and outside of the system (two-
level approach).

1 Formal computational proofs

1.1 Machines and the quest for correctness

It is generally considered that modern mathematical logic was born towards the
end of 19th century, with the work of logicians like Frege, Peano, Russell or
Zermelo, which lead to the precise de�nition of the notion of logical deduction
and to formalisms like arithmetic, set theory or early type theory. From then
on, a mathematical proof could be understood as a mathematical object itself,
whose correction obeys some well-de�ned syntactical rules. In most formalisms, a
formal proof is viewed as some tree-structure; in natural deduction for instance,
given to formal proofs σA and σB respectively of propositions A and B, these
can be combined in order to build a proof of A ∧B:

σA

` A
σB

` B
` A ∧B

To sum things up, the logical point of view is that a mathematical statement
holds in a given formalism if there exists a formal proof of this statement which
follows the syntactical rules of the formalism. A traditional mathematical text
can then be understood as an informal description of the formal proof. Things
changed in the 1960-ties, when N.G. de Bruijn's team started to use computers
to actually build formal proofs and verify their correctness. Using the fact that
data-structures like formal proofs are very naturally represented in a computer's
memory, they delegated the proof-veri�cation work to the machine; their software
Automath is considered as the �rst proof-system and is the common ancestor of
today's systems, including Coq. The main motivation for all these systems, apart

from the satisfaction of bringing mathematical objects �into life�, is that the non-
imaginative mechanical veri�cation of a proof rules out the possibility of errors
to a much higher degree than the relying on human understanding.

The arrival of proof systems triggered a new interest in the study of for-
malisms which were, from then on, judged by their facility of use. Indeed, when
one tries to actually build a formal proof in practice, some issues become much
more important than when one simply tries to persuade an intelligent reader of
the existence of such a proof in principle. For example, an issue like the size of
the formal proof can become crucial.

1.2 The question of computations

In this particular respect, the subject of computations inside proofs deserves
particular attention. In traditional formalisms, deduction steps are the only valid
way to build a proof. In some cases however, one wishes to also proceed by
calculation steps. For instance when �proving� that 2 + 2 is equal to 4.

Typically, addition will be characterized by axioms of lemmas stating that
0+n = n and (n+1)+m = 1+(n+m). Even if we omit the steps corresponding
to the properties of equality, the proof of 2 + 2 = 4 will look like

4 = 4
0 + 4 = 4
1 + 3 = 4
2 + 2 = 4

Of course, this approach leads to unreasonably large proofs if one deals with
larger numbers.

This issue is particularly acute when dealing with concepts that are highly
computational in nature like primality. Since 1951, the largest numbers estab-
lished as being prime have been so with the use of computer calculations. Of
course, this fact is widely accepted. The largest number having been proved
prime �by hand� by Ferrier is (2148 + 1)/17. In other words, if one wants to
prove, formally or not, the primality of a number which is not ridiculously small
by today standards, one has to somehow incorporate computations into the
proof.

Even if it seems clear that proof systems cannot reach the same performances
as state-of-the-art dedicated software, one should hope that modern proof sys-
tems should be able to go further than what humans could do in 1951. The most
natural way to go is to include computations into proofs. Fortunately, modern
logical formalisms are often well-equipped for that purpose.

1.3 Conversion rule

The logical formalisms underlying systems like NuPRL, Agda, Alf, Lego, PVS
or Coq have an important feature in common. First, the language of objects

of these formalisms includes a programming language. In general, this language
can be described as the functional core of ML, with some restrictions to en-
sure termination. In Coq, as in most �avors of type theory, the fact that under
assumptions Γ , the object p is a valid proof of proposition P is stated by the
sequent Γ ` p : P . Programs, like the addition function, being part of the lan-
guage, may appear in P , as they do in proposition 2 + 2 = 4. These programs
bear a notion of evaluation which corresponds to small-step operational seman-
tics. One writes =c for the re�exive, symmetric and transitive closure of this
relation, which extends to propositions by straightforward congruence.

The fact that programs have a �rst-class status in these formalisms appears
in the logical conversion rule, which, in Coq, reads:

Γ ` p : A
Γ ` p : B

(if A =c B)

which states that congruent propositions are identi�ed up to the point that
they enjoy the same proof-objects. A crucial point is that the calculation steps
to go from A to B are not book-kept in the proof object p, as they would
be in traditional proofs in, say, �rst-order logic. This means that lengthy or
complex computations may result in proofs that take time to check but remain
of manageable size. The idea of computational proofs is thus to exploit this
feature by exchanging deduction against computation, aiming at proof objects
as small as possible.

As an example, in the case of primality, a very simpli�ed version of computa-
tional proofs would be to construct the function which tries to divide a natural
number n by all numbers between 2 and n − 1. If nat is the type of natural
numbers, we have

test : nat→ bool.

It is then easy to prove the following correctness �theorem�:

∀n : nat, test(n) = true→ prime(n).

Since test(1789) evaluates to true, the proposition test(1789) = true is proved
using the conversion rule and the canonical proof that true = true. A simple
combination with the theorem above yields the proof of prime(1789).

We can see that through this theorem, we obtain very small primality proofs
for any prime number. Of course, these small proofs are uncheckable for large
numbers because of the naive algorithm: test(n) needs too much time to evaluate
if n is large. However, following the same idea, we can now build on the tremen-
dous e�ort made to provide e�cient primality checks and import this technology
into type theory. Schematically, we only have to provide a cleverer (i.e. faster)
version of test.

Safe computations vs. fast computations

The programming language embedded in type theory bears some restrictions
since it is primarily meant to be the base of a well-understood logical formalism.

As such, it discards imperative features like mutable variables or arrays. Having
to check primality of large numbers with a form of �toy programming language�
may look like arbitrary self-restraint. On the other hand, there is a line to draw
to decide what computations are safe enough to be considered part of the proof,
and which ones lie outside the formal system.

Things are not too bad yet, since the recent versions of Coq bene�t from a
much faster execution mechanism which uses technology from the programming
language world: programs are compiled on-the-�y to a state-of-the-art byte-code.
This way to proceed can, we hope, be considered to be a reasonable trade-o�
between e�ciency and safety. With respect to previous execution mechanism
using interpreters, one can observe a gain in speed by a factor of 40 and when
we write these lines, Coq can probably execute programs much faster than most
other comparable proof-systems. Indeed, this work arose largely as an attempt
to explore the new possibilities opened by this fast computations in proofs.

Autarkic computation vs. certi�cates

Once one accepts the dichotomy between fast but unsafe computations outside of
the proof-checker and slower computations which are part of the proof-checking
process, one has to choose between two possibilities. A �rst one is to perform
all computations inside the system, in an autarkic way [3]; this is what happens
with the trivial algorithm mentioned above. Another one, is to remark it is easier
to �nd a way out of a labyrinth, when some outside source provides one with an
Ariadne's thread (a red line) leading to the exit. In other words, a possibility is
to perform some computations outside the system by some dedicated software
and then pass-on a trace (the red line) of this computation to the proof-checker.
This trace gives some information on how computations should be performed
and is thus a part of the resulting proof-object. This approach is called skepti-
cal computations by Barendregt and was pioneered by Harrison and Théry [8],
although in a very di�erent context.

This work is typical for the skeptical computational approach. The idea of
building a proof using a Pocklington certi�cate computed by outside means was
�rst used by Caprotti and Oostdijk [6] whose work was the starting base for our
e�ort.

2 Pocklington Certi�cates

2.1 The theorem

Pocklington's theorem [10] dates back to 1914 and provides a su�cient condition
for primality of natural numbers:

Theorem 1. Given a natural numbers n > 1 and a witness a and some pairs
(p1, α1), . . . , (pk, αk), it is su�cient for n to be prime that the following condi-
tions hold:

p1 . . . pk are prime numbers (0)

(pα1
1 . . . pαk

k) | (n− 1) (1)

an−1 = 1(mod n) (2)

∀i ∈ {1, . . . , k} gcd(a
n−1
pi − 1, n) = 1 (3)

pα1
1 . . . pαk

k >
√
n. (4)

It is worth mentioning, that there is no precisely stated theorem in Pocklington's
work. Therefore, the literature often mentions slightly less powerful variants of
the previous statement under the same denomination. There are three simple
but central observations to make:

- The �rst one is that, given n, it requires much more computation power to de-
termine suitable numbers a, p1, α1, . . . , qk, αk than to check that these num-
bers verify the conditions 1-4 above. Thus, one says that a, p1, α1 . . . , pk, αk

form a Pocklington certi�cate. Caprotti and Oostdijk rightly concluded that
this was a typical case for the skeptical approach: the certi�cate is con-
structed by some outside software and only its veri�cation is done inside the
proof system.

- The second observation is that for a natural number n, provided we are given
p1, . . . , pk and a, checking primality of n boils down to:
1. veri�cation of conditions 1-4 which are purely done by numerical com-

putations,
2. veri�cation of condition 0 which can be done recursively.

- The last observation is that Theorem 1 is the only theorem that needs to be
formalized in the prover to insure the correctness of the veri�cation of the
certi�cate, but we also use implicitly its converse: if a number n is prime
it is always possible to �nd a certi�cate. Given a su�ciently large partial
decomposition of n − 1, a generator of the multiplicative group Z/nZ is a
valid candidate for a. Such a generator exists because n is prime so Z/nZ is
cyclic.

Theorem 1 was the one used by Caprotti and Oostdijk in their experiment
described in [6]. Condition 4 indicates that in order to generate a certi�cate one
needs to be able to partially factorize n− 1 at least till its square root. For our
experiment we are using an improved version proposed by Brillhart, Lehmer and
Selfridge in [4]. With this new version, we only need to partially factorize till the
cube root. As factorizing n−1 is the time-consuming part of �nding a certi�cate,
this is a considerable improvement. The theorem that we have formalized in Coq
is the following:

Theorem 2. Given a number n, a witness a and some pairs (p1, α1), . . . , (pk, αk)
where all the pi are prime numbers, let

F1 = pα1
1 . . . pαk

k
R1 = (n− 1)/F1

s = R1/(2F1)
r = R1mod (2F1)

it is su�cient for n to be prime that the following conditions hold:

F1 is even, R1 is odd, and F1R1 = n− 1 (5)

(F1 + 1)(2F 2
1 + (r − 1)F1 + 1) > n (6)

an−1 = 1(mod n) (7)

∀i ∈ {1, . . . , k} gcd(a
n−1
pi − 1, n) = 1 (8)

r2 − 8s is not a square or s = 0 (9)

The remarks we made about Theorem 1 remain valid for Theorem 2. The ex-
istence of a certi�cate is not direct from Theorem 2 but derives from the exact
theorem given in [4] which is a stronger statement:

If conditions 5-8 hold then n is prime i� condition 9 holds.

2.2 The certi�cates

A certi�cate is not composed of the a,p1, α1, . . . , pk, αk alone. In order to be
self-contained, it needs also to contain certi�cates for the pi's and the factors
occurring in these new certi�cates. This leads to a recursive notion of Pocklington
certi�cate whose veri�cation consists entirely of computations.

This straightforwardly translates to the following recursive de�nition. A cer-
ti�cate for a single number n is given by the tuple c = {n, a, [cα1

1 ; . . . ; cαk

k]}
where c1, . . . , ck are certi�cates for the prime numbers p1, . . . , pk. This means
certi�cates can be understood as trees whose branches are themselves certi�-
cates corresponding to the prime divisors.

Such structures are easily handled in Coq as an inductive type. A certi�cate
is either:

� such tuples: c = {n, a, [cα1
1 ; . . . ; cαk

k]}3
� a pair (n, ψ) composed by a number n and a proof ψ that this number is
prime.

The second case is added in order to allow primality proofs which do not rely
on Pocklington's theorem. This is useful for 2 (which cannot be proved prime
using Pocklington's theorem) but also for using other methods which may be
more e�cient than Pocklington for some numbers.

Using this representation, a possible certi�cate4 for 127 is:

{127, 3, [{7, 2, [{3, 2, [(2, prime2)]}; (2, prime2)]};
{3, 2, [(2, prime2)]};
(2, prime2)]}

3 In the following, to shorten certi�cate we write ci instead of c1
i .

4 This certi�cate is just an illustration for our purpose, the certi�cate we automatically
generate for 127 is much more concise: {127, 3, [{3, 2, [(2, prime2)]}; (2, prime2)]}.

where prime2 is a proof that 2 is prime. One can remark that this kind of repre-
sentation duplicates some certi�cates (here 3 and 2). So, the veri�cation routine
will verify many times these certi�cates. It order to share certi�cates, we drop
trees by �attening them to lists. In this case this yields:

[{127, 3, [7; 3; 2]}; {7, 2, [3; 2]}; {3, 2, [2]}; (2, prime2)].

We have replaced recursive certi�cates by their corresponding prime number in
decompositions. These certi�cates appear in the tail of the list. Note that doing
so, the certi�cates for 2 and 3 now appear only once.

This translates straightforwardly into the following Coq de�nitions:

Definition dec_prime := list (positive*positive).

Inductive pre_certif : Set :=

| Pock_certif : forall n a : positive, dec_prime -> pre_certif

| Proof_certif : forall n : positive, prime n -> pre_certif.

Definition certificate := list pre_certif.

First, we introduce the notion of partial factorization which is a list of prime
numbers and their exponent (dec_prime). Second, we de�ne the notion of pre-
certi�cates which are either a pair of a prime number n and its primality proof
(Proof_certif), or a tuple of a prime number n, a witness a and a list of numbers
representing a partial factorization of the predecessor of n (Pock_certif). This
case is not self contained, since it does not contain the primality proofs of the
numbers in the partial factorization. This is why we call it pre-certi�cate.

A complete certi�cate is a list of pre-certi�cates. The head of the list is
generally a triple (Pock_certif n a d), the tail contains pre-certi�cates for
numbers appearing in the factorization list d of the �rst one (and recursively).

3 Checking certi�cates

Since this last de�nition is basically a free structure, the existence of an object
of type certificate does not yet allow to state anything about primality. We
focus on the function C which veri�es the validity of a certi�cate and on the
correctness proof of this function.

Our goal is to de�ne C as a function from certi�cates to boolean, returning
true if the list implies the primality of the numbers it contains. Remark that, for
our purpose, the completeness of the function C is not required; the correctness
lemma we want to prove is:

Pock_refl : ∀c, l, C (c :: l) = true⇒ prime (n c)

where (n c) is the prime number contained in the pre-certi�cate c. In fact, we
prove a more general lemma:

∀l, C l = true⇒ ∀c ∈ l, prime (n c)

The function C is de�ned recursively over the list l. If the list l is empty, the
function returns true. If the list is not empty (l = c :: l′), the function performs
a recursive call over l′, this implies the validity of all the pre-certi�cates in l′

and so the primality of their associated numbers. Then the function veri�es the
validity of the pre-certi�cate c, there are two cases:

� If c is given by its proof form c = (n, ψ), in that case there is nothing to do
(the type checking of Coq ensures that ψ is a valid primality proof for n).

� If c is a Pocklington pre-certi�cate c = {n, a, [pα1
1 ; . . . ; pαk

k]}. The function
�rst veri�es that all the divisors p1, . . . , pk have a corresponding pre-certi-
�cate in the list l′ (this implies that all the divisors are prime). If this is the
case, the function checks that the pre-certi�cate veri�es conditions 5-9; this
is done by another function Cc.

Checking the computational conditions

The function Cc starts by computing the numbers F1, R1, s, r as de�ned in
theorem 2. Verifying conditions 5 and 6 is then straightforward. For conditions

7 and 8 the di�culty is to e�ciently compute an−1 mod n and gcd(a
n−1
pi − 1, n)

for i = 1 . . . k. It is important not to compute an−1 and a
n−1
pi , which can be

huge. We do this by always working modulo n since gcd(b, n) = gcd(b mod n, n).
Furthermore, we can compute only one gcd using the fact that gcd(b1 . . . bl, n) =
1 i� for all i = 1 . . . l, gcd(bi, n) = 1.

We de�ne the following functions working modulo n:

� a predecessor function (Npred_mod);
� a multiplication function (times_mod);
� a power function (Npow_mod) (using the repeated square-and-multiply algo-

rithm);
� a multi-power function (fold_pow_mod) that given a, l = [q1; . . . ; qr] and n
computes aq1...qr mod n.

Another optimization is to share parts of the computations of

a
n−1
p1 mod n, . . . , a

n−1
pk mod n, an−1 mod n.

Letm = (n−1)/(p1 . . . pk), if we perform these computations separately, am mod n
is computed k + 1 times, (ammod n)p1 mod n is computed k times, and so on.

To share computation we de�ne the following function:

Fixpoint all_pow_mod (P A : N) (l:list positive) (n:positive)

{struct l}: N*N :=

match l with

| nil => (P,A)

| p :: l =>

let m := Npred_mod (fold_pow_mod A l n) n in

all_pow_mod (times_mod P m n) (Npow_mod A p n) l n

end.

If P and A are positive numbers less than n and l the list [q1; . . . ; qr], the function
all_pow_mod returns the pair:

(P
∏

1≤i≤r

A
q1...qr

qi mod n,Aq1...qr mod n)

Remark that the application of this function to P = 1, A = am mod n and
l = [p1; . . . ; pk] leads to the numbers we need to compute. Note that the order
of the list l is important for e�ciency. Ap1 is computed only once, but power of
elements in the tail of the list are computed more than once. So, the function is
more e�cient if l in sorted in decreasing order.

Finally, the function Cc checks the condition 9 (s = 0 ∨ r2 − 8s is not a
square). If s 6= 0 and r2 − 8s ≥ 0 it should check that r2 − 8s is not a square.
To do so, we slightly adapt the de�nition of pre-certi�cates by adding the low
integer square root5 sqrt, and we only verify that

sqrt2 < r2 − 8s < (sqrt + 1)2

To sum up the extended inductive type for pre-certi�cate is

Inductive pre_certif : Set :=

| Pock_certif : forall n a sqrt: positive, dec_prime -> pre_certif

| Proof_certif : forall n : positive, prime n -> pre_certif.

De�ning arithmetic operations in Coq

The programming language of Coq is functional. Datatypes can be de�ned using
inductive types. One can then write recursive functions over datatypes using
structural recursion only. This restriction and the type system ensure the strong
normalization of the language from which the logical soundness of the system is
derived.

When doing computational proofs, each time we de�ne a function we also
need to prove formally its correctness. This means that most of the time we
have to do a compromise between the e�ciency of the function, the di�culty of
writing it in a structural recursive functional language and the cost of proving
its correctness.

For verifying Pocklington certi�cate, we need basic integer operations. In-
stead of starting from scratch, we have decided to use the standard library of
Coq for integer arithmetic. In this library, positive numbers are represented by
a list of bits as follows:

Inductive positive : Set :=

| xH : positive

| xO : positive -> positive

| xI : positive -> positive.

5 In the case where r2 − 8s < 0 we put a dummy number 1, since r2 − 8s is trivially
not a square.

xH represents 1, xO x represents 2x, xI x represents 2x+1. So 6 is represented by
(xO (xI xH)). All the operations are purely functional (i.e. no machine arith-
metic and no side e�ect). This means that every time an operation returns a
number, this number has to be allocated. In our application, allocating and
garbage collecting are particularly time consuming.

To minimize allocation we had to re-implement some operations. For ex-
ample, in the standard library the remainder function is de�ned as the second
component of the euclidean division. This means that computing a remainder
also allocates for the quotient. We provide a more direct implementation. Also
we have implemented a special function for squaring numbers.

4 Building certi�cates

The goal of this section is to explain how to build certi�cates for large prime
numbers. The main di�culty is to compute a partial factorization of the prede-
cessor of the prime n we want to prove.

As said above, this factorization is naturally done relying on tools outside
of the proof system. The software building the certi�cate thus plays the role of
an oracle whose prediction is however carefully veri�ed. We built this software
as a C program based on the ECM library [1] and the GMP library [2]. Given
a number n, the program generates Coq �les whose lemmas have the following
form:

Lemma prime_n : prime n.

Proof.

apply (Pock_refl (Pock_certif n a d sqrt) l).

exact_no_check (refl_equal true).

Qed.

where a is the witness of the Pocklington theorem, d a partial factorization of
n−1, sqrt the square root of r2−8s (if r2−8s is positive otherwise 1) and l is the
list of pre-certi�cates proving that all numbers in the factorization are prime.
The proof starts by an application of the re�exive theorem Pock_re�. At proof-
checking time, the system checks that C((n, a, d, sqrt) :: l) = true or, to be more
precise, that this proposition is convertible with the proposition true = true.
Indeed, re�_equal true simply stands for the canonical proof of true = true.

This last step is really the re�exive part of the proof, where deduction is
replaced by computation. As we can see, the computation step does not appear
in the proof which allows to build very small proofs. In our case, the size of the
proof is mainly the size of the certi�cate (n, a, d, sqrt) :: l.

A technical detail for Coq users: during the construction of the proof, we ask
the system not yet to check that C((n, a, d, sqrt) :: l) = true is convertible with
true = true. This is done only once at the validation step (Qed). The ability of
the proof checker to compute C((n, a, d, sqrt) :: l) is crucial, for the veri�cation
time.

4.1 Generating certi�cates for arbitrary numbers

The di�cult task for the oracle is to obtain the partial factorization and to �nd
the witness. The basic options of the oracle are the following:

pocklington [-v] [-o �lename] [prime | -next num]

pocklington is the oracle that generates a certi�cate for the prime number
prime or the next prime number following the number num. The -v option is for
verbose mode, -o allows to chose the name of the output �le, if none is given a
default name is created depending of the prime number.

The oracle �rst checks that the number n has a large probability to be prime,
and then tries to �nd a pseudo decomposition of its predecessor. To compute
this decomposition it �rst tries to get all the small factors of n using trivial
divisions by 2, 3, 5 and 7 and then by all the numbers greater than 7 that are
not a multiples of 2, 3, 5 and 7. The division limit is the maximum of one million
and log2(n)2. Then, if the pseudo decomposition obtained so far is still less than
the cubic root of n, the oracle tries to �nd larger factors using the ECM library.

The ECM library proposes three methods to �nd factors: (p-1, p+1 and ecm).
We have developed a simple heuristic that successively calls the three methods
to �nd, �rst, factors of less that 20 digits, then, less that 25 digits and so on
up to factors less than 65 digits. This process is not deterministic and not ex-
haustive. The iteration terminates as soon as we get a su�ciently large partial
decomposition. So, we can miss some factors and we are not sure that the process
terminates in a reasonable time.

When a partial decomposition has been found, the oracle tries to �nd the
witness a for the Pocklington criteria by testing 2, 3, 4 and so on. Finally it calls
itself recursively on the numbers in the decomposition for which no certi�cate
has yet been generated.

In order to share computations, the certi�cates for the �rst 5000 primes
(form 2 to 48611) are provided at the start in a separated �le BasePrimes.v.
Thus certi�cates for prime numbers less than 48611 are not regenerated.

Using this technique, the oracle is able to generate certi�cates for most of the
prime numbers containing less that 100 digits (in base 10), and for some larger
primes.

4.2 Generating certi�cates for Mersenne numbers

Mersenne numbers are those of the form 2n − 1. Not all of them are prime. The
�rst ones are for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127. Until now only
43 are known to be prime and it is still open whether there are in�nitely many
or not. Currently, the last one has been found by Curtis Cooper and Steven
R. Boone on December 15, 2005. 230402457 − 1 is the new largest known prime
number and has 9152052 digits!

The �rst striking remark is that such a number is written 1111 . . . 1111 in
base 2. The second is that the decomposition of its predecessor always contains

2, since (2n−1)−1 = 2(2n−1−1). So, �nding a decomposition of its predecessor
is equivalent to �nding a decomposition of 2n−1 − 1.

Here we can use some very simple arithmetical properties to start the de-
composition:

• 22p − 1 = (2p − 1)(2p + 1)
• 23p − 1 = (2p − 1)(22p + 2p + 1)

The oracle uses those tricks recursively to start the decomposition of the
predecessor of Mersenne number, this allows to considerably reduce the size of
the numbers to factorize. Since 2n − 1 can be prime only if n is odd, we know
n − 1 is even and the �rst remark always applies. When we reach the point
where these two remarks do not apply any more, the oracle uses the method for
arbitrary numbers to factorize the resulting numbers as described above.

The syntax to compute the certi�cate for the Mersenne number 2n− 1 is the
following: pocklington -mersenne n. This technique allows to build certi�cates
for the 15 �rsts Mersenne numbers, the largest one is for n = 1279 and has 386
digits.

When n grows further the resulting numbers are too big for their factoriza-
tions to be computed. So we have added a new entry to the oracle that takes as
argument a �le containing a prime number and a partial decomposition of its
predecessor. The syntax is the following: pocklington -dec �le.

We can use the trick described below and the tables [5] to build the �le. These
tables contain most of the factorizations of bn ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12
and n a high power (for b = 2, n should be less than 1200). Those tables are
available directly on the Web6. Using these techniques we have been able to
compute a certi�cate for 16th (n = 2203) and the 17th (n = 2281) Mersenne
numbers.

4.3 Going to the limit

Some similar problems appears for the 18th Mersenne number (n = 3217): using
the table we are able to compute the complete factorization of

21608 − 1 = (2804 − 1)(2804 + 1)

but we are not able to �nd a certi�cate for one of the prime divisors, which is a
number of only 90 digits.

To solve this, our idea is to �nd some prime divisors of 21608+1 big enough to
replace the prime divisor of 90 digits in the pseudo decomposition. The problem
is that 21608 + 1 is not in the table. To factorize 21608 + 1 we used a well known
property of cyclotomic polynomial7:

xn + 1 = (x2n − 1)/(xn − 1) =
∏
d|2n

Φd(x)/
∏
d|n

Φd(x)

6 http://homes.cerias.purdue.edu/ ssw/cun/prime.php
7 a complete explanation can be found in [9]

where Φd(x) is the cyclotomic polynomial, given by:

Φd(x) =
∏
δ|d

(xδ − 1)µ(d/δ)

where µ is the Möbius function [9].

Setting 2n = 2tm with m odd, leads to:

xn + 1 =
∏
d|m

Φ2td(x)

where all the Φ2td(x) are divisors of xn + 1 that we can factorize.

Using this trick we have been able to compute enough prime divisors of 21608+
1 to replace the 90 digits prime divisors of 21608− 1, and to build certi�cates for
all its prime divisors. Finally this allowed us to build a certi�cate for the 18th
Mersenne number which yields 969 digits. This number was �rst proved prime
by Riesel in 1957.

Note that Pocklington certi�cate is known not to be the most e�cient way
to verify the primality of Mersenne numbers. Lucas test gives a much simpler
criterion since it does not require any factorization:

Theorem 3. Let (Sn) be recursively de�ned by S0 = 4 and Sn+1 = S2
n − 2, for

n > 2, 2n − 1 is prime if and only if (2n − 1)|Sn−2.

We have also formalized this theorem in our prover to compare the running time
of this test with our generated Pocklington certi�cates for Mersenne numbers.

To do so we add a new entry Lucas_certif in our inductive type:

Inductive pre_certif : Set :=

| Pock_certif : forall n a : positive, dec_prime -> pre_certif

| Proof_certif : forall n : positive, prime n -> pre_certif

| Lucas_certif : forall n p : positive, pre_certif.

where n should be 2p − 1.
To generate certi�cates for Mersenne numbers using Lucas test, we add a

new entry to the oracle: pocklington -lucas p.

4.4 Generating certi�cate for Proth numbers

A more friendly set of prime numbers for Pocklington certi�cate are the Proth
numbers. They are numbers of form k2p + 1, where k is odd.

Providing that k is su�ciently small with respect to 2p, the partial decompo-
sition reduces to 2p. So the generation of the corresponding certi�cate is trivial.

To generate Pocklington certi�cates for Proth number we add a new entry
to the oracle: pocklington -proth k p.

5 Performances

All the certi�cates described in the section above have been checked in Coq. The
software and formal material are available at the following location:

http://www-sop.inria.fr/everest/Benjamin.Gregoire/primnumber.html

Certi�cates are generated by the pocklington program that is composed of 1721
lines of C code. They are then checked in Coq using our library that consists
of 6653 lines of proof script. We provide some performance �gures for the cvs
version 8.0 of Coq with processor Intel Pentium 4 (3.60 GHz) and a RAM of
1Gb. Of course, this version of Coq uses the compilation scheme described in [7].

from - to build size verify

2 - 5000 0.15s 989K 35.85s
5001 - 10000 0.17s 1012K 42.59s
10001 - 20000 0.38s 2.1M 134.14s
20001 - 30000 0.38s 2.1M 138.30s
30001 - 40000 0.38s 2.1M 145.81s
40001 - 50000 0.38s 2.2M 153.65s
50001 - 60000 0.41s 2.2M 153.57s
60001 - 70000 0.43s 2.2M 158.13s
70001 - 80000 0.39s 2.2M 160.07s
80001 - 90000 0.40s 2.2M 162.58s
90001 - 100000 0.44s 2.2M 162.03s

Fig. 1. Time to verify the �rst 100000 prime numbers

Figure 1 gives the time to build the certi�cates for the 100000 �rst primes,
the size of the certi�cate and the time for the Coq system to check them. On
average, generating certi�cates for a small prime number takes about 3.10−5

seconds, their sizes are 215 bytes average, and it takes about 0.0144 seconds to
verify.

size time

prime digits deduc. re�. deduc. re�. re�. + VM

1234567891 10 94K 0.453K 3.98s 1.50s 0.50s
74747474747474747 17 145K 0.502K 9.87s 7.02s 0.56s
1111111111111111111 19 223K 0.664K 17.41s 16.67s 0.66s
(2148 + 1)/17 44 1.2M 0.798K 350.63s 338.12s 2.77s
P200 200 _ 2.014K _ _ 190.98s

Fig. 2. Comparison with the non recursive method

Figure 2 makes a comparison between the deductive approach (the one de-
veloped by Oostdijk and Caprotti) and our re�exive one, using curious primes.
The 44 digits prime number (2148+1)/17 is the biggest one proved in Coq before
our work.

As expected, the re�exive method considerably reduces the size of the proof,
as showed by the size column of the table. For the prime number (2148 + 1)/17,
the size is reduced by a factor 1500. The reduction of the proof size is natural
since explicit deduction is replaced by implicit computation.

The three last columns compare the veri�cation time for the di�erent ap-
proaches. Without the use of the virtual machine, the re�exive approach is a
little bit faster, but the times are comparable. If we verify the proof with the
version of Coq using a virtual machine to perform the conversion test (here to
compute the result of the C function), we can observe a gain of a factor 9 for
small examples to more than 120 for the biggest ones. This means that the com-
bination of computational re�exion with the virtual machine allows small proofs
that are quickly veri�ed.

Note that when verifying a re�exive proof the time consuming task is the
reduction of decision procedure. It is precisely the reduction that the virtual
machine improves. This explains why we get such a speed up. Using virtual
machine for checking deductive proofs usually does not provide any speed up
since these proofs do not use much reduction.

Using the re�exive approach, we have been able to prove a new random prime
number of 200 digits:

P200 = 67948478220220424719000081242787129583354660769625
17084497493695001130855677194964257537365035439814
34650243928089694516285823439004920100845398699127
45843498592112547013115888293377700659260273705507

in 191 seconds and the proof size is 2K. In practice, it is di�cult to �nd factors
of more than 35 digits. Most numbers with less than 100 digits contain su�cient
factors of less than 20 digits, so ECM �nds them rapidly. For larger numbers,
being able to generate a certi�cate for N is a question of luck, N − 1 must be
smooth (i.e. it contains a lot of small factors). This is the case for P200.

Figure 3 gives the time to verify the certi�cates of the 18th �rst Mersenne
numbers (using a Pocklington certi�cate), except for the 7th �rst which are part
of the �rst 100000 primes. The biggest one is a 969 digit number. We have not
been able to generate certi�cates for numbers greater than the 18th. For the
19th Mersenne number, we have not been able to �nd a su�ciently large partial
factorization of its predecessor. For the 20th, we have such a factorization (using
the table of aurifeuillian polynomial from [5]), but we are not able to recursively
generate the certi�cates for two of its factors.

For Mersenne numbers, we can do better than using a Pocklington certi�cate
using Lucas test. The last column gives the time to verify in Coq the 20 �rst
Mersenne number using this test. As far as we know, the 20th Mersenne number
is the biggest prime number that has been formally proved in a proof assistant.

n digits years discoverer certi�cate time time(Lucas)

8 31 10 1772 Euler 0.527K 0.51s 0.01s
9 61 19 1883 Pervushin 0.648K 0.66s 0.08s
10 89 27 1911 Powers 0.687K 0.94s 0.25s
11 107 33 1914 Powers 0.681K 1.14s 0.44s
12 127 39 1876 Lucas 0.775K 2.03s 0.73s
13 521 157 1952 Robinson 2.131K 178.00s 53.00s
14 607 183 1952 Robinson 1.818K 112.00s 84.00s
15 1279 386 1952 Robinson 3.427K 2204.00s 827.00s
16 2203 664 1952 Robinson 5.274K 11983.00s 4421.00s
17 2281 687 1952 Robinson 5.995K 44357.00s 4964.00s
18 3217 969 1957 Riesel 7.766K 94344.00s 14680.00s
19 4253 1281 1961 Hurwitz _ _ 35198.00s
20 4423 1332 1961 Hurwitz _ _ 39766.00s

Fig. 3. Time to verify Mersenne numbers

For all these benchmarks, we have to keep in mind that Coq uses its own arith-
metic: numbers are encoding by a inductive type, i.e. a chained list of booleans.
No native machine arithmetic is used. This means that the computations which
are done to check certi�cates are more similar to symbolic computation than
to numerical computation. For example, when dealing with the 20th Mersenne
number, a 4422 digits number in base 2 (1332 in base 10), we manipulate list of
4423 elements. The fact that we are capable to perform such a symbolic com-
putation clearly indicates that the introduction of the virtual machine in Coq is
an e�ective gain in computing power.

6 Conclusion

Proofs are what ensures the correctness of computations, but many results of
mathematics or computer science can only be established through computations.
It does even seem likely that the proportion of computationally obtained results
will grow in the future. But the more intricated computation and deduction be-
come, the more di�cult it is to have a global overview of the resulting construc-
tion; this raises a serious question regarding the reliability of the �nal statement.
This issue is important, especially when considering that important mathemat-
ical results now rely, at least partly, on computations. Famous examples are the
four color theorem or the Kepler conjecture.

The ultimate goal of works as the present one is to establish proof systems
as the place where proofs and computations interleave in a fruitful and yet safe
way. In the case of Coq, recent progress in the implementation of reduction
was a signi�cant step in reducing the overhead for doing computations inside
the proof system rather than outside. Even if progress should still be made in
that respect, it appears that what we have been able to prove, for typically

computational statements, is not ridiculous and represents a step in the right
direction.

In order to go further on the topic of formal primality proofs, two ways
should obviously be explored. A �rst one is to formalize more modern primality
proofs, as the ones relying on algebraic curves. This means translating to Coq
an interesting body of mathematics. A second direction is to pursue the work
on the system itself. Indeed, a current mechanical bottleneck is certainly the
very ine�cient representation of numbers in the proof system (basically as lists
of bits). Integrating numbers into type theory with a more primitive status,
allowing operations which could be implemented using more low-level features
of the processor and doing this in a safe way is an interesting challenge and
would be a further step in the quest of computationally e�cient proof systems.
Once this done, we can hope for a powerful system for combining deduction,
symbolic computation and numerical computation in a safe and integrated way.

Acknowledgments Thanks are due to Henk Barendregt who initially moti-
vated this work, to Paul Zimmermann for answering all our arithmetic questions
and for developing the wonderful ECM library. Finally, we want to thank our
anonymous referees for their stimulating comments.

References

1. Elliptic Curve Method Library. http://www.loria.fr/� zimmerma/records/ecmnet.html.
2. GNU Multiple Precision Arithmetic Library. http://www.swox.com/gmp/.
3. H. Barendregt and E. Barendsen. Autarkic computations in formal proofs. J.

Autom. Reasoning, 28(3):321�336, 2002.
4. J. Brillhart, D. H. Lehmer, and J. L. Selfridge. New primality criteria and factor-

izations of 2m ± 1. Mathematics of Computation, 29:620�647, 1975.
5. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagsta�,

Jr. Factorizations of bn ± 1, volume 22 of Contemporary Mathematics. American
Mathematical Society, Providence, R.I., 1983. b = 2, 3, 5, 6, 7, 10, 11, 12 up to
high powers.

6. O. Caprotti and M. Oostdijk. Formal and e�cient primality proofs by use of
computer algebra oracles. Journal of Symbolic Computation, 32(1/2):55�70, July
2001.

7. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
International Conference on Functional Programming 2002, pages 235�246. ACM
Press, 2002.

8. J. Harrison and L. Théry. A skeptic's approach to combining HOL and Maple. J.
Autom. Reasoning, 21(3):279�294, 1998.

9. S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third edition, 2002.

10. H. C. Pocklington. The determination of the prime or composite nature of large
numbers by Fermat's theorem. volume 18, pages 29�30, 1914.

