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1. INTRODUCTION

The four-colour theorem (briefly, the 4CT) asserts that every loopless
planar graph admits a vertex 4-colouring. This was conjectured by Guthrie
in 1852, and remained open until a proof was found by Appel and Haken
[3�5] in 1976.

Unfortunately, the proof by Appel and Haken (briefly, A6H) has not
been fully accepted. There has remained a certain amount of doubt about
its validity, basically for two reasons:

(i) part of the A6H proof uses a computer and cannot be verified
by hand, and

(ii) even the part of the proof that is supposed to be checked by
hand is extraordinarily complicated and tedious, and as far as we know, no
one has made a complete independent check of it.

Reason (i) may be a necessary evil, but reason (ii) is more disturbing,
particularly since the 4CT has a history of incorrect ``proofs.'' So in 1993,
mainly for our own peace of mind, we resolved to convince ourselves some-
how that the 4CT really was true. We began by trying to read the A6H
proof, but very soon gave this up. To check that the members of their
``unavoidable set'' were all reducible would require a considerable amount
of programming, and also would require us to input by hand into the com-
puter descriptions of some 1400 graphs; and this was not even the part of
their proof that was most controversial. We decided it would be easier, and
more fun, to make up our own proof, using the same general approach as
A6H. So we did; it was a year's work, but we were able to convince our-
selves that the 4CT is true and provable by this approach. In addition, our
proof turned out to be simpler than that of A6H in several respects.

The basic idea of the proof is the same as that of A6H. We exhibit a set
of ``configurations''; in our case there are 633 of them. We prove that none
of these configurations can appear in a minimal counterexample to the
4CT, because if one appeared, it could be replaced by something smaller,
to make a smaller counterexample to the 4CT (this is called proving
``reducibility''; here we are doing exactly what A6H and several other
authors did��for instance, [2, 9]). But every minimal counterexample is an
``internally 6-connected triangulation'' (defined later), and in the second
part of the proof we prove that at least one of the 633 configurations
appears in every internally 6-connected triangulation. (This is called
proving ``unavoidability,'' and uses the method of ``discharging'' vertices,
first suggested by Heesch [11]). Consequently, there is no minimal coun-
terexample, and so the 4CT is true. Where our method differs from A6H
is in how we prove unavoidability.

3THE FOUR-COLOUR THEOREM
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Some aspects of this difference are: we confirm Heesch's conjecture that
one can prove unavoidability of some reducible set without looking beyond
the second neighbourhoods of ``overcharged'' vertices; consequently, we
avoid problems with configurations that ``wrap around and meet them-
selves'' (those were a major source of complications for A6H); our
unavoidable set has size about half that of the A6H set; our ``discharging
procedure'' for proving unavoidability (derived from an elegant method of
Mayer [13]) only involves 32 discharging rules, instead of the 300+ of
A6H; and we obtain a quadratic time algorithm to find a 4-colouring of
a planar graph, instead of the quartic algorithm of A6H.

Our proof is also somewhat easier to check, because we replace the
mammoth hand-checking of unavoidability that A6H required, by another
mammoth hand-checkable proof, but this time written formally so that, if
desired, it can be read and checked by a computer in a few minutes. We
are making the necessary programs and data available to the public for
checking. (For details see the next section.)

The paper is organized as follows. Section 2 contains some preliminary
definitions and observations. In the Appendix we list the 633 configura-
tions, using conventions described in Section 2. In Section 3 we prove their
reducibility, and in Section 4 we prove unavoidability; thus, the proof of
the 4CT is complete at the end of Section 4. Section 5 is a variety of com-
ments on why we did things the way we did, and Section 6 contains a
quadratic time algorithm to 4-colour a planar graph. In Section 7 we give
more details of the ``machine-checkable proof.''

2. THE SET OF CONFIGURATIONS

Throughout the paper, let 7 be a fixed 2-sphere. If X�7, its topological
closure is denoted by X� . A line is a subset of 7 homeomorphic to the closed
unit interval, and its ends are defined in the natural way. An open disc is
a subset of 7 homeomorphic to the real plane R2 and a closed disc is a
subset of 7 homeomorphic to [(x, y) # R2 : x2+ y2�1].

A drawing G is a pair (U(G), V(G)), where U(G)�7 is closed and
V(G)�U(G) is finite, such that

(i) U(G)&V(G) has only finitely many arc-wise connected com-
ponents, called edges

(ii) for each edge e, e� is a line and e� &e consists of the two ends
of e� .

Thus, we do not permit loops. The members of V(G) are the vertices of
G, and the set of edges is denoted by E(G). An edge e is incident with a
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vertex v (and vice versa) if v is an end of e� . This defines a graph, and
we use standard graph-theoretic terminology for drawings without
further explanation. The degree of a vertex v is the number of edges
incident with it, and is denoted by d(v) or dG(v). A drawing G is a
subdrawing of a drawing H if V(G)�V(H) and E(G)�E(H). A
subdrawing G$ of G is induced if every edge of G with both ends in V(G$)
belongs to G$.

A region of G is an arc-wise connected component of 7&U(G). A region
r is incident with a vertex v (and vice versa) if v # r� ; and a region r is inci-
dent with an edge e (and vice versa) if e�r� . A region is a triangle if it is
an open disc and is incident with precisely three distinct edges that form a
circuit of G. (By definition, a circuit has no repeated vertices or edges.)
A drawing is a triangulation if every region is a triangle. Thus, a triangula-
tion can have parallel edges, but no circuit of length two bounds a
region.

A minimal counterexample means a drawing T that is not 4-colourable,
such that every drawing T $ with |V(T $)|+|E(T $)|<|V(T )|+|E(T )| is
4-colourable. To prove the 4CT we shall show that there is no minimal
counterexample. It is easy to show that every minimal counterexample is a
triangulation, is 5-connected, and is 6-connected except for vertices of
degree 5. More precisely, let us say a short circuit of a triangulation is a
circuit C with |E(C)|�5, so that for both the open discs 2 bounded by
U(C), 2 & V(T ){<, and |2 & V(T )|�2 if |E(C)|=5. Let us say T is
internally 6-connected if it has no short circuit. Then (see, for example, [7])
we have

(2.1) Every minimal counterexample is an internally 6-connected
triangulation.

At the end of (6.5) we give an algorithm which in effect constructs a
4-colouring of T from a short circuit of T and 4-colourings of all triangula-
tions smaller than T, and (2.1) is a corollary of the existence of such an
algorithm. It is easy to convert (6.5) to a proof of (2.1).

A drawing G is planar if one region of G is designated as infinite, and all
the others finite. (More exactly, a planar drawing is a pair (G, r) where G
is a drawing and r is a region of G; but this seems pedantic.) A near-
triangulation is a non-null connected planar drawing G such that every
finite region is a triangle. In figures representing planar drawings, the
outside will always represent the infinite region.

A configuration K consists of a near-triangulation G(K) and a map
#K : V(G(K)) � Z+ (Z+ denotes the non-negative integers) with the
following properties:

(i) for every vertex v, G(K)"v has at most two components, and if
there are two, then #K (v)=d(v)+2,

5THE FOUR-COLOUR THEOREM
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(ii) for every vertex v, if v is not incident with the infinite region,
then #K (v)=d(v), and otherwise #K (v)>d(v); and in either case #K (v)�5,

(iii) K has ring-size �2, where the ring-size of K is defined to be
�v (#K (v)&d(v)&1), summed over all vertices v incident with the infinite
region such that G(K)"v is connected.

Suppose we wish to describe a configuration K by a figure. One way is
to ``draw'' the drawing, and write the number #K (v) next to the point
representing the vertex v, but this is inconvenient. A better way, due to
Heesch [11], is to use a choice of ``vertex shapes'' to represent the values
of #K (v). The shapes we use are shown in Fig. 1.

We did not make any special shape for vertices v with #K (v)�11. Please
note, therefore, that in the very last configuration of the Appendix, the ver-
tex v of degree eight is supposed to satisfy #K (v)=11. Apart from this,
we shall not need to describe configurations having vertices v with
#K (v)�11.

In the Appendix we show 633 configurations, using the notation
explained in Fig. 1. They are in lexicographic order of degree sequence. To
refer to an individual configuration in this set, we use conf(x, y, z) to mean
the configuration on row y and column z of page x of the Appendix. Some
of the configurations are drawn with extra ``half-edges''; for instance,
conf(1, 1, 4) is the first. All these half-edges should be ignored for the
moment. Also, certain of the edges are drawn thicker than usual��again,
this should be ignored for the moment, and thickened edges regarded as
normal edges. (For the reader who wishes to confirm our results, this
list together with all the necessary programs can be accessed at the
URL http:��www.math.gatech.edu�tthomas�FC�ftpinfo.html in electronic
form. The same material is also available via anonymous ftp from
ftp.math.gatech.edu, in the directory pub�users�thomas�four.)

Two configurations K and L are isomorphic if there is a homeomorphism
of 7 mapping G(K) to G(L) and #K to #L . Any configuration isomorphic
to one in the Appendix is called a good configuration.

Let T be a triangulation. A configuration K appears in T if G(K) is an
induced subgraph of T, every finite region of G(K) is a region of T, and

Fig. 1. The shapes of vertices.
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#K (v)=dT (v) for every vertex v # V(G(K)). We shall prove the following
two statements.

(2.2) If T is a minimal counterexample, then no good configuration
appears in T.

(2.3) For every internally 6-connected triangulation T, some good con-
figuration appears in T.

From (2.1), (2.2), and (2.3) it follows that no minimal counterexample
exists, and so the 4CT is true. We shall prove (2.2) in Section 3, and (2.3)
in Section 4. The first proof needs a computer. The second can be checked
by hand in a few months, or, using a computer, it can be verified in a few
minutes.

Let G be a triangulation or a near-triangulation, and let } : E(G) �
[&1, 0, 1] be some function. A triangle r of G is tri-coloured (by }) if
[}(e), }( f ), }(g)]=[&1, 0, 1], where e, f, g are the three edges incident
with r. We say } is a tricolouring of G if every region is tri-coloured (if G
is a triangulation), or every finite region is tri-coloured (if G is a near-
triangulation). The reason for using &1, 0, 1 as the possible values instead
of the more natural 1, 2, 3 (say) is just that the former was what we
actually did in the computer program, and we might as well stay as close
to the program as possible.

It was observed by Tait [14] that

(2.4) A triangulation T is 4-colourable if and only if it admits a tri-
colouring.

We found tri-colourings more convenient than vertex 4-colourings to
manipulate in the computer program, although it is easy to convert one to
the other, and so in what follows we shall use tri-colourings, again in an
effort to stay as close to the program as possible.

In the proof of (2.2), we shall choose a small nonnull set of edges of T,
and contract them, producing a new drawing T $; then from the minimality
of T it follows that T $ has a vertex 4-colouring, and we convert this to a
4-colouring of T. There are some delicate issues involved in whether T $
really exists (in particular, is loopless), but also, contracting edges in a
drawing automatically produces a mass of notational difficulties (e.g. is an
edge of the drawing after contraction the same edge as the corresponding
edge in the drawing before contraction?) To avoid obscuring the serious
issues with these notational ones, it seems best to break the contraction
process into two stages, as follows.

Let G be a triangulation or a near-triangulation. A subset X�E(G) is
sparse if every region is incident with at most one edge in X, and the
infinite region (in the case of a near-triangulation) is incident with no edge
in X. If X�E(G) is sparse, a tri-colouring of G modulo X is a map

7THE FOUR-COLOUR THEOREM



File: 582B 175007 . By:CV . Date:27:03:97 . Time:13:08 LOP8M. V8.0. Page 01:01
Codes: 2719 Signs: 1862 . Length: 45 pic 0 pts, 190 mm

} : E(G)&X � [&1, 0, 1] such that for every region (except the infinite
region, in the case of a near-triangulation) incident with edges e, f, g,

(i) if e, f, g � X, then [}(e), }( f ), }(g)]=[&1, 0, 1]

(ii) if g # X, then }(e)=}( f ).

Thus, a tri-colouring is a tri-colouring modulo <.
The following will allow us to use the fact that the drawing obtained by

contracting all the edges in X is 4-colourable, without having to mention
that drawing and its attendant notational complexities.

(2.5) Let T be a minimal counterexample, and let X�E(T) be sparse.
Suppose that X{<, and there is no circuit C of T such that |E(C)&X|=1.
Then T admits a tri-colouring modulo X.

Proof. Let F be the drawing with vertex set V(T) and edge set X, and
let Z1 , ..., Zk be the vertex sets of the components of F. Let S be the graph
with vertex set [Z1 , ..., Zk] and edge set E(T)&X, in which e # E(T)&X
is incident with Zi if e� & Zi{<. Since there is no circuit C of T with
|E(C)&X|=1, it follows that S is loopless; since S is obtained from T by
contracting the edges in X, it is planar; since X{<, |V(S)|+|E(S)|<
|V(T )| + |E(T )| ; and since T is a minimal counterexample, S admits a
vertex 4-colouring. Consequently there is a map , : V(T ) � [1, 2, 3, 4] such
that

(i) for 1�i�k, ,(v) is constant for v # Zi , and

(ii) for every edge e of T with e � X, ,(u){,(v), where e has ends
u, v.

For each edge e # E(T )&X with ends u, v, define

&1 if [,(u), ,(v)]=[1, 2] or [3, 4]

}(e)={ 0 if [,(u), ,(v)]=[1, 3] or [2, 4]

1 if [,(u), ,(v)]=[1, 4] or [2, 3].

Then } is a tri-colouring of T modulo X, as we see as follows. Let r be a
region of T, incident with edges e, f, g and vertices u, v, w, where e, f, g
have ends uv, vw, uw respectively. If e, f, g � X, then ,(u), ,(v), ,(w) are all
distinct, and so [}(e), }( f ), }(g)]=[&1, 0, 1]. On the other hand, if g # X
(say), then ,(u)=,(w) and so }(e)=}( f ). K

Actually, when we apply (2.5), X will always be the edge-set of a forest
of T.

8 ROBERTSON ET AL.



File: 582B 175008 . By:CV . Date:27:03:97 . Time:13:08 LOP8M. V8.0. Page 01:01
Codes: 2704 Signs: 1869 . Length: 45 pic 0 pts, 190 mm

3. REDUCIBILITY

Let R be a circuit. An edge-colouring of R is a map } : E(R) �
[&1, 0, 1]. We wish to define what we mean by a ``consistent set'' of edge-
colourings of R, and for that we need several definitions. A match m in R
is an unordered pair [e, f ] of distinct edges of R, and a signed match in
R is a pair (m, +) where m is a match and +=\1. A signed matching in
R is a set M of signed matches, so that if ([e, f ], +), ([e$, f $], +$) # M are
distinct then

(i) [e, f ] & [e$, f $]=<, and

(ii) e, f belong to the same component of the graph obtained from R
by deleting e$ and f $.

If M is a signed matching, E(M) denotes

[e # E(R) : e # m for some (m, +) # M].

For % # [&1, 0, 1], an edge-colouring } of R is said to %-fit a matching M
in R if

(i) E(M)=[e # E(R) : }(e){%], and

(ii) for each ([e, f ], +) # M, }(e)=}( f ) if and only if +=1.

A set C of edge-colourings of R is consistent if for every } # C and every
% # [&1, 0, 1] there is a signed matching M such that } %-fits M, and C

contains every edge-colouring that %-fits M.
The significance of consistency stems from (3.1) below, which essentially

dates back to Kempe [12] and Birkhoff [7]. Let H be a near-triangula-
tion; then there is a closed walk

v0 , f1 , v1 , ..., fk , vk=v0

tracing the boundary of the infinite region, in the natural sense. (In fact,
there are several such walks, depending on the orientation and the choice
of initial vertex.) Since H may not be 2-connected, this walk may have
repeated vertices or edges. Let R be a circuit graph (not necessarily a cir-
cuit of H) of length k, with edges e1 , ..., ek in order; and for 1�i�k, define
,(ei)= fi . We say that , wraps R around H. If } is a tri-colouring of H, let
*(e)=}(,(e)) (e # E(R)); then * is an edge-colouring of R, called a lift of
} (by ,).

(3.1) Let H be a near-triangulation, and let , wrap a circuit R around H.
Let C be the set of all lifts by , of tri-colourings of H. Then C is consistent.

9THE FOUR-COLOUR THEOREM
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Proof. Let e1 , ..., ek , f1 , ..., fk be as in the definition of ``wraps.'' Let
* # C, and let % # [&1, 0, 1]. We must show that there is a signed matching
M such that * %-fits M and C contains every edge-colouring of R that %-fits
M. By permuting &1, 0, 1 we may assume that %=0.

Since * # C, * is the lift of some tri-colouring } of H. A rib is a sequence

g0 , r1 , g1 , r2 , ..., rt , gt

such that

(i) g0 , g1 , ..., gt are distinct edges of H,

(ii) r1 , r2 , ..., rt are distinct finite regions of H,

(iii) if t>0 then g0 , gt are both incident with the infinite region of H,
and if t=0 then g0 is incident with no finite region of H,

(iv) for 1�i�t, ri is incident with gi&1 and with gi , and

(v) for 0�i�t, }(gi){0.

In any rib the values of }(g0), }(g1), }(g2), ... are \1 alternately, and
}(e)=0 for every edge e not in the rib that is incident with a region in the
rib. Thus, if we reverse the signs of }(g0), ..., }(gt) we obtain a new tri-
colouring of H.

Moreover, any two ribs are disjoint (they share neither edges nor
regions); and for 1�i�k, fi belongs to a unique rib if }( fi)=\1, and to
no rib if }( fi)=0.

With each rib g0 , r1 , ..., rt , gt , we associate the signed match ([ei , ej], +),
where g0= fi , gt= fj , and +=+1 or &1 depending whether t is even or
odd, respectively (or equivalently, whether }(g0)=}(gt) or not, respec-
tively). The set of all these signed matches is a signed matching M, and *
%-fits M. Now let *$ be any edge-colouring of R that %-fits M, and define
}"( fi)=*$(ei) (1�i�k). (This is well-defined, for if fi= fj then *(ei)=*(ej)
and, hence, *$(ei)=*$(ej).) By reversing the signs of } in some of the ribs
we can construct a tri-colouring }$ of H whose restriction to [ f1 , ..., fk] is
}". Then *$ is the lift of }$, and so *$ # C as required. K

Since the null set is consistent, and the union of any two consistent sets
is consistent, it follows that any set of edge-colourings S has a unique
maximal consistent subset S$. Moreover, for |E(R)| sufficiently small, a
computer can compute S$ from a knowledge of S reasonably quickly. For
instance, with |E(R)|=14, which is the maximum we need, it normally
takes less than a minute on a Sparc 20 workstation.

Let K be a configuration. A near-triangulation S is a free completion of
K with ring R if

10 ROBERTSON ET AL.
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(i) R is an induced circuit of S, and bounds the infinite region of S
(ii) G(K) is an induced subdrawing of S, G(K)=S"V(R), every

finite region of G(K) is a finite region of S, and the infinite region of G(K)
includes U(R) and the infinite region of S, and

(iii) every vertex v of S not in V(R) has degree #K (v) in S.

For instance, the drawing in Fig. 2 is a free completion of conf(1, 3, 2).
It is easy to check that every configuration has a free completion. (This

is where we use the condition that ring-size �2 in the definition of a
configuration��the ring-size is actually the length of the ring in the free
completion, as the reader may verify.) Moreover, if S1 , S2 are two free
completions of K, there is a homeomorphism of 7 fixing G(K) pointwise
and mapping S1 to S2 . (This is where condition (i) in the definition of a
configuration is used.) Thus, there is essentially only one free completion,
and so we may speak of ``the'' free completion without serious ambiguity.

Let S be the free completion of a configuration K with ring R. Let C*
be the set of all edge-colourings of R, and let C�C* be the set of all
restrictions to E(R) of tri-colourings of S. Let C$ be the maximal consistent
subset of C*&C. The configuration K is said to be D-reducible if C$=<.
We shall see that no D-reducible configuration appears in a minimal
counterexample.

There are several other ways in the literature to prove that a configura-
tion does not appear in a minimal counterexample, but we shall not need
the more difficult ones (general C-reducibility, block-count reducibility).
The only other technique we require is a special case of C-reduction, the
following.

With notation as before, let X�E(S)&E(R). We say that X is a contract
for K if X{<, X is sparse in S, and no edge-colouring in C$ is the restric-
tion to E(R) of a tri-colouring of S modulo X.

Fig. 2. A free completion.

11THE FOUR-COLOUR THEOREM
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Subject to one other condition (we have to check that if K occurs in an
internally 6-connected triangulation T, then there is no circuit C of T with
|E(C)&X$|=1, where X$ is the set of edges of T corresponding to X), no
configuration K with a contract can appear in a minimal counterexample,
as we shall see.

As we observed before, certain of the configurations drawn in the
Appendix have extra ``half-edges''��these are meant to indicate edges of the
free completion. (Whenever we drew any half-edge incident with a vertex
v, we also drew all the other edges of the free completion incident with v,
in their natural cyclic order, to make clear which edge was which.) Also,
in the Appendix, sometimes certain edges or half-edges are drawn thicker
than usual.

By using a computer, we showed that

(3.2) For each of the 633 configurations K drawn in the Appendix, let
X be the set of edges of the free completion of K drawn thickened in the
figure. If X=<, then K is D-reducible. Otherwise, 1�|X |�4, and X is a
contract for K.

In the remainder of this section, we derive (2.2) from (3.2).
Suppose that K is a configuration that appears in a triangulation T. There

need not be any subdrawing of T that is a free completion of K, and this
presents certain problems when we try to deduce results about T from results
about the free completion. We overcome them by means of (3.3) below.

If T is a triangulation or near-triangulation, its set of regions (excluding
the infinite region, for a near-triangulation) is denoted by F(T). Let T be
a triangulation, and S a near-triangulation. A projection of S into T is a
map , with domain V(S) _ E(S) _ F(S), such that

(i) , maps V(S) into V(T ), E(S) into E(T ), and F(S) into F(T )

(ii) for distinct u, v # V(S), ,(u)=,(v) only if u, v are both incident
with the infinite region of S ; for distinct e, f # E(S), ,(e)=,( f ) only if e, f
are both incident with the infinite region of S; and for distinct
r, s # F(S), ,(r){,(s)

(iii) for x, y # V(S) _ E(S) _ F(S), if x, y are incident in S, then
,(x), ,( y) are incident in T.

(3.3) Let K be a configuration appearing in a triangulation T, and let
S be the free completion of K. Then there is a projection , of S into T such
that ,(x)=x for all x # V(G(K)) _ E(G(K)) _ F(G(K)).

This is a ``folklore'' theorem, and we omit its proof, which is straight-
forward but lengthy. A function , as in (3.3) is called a corresponding
projection.

12 ROBERTSON ET AL.
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(3.4) Let K be a configuration appearing in a triangulation T, let S be
the free completion of K, with ring R, and let , be a corresponding projection
of S into T. Let H be the planar drawing obtained from T by deleting
V(G(K)) and designating as infinite the region of H including V(G(K)).
Then H is a near-triangulation, and the restriction of , to E(R) wraps R
around H.

This is another straightforward result, and so again we omit the proof.
If G is a planar drawing, v # V(G) and e # E(G), we say that e faces v if e
is not incident with v and there is a finite triangle of G incident with both
e and v. If S is a free completion of a configuration K, and X�E(S) is
sparse in S with |X |=4, a vertex v of S is a triad for X if

(i) v # V(G(K)),

(ii) there are at least three vertices of S that are adjacent to v and
incident with a member of X, and

(iii) if #K (v)=5, then not every member of X faces v.

(3.5) Let K be a configuration appearing in a triangulation T, let S be
the free completion of K, and let , be a corresponding projection of S into
T. Let X�E(S) be sparse in S with |X |�4, such that if |X |=4 there is a
triad for X. If there is a circuit C of T with |E(C)&,(X )|�1, then there is
a short circuit in T.

Proof. Let X$=,(X ) & E(C). Since X is sparse in S, no edge of X is
incident with the infinite region of S, and consequently every edge in X is
incident with two distinct finite regions of S. By (3.3), it follows that every
region of T incident with an edge in X$ is equal to ,(r) for some finite
region r of S; and hence, X$ is sparse in T. Now |E(C)|�|X |+1�5, and
we may assume that C is not a short circuit of T, and so there is an open
disc 2�7 bounded by C, with |2 & V(T)|�1, and with 2 & V(T )=< if
|E(C)|�4. But every edge of X$ is incident with a triangle of T included
in 2, and all these triangles are distinct since X$ is sparse in T. Conse-
quently, 2 includes at least |X$|�|E(C)|&1 triangles of T. If |E(C)|�4,
then this is impossible since 2 & V(T )=<; and so |E(C)|=5, |X |=4,
there is a unique vertex t of T in 2, dT(t)=5, and every edge of C faces
t in T.

Since |X |=4, there is a triad v # V(S) for X, by hypothesis. Either
dK (v)�6 or some edge in X does not face v in S since v is a triad, and it
follows in either case that v=,(v){t. Since v=,(v) has at least three dis-
tinct neighbours in C, and every vertex of C is adjacent to t, it follows that
T has a short circuit, as required. K

13THE FOUR-COLOUR THEOREM
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Next we need

(3.6) Let K be one of the configurations shown in the Appendix, let S
be its free completion, and let X be the set of edges of S thickened in the
figure. If |X |=4, there is a triad for X.

To prove this, the reader should examine individually all the configura-
tions in the Appendix. For most of them, |X |�3, so the task is not as
difficult as it might seem.

(There is a subtle problem here. When we use a computer to check the
correctness of (3.2) and later (4.9), the computer reads 633 configurations
from a file, not directly from the Appendix. How can we be sure that the
contents of the file matches what is drawn in the Appendix? Does the
reader also have to check this somehow? One way to avoid that extra
burden on the reader is to redefine ``good configuration'' to be one of the
configurations in the file, rather than one in the Appendix, and to regard
the Appendix just as an illustration. Then if for some reason there is a dis-
crepancy between the two lists, our proof is still valid. But then the proof
of (3.6) is suspect, because to prove it by hand we use the Appendix. To
resolve this, we include in the programs a check that the configurations in
the computer file satisfy (3.6).)

Now we prove (2.2), which we restate.

(3.7) If T is a minimal counterexample, then no good configuration
appears in T.

Proof. Suppose that K is a good configuration that appears in T. Let
S be the free completion of K, with ring R, and let , be a corresponding
projection of S into T. Let X be the set of edges of S corresponding to
those thickened in the Appendix. Let H be obtained as in (3.4), and let �
be the restriction of , to E(R).

By (3.4) H is a near-triangulation and � wraps R around H. Let C* be
the set of all edge-colourings of R, and let C1 �C* be the set of all lifts of
tri-colourings of H via �. By (3.1), C1 is consistent. Let C2 �C* be the set
of all restrictions to E(R) of tri-colourings of S. Since T admits no tri-
colouring by (2.4), it follows easily that C1 & C2=<. Let C3 be the maxi-
mal consistent subset of C*&C2 . Since C1 is consistent and C1 & C2=<,
it follows that C1 �C3 .

It is possible to complete H to a triangulation T $ by adding edges, and
since T is a minimal counterexample it follows that T $, and hence H,
admits a tri-colouring. Consequently C1 {<, and so C3 {<, and K is not
D-reducible. By (3.2), 1�|X |�4 and X is a contract for K. Now X is
sparse in S, and by (2.1) T has no short circuit, and so by (3.6) and (3.5)
there is no circuit C of T with |E(C)&,(X )|=1. Hence by (2.5) T admits

14 ROBERTSON ET AL.
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a tri-colouring modulo ,(X ), } say. The restriction of } to E(H) is a tri-
colouring of H, since ,(X ) & E(H)=<; and so its lift, * say, via � belongs
to C1 and hence to C3 . But for e # E(S), let }$(e)=}(,(e)); then }$ is a tri-
colouring of S modulo X, and * is its restriction to R. This contradicts that
X is a contract for S, and the result follows. K

4. UNAVOIDABILITY

In this section we prove (2.3). A cartwheel is a configuration W such that
there is a vertex w and two circuits C1 , C2 of G(W ) with the following
properties:

(i) [w], V(C1), V(C2) are pairwise disjoint and have union
V(G(W ))

(ii) C1 and C2 are both induced subgraphs of G(W ), and U(C2)
bounds the infinite region of G(W )

(iii) w is adjacent to all vertices of C1 and to no vertices of C2 .

It follows that the edges of G(W ) are of four kinds: edges of C1 , edges
of C2 , edges between w and V(C1), and edges between V(C1) and V(C2).
We call w the hub of the cartwheel. See Fig. 3.

To avoid confusion, let us stress that Fig. 3 is a picture of W, not of the
free completion of W ; the free completion would have three concentric
circuits around w.

Fig. 3. A cartwheel.
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We need the following result of Birkhoff [7].

(4.1) Let v be a vertex of an internally 6-connected triangulation T.
There is a unique cartwheel appearing in T with hub v.

Let W be a cartwheel. A configuration K appears in W if G(K) is an
induced subdrawing of G(W ), every finite region of K is a finite region of
W (and hence the infinite region of K includes the infinite region of W ),
and #K (v)=#W (v) for every v # V(G(K)).

A path Q in a drawing G is a nonnull connected subdrawing with no cir-
cuits in which every vertex has degree �2. Its length is |E(Q)|. (Thus, we
permit paths of length 0, but we insist that paths have no repeated vertices
or edges). It is a u, v-path if u, v # V(Q) and u, v are the vertices of Q of
degree <2.

A pass P is a quadruple (K, r, s, t), where

(i) K is a configuration,

(ii) r is a positive integer,

(iii) s and t are distinct adjacent vertices of G(K), and

(iv) for each v # V(G(K)) there is an s, v-path and a t, v-path in G(K),
both of length �2.

We write r(P)=r, s(P)=s, t(P)=t, and K(P)=K. We call r the value
of the pass, s its source, and t its sink.

A pass P appears in a triangulation T if K(P) appears in T. A pass P
appears in a cartwheel W if K(P) appears in W. Isomorphism for passes is
defined in the natural way.

Let P be a set of passes. We write PtP to denote that P is a pass
isomorphic to a member of P. If W is a cartwheel, we define NP(W ) to be

10(6&#W (w))+: (r(P) : PtP, P appears in W, t(P)=w)

&: (r(P) : PtP, P appears in W, s(P)=w),

where w is the hub of W.

(4.2) Let T be an internally 6-connected triangulation, and let P be a
set of passes. Then the sum of NP(W ), over all cartwheels W appearing in
T, equals 120.

Proof. For each v # V(T ), there is a unique cartwheel Wv appearing in
T with hub v, by (4.1). Thus, [Wv : v # V(T )] is the set of all cartwheels
appearing in T.

16 ROBERTSON ET AL.
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Let P be a pass appearing in T, with source s. We claim that P appears
in Ws . To see this, let H=G(K(P)), and let G=G(Ws). Certainly V(H)�
V(G), by condition (iv) in the definition of a pass, since V(G) contains
every vertex v of T such that there is an s, v-path in T of length �2. Also,
E(H)�E(G), because E(H)�E(T) and G is an induced subdrawing of T.
Finally, let r be a finite region of H. Then r is a region of T since P appears
in T ; we must show that r is a finite region of G. Suppose not; then r is
a subset of the infinite region of G. But every edge of T incident with r is
an edge of G, and so r is the infinite region of G. Hence every region of G
is a region of T, and so G=T, which is impossible since Ws has ring-size
�2. This proves that r is a finite region of G, and so P appears in Ws , as
claimed.

It follows that

: (r(P) : PtP, P appears in T )

= :
v # V(T )

� (r(P) : PtP, P appears in Wv , s(P)=v),

because certainly every pass appearing in some Wv also appears in T. The
same equation holds with s(P) replaced by t(P), and consequently,

:
v # V(T)

N P(Wv)= :
v # V(T)

10(6&#W (v)).

Let |V(T )|=n. For each vertex v, #W (v)=dT (v), and

:
v # V(T )

dT (v)=2 |E(T)|=6n&12,

by the well-known application of Euler's formula. Hence,

:
v # V(T )

NP(Wv)=60n&10(6n&12)=120,

as required. K

It follows from (4.2) that

(4.3) Let T be an internally 6-connected triangulation, and let P be a
set of passes. Then there is a cartwheel W appearing in T with NP(W )>0.

We shall describe a set P of passes with the property that

(4.4) For every cartwheel W with NP (W )>0, some good configura-
tion appears in W.

17THE FOUR-COLOUR THEOREM
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Our second main result (2.3) follows immediately from (4.3) and (4.4);
and so the objective of the remainder of this section is to describe P and
show that (4.4) holds. Now our set P contains infinitely many non-
isomorphic passes, but they can be divided conveniently into 32 classes,
each described by what we call a ``rule.''

Formally, a rule is a 6-tuple (G, ;, $, r, s, t), where

(i) G is a near-triangulation, and G"v is connected for every vertex v,

(ii) ; is a map from V(G) to Z+; and $ is a map from V(G) to
Z+ _ [�] satisfying ;(v)�$(v) for every vertex v,

(iii) r>0 is an integer, and

(iv) s and t are distinct, adjacent vertices of G, and for every v # V(G)
there is a v, s-path and a v, t-path of length �2, such that $(w)�8 for the
internal vertex w of the path, if there is one.

A pass P obeys a rule (G, ;, $, r, s, t) if P is isomorphic to some
(K, r, s, t), where G(K)=G and ;(v)�#K (v)�$(v) for every vertex
v # V(G).

Let us extend the conventions of Fig. 1 to describe rules. Conveniently,
we shall not need many possibilities for the pairs (;(v), $(v)). In all cases,
either

(a) 5�;(v)=$(v)�8, or

(b) ;(v)=5 and 6�$(v)�8, or

(c) 5�;(v)�8 and $(v)=�.

To describe case (a), we naturally use the conventions of Fig. 1. For (b),
we use the Fig. 1 convention that indicates a vertex v with #(v)=$(v) and
add to the figure a minus sign (&) close to the vertex. Similarly, for (c) we
use the Fig. 1 convention for #(v)=;(v) and add a plus sign (+).

In addition, for each rule we indicate r, s, and t by marking the edge
joining s and t with an arrow (if r=1) or double arrow (if r=2), directed
from s to t. (For all the rules we need, r=1 or 2.) Thus Fig. 4 describes
32 rules (the reader should verify that in each case, conditions (i)�(iv) in
the definition of ``rule'' are satisfied). Henceforth in this paper, P denotes
the set of passes that obey one of these rules. (No pass obeys two distinct
rules from Fig. 4, but there are a few instances of a pass P obeying a rule
from the figure where the associated isomorphism from P to (K, r, s, t) is
not unique��for instance, with rules 10 and 31. Let us stress that even in
such a case, the pass P is counted only once in the set P; the latter is a
set, not a multiset.)

Passes obeying the first rule have value 2, and all other members of P

have value 1. The first seven rules are different from the others. In any pass
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Fig. 4. The rules.

P that obeys one of them, the source s satisfies #P(s)=5 or 6, while in a
pass that obeys one of the other rules, #P(s)=7 or 8 and the sink t satisfies
#P(t)�7. There is some system in the first seven rules, as we shall see in
(4.5) below, but the other rules were chosen by trial and error and have no
particular plan or pattern.

At first sight the reader may wonder why in rule 10, the vertex v with
;(v)=5 and $(v)=� cannot simply be deleted. The reason is, suppose a
pass appears obeying rule 10 with v of degree 5. Then two passes would
appear obeying the modified rule (mirror images of one another) and the
net effect of the set of rules would be different.
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We need to prove that our choice of P satisfies (4.4). To do so, we break
(4.4) into three cases, depending on the degree of the hub of the cartwheel:
degree at most 6, degree 7�11, and degree at least 12. The first and last
cases can be done by hand, as we shall see. For the first we need the
following lemma.

(4.5) Let W be a cartwheel, with hub w of degree 5 or 6. For
k=1, ..., 32 let pk (respectively, qk) be the sum of r(P) over all passes P
obeying rule k and appearing in W with sink (respectively, source) w. Sup-
pose that no good configuration appears in W. Then:

(i) p1=q2+q3

(ii) p3=q4

(iii) p4=q5+q6 , and

(iv) p5=q7 .

Proof. We write # for #W . Let X be the set of all triples (x, y, z) of
neighbours of w in W such that x, y, z are all distinct, y is adjacent to both
x and z, and #(x)=5. Thus p1=|X|. Now q2 is the number of (x, y, z) # X
with #( y)�7; and q3 is the number of (x, y, z) # X with #( y)�6 and
#(z)�6. Since there is no (x, y, z) # X with #( y)�6 and #(z)=5 (because
conf(1, 1, 1), conf(1, 1, 2), and conf(1, 1, 4) do not appear) it follows that
q2+q3=|X|= p1 . This proves (i).

If #(w)=5 then p3 , p4 , p5 , q4 , q5 , q6 , q7 are all zero and so (ii), (iii), and
(iv) are true. We assume then that #(w)=6.

Now let X be the set of all triples (x, y, z) of neighbours of w such that
x, y, z are all distinct, y is adjacent to both x and z, #(x)�6, #( y)�6,
and #(u)=5, where u is the vertex different from w adjacent to both x
and y. Thus p3=|X|. But for each (x, y, z) # X, #(z)�6, since conf(1, 1, 2),
conf(1, 1, 4), conf(1, 1, 5) and conf(1, 1, 7) do not appear; and so |X|=q4 .
This proves (ii).

The proofs of (iii) and (iv) are similar and we omit them. K

From (4.5) we deduce:

(4.6) Let W be a cartwheel with NP(W )>0, and with hub of degree
5 or 6. Then a good configuration appears in W.

Proof. Let w be the hub, and define pk and qk for k=1, ..., 32 as in
(4.5). Suppose that no good configuration appears; we shall show that
NP(W )=0, a contradiction. First, let #W (w)=5. Then pk=0 for k=
2, ..., 32 and qk=0 for k=4, ..., 32, and so

NP(W )=10+ p1&q1&q2&q3=0
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by (4.5) (since q1=10). Now let #(w)=6. Then, again by (4.5),

NP(W )= p1+ p3+ p4+ p5&q2&q3&q4&q5&q6&q7=0.

In either case we have a contradiction. K

Now we prove (4.4) for cartwheels with hub of degree at least 12. For
that we need a different lemma, the following.

(4.7) Let W be a cartwheel with hub w, and let v be a neighbour of w.
If no good configuration appears in W, then the sum of r(P) over all passes
P # P appearing in W with source v and sink w is at most 5.

Proof. For k=1, ..., 32 let Rk be the sum of r(P) over all passes P
obeying rule k, appearing in W with source v and sink w. Let R=
R1+ } } } +R32 . We must show that R�5. We observe that for each k,
Rk�2.

First, let #W (v)=5. Then R1=2, and R=2+R2+R3 . Since conf(1, 1, 1)
does not appear, it follows that not both R2 , R3=2, and so R�5 as
required.

Now let #W (v)=6. Then

R=R2+R3+R4+R5+R6+R7 .

Since R3+R5+R6�2, R2+R7�2, and R4�2, we may assume that
equality holds throughout. Since R4=2 it follows that R7=0, and R2�1
(since conf(1, 1, 3), conf(1, 1, 6) and conf(1, 2, 2) do not appear), con-
tradicting that R2+R7=2. Thus R�5 as required.

If #W (v)�9 then R=0, because #P(s)�8 for the sink s of every pass
P # P. There therefore remain the cases #W (v)=8 and 7.

Let #W (v)=8. Then

R=R28+R29+R30+R31+R32 .

Now R30 , R31 , R32�1, and if any one of them is nonzero then the other
two are zero and so are R28 and R29 (since conf(5, 7, 2) does not appear).
Hence we may assume that R=R28+R29�3, as required.

Finally, let #W (v)=7. This we need to break into several subcases. Let
u1 and u2 be the two vertices adjacent to both v and w, and let #W (u1)=c1

and #W (u2)=c2 . From the symmetry we may assume that c1�c2 .
First, let c1=c2=5. Then

R=R8+R9+R10+R11+R12+R13 .

If R10�1, then R10=1, R8�2, R9�1 (since conf(1, 4, 3) does not appear),
R12+R13�1, and R11=0, and, hence, R�5, as required. We assume then
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that R10=0, and, hence, R12=R13=0 and R8�1. But R9�2 and R11�1,
so R�4, as required.

Next, let c1=5 and c2=6. Then

R=R8+R9+R14+R15+R16+R17+R18+R19 .

Not both R16 and R18 are nonzero, and both are zero if R8=2, and so
R8+R16+R18�2. Also, R9�1 (since conf(1, 4, 3) and conf(1, 4, 5) do
not appear), R14+R19�1, and R15+R17�1, so R�5 as required.

Next, let c1=c2=6. Then,

R=R8+R9+R20+R21+R22 .

But R9�2, R8+R21�2 (since conf(1, 4, 3) and conf(2, 10, 6) do not
appear), and R20+R22�1, so R�5 as required.

Next, let c1=5 and c2�7. Then

R=R8+R9+R18+R19+R23+R24+R25 .

But R8�1, R9�1, R18+R19�1, and R23+R24+R25�1, so R�4, as
required.

Finally, let c1�6 and c2�7. Then

R=R8+R9+R21+R22+R26+R27 .

But R8�1, R9�1, R21+R22�1, and R26+R27�1, so R�4, as required.
This proves the result if #W (v)=7, and, hence, completes the proof. K

From (4.7) we deduce:

(4.8) Let W be a cartwheel with NP(W )>0, and with hub of degree
�12. Then a good configuration appears in W.

Proof. Suppose that no good configuration appears. Let #W (w)=d and
let D be the set of neighbours of w, where w is the hub of W. For each
v # D, let R(v) be the sum of r(P) over all passes P # P appearing in W with
source v and sink w. Then �v # D R(v)�5d by (4.7). Hence,

NP(W )=10(6&d )+ :
v # D

R(v)�10(6&d )+5d=60&5d�0,

a contradiction. The result follows. K

In view of (4.6) and (4.8), in order to prove (4.4) and hence (2.3) it
remains to prove the following.

(4.9) Let W be a cartwheel with NP(W )>0, and with hub of degree
7, 8, 9, 10 or 11. Then a good configuration appears in W.
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For each of the five cases, we have a proof. Unfortunately they are very
long (altogether about 13,000 lines, and a large proportion of the lines take
some thought to verify), and so they cannot be given here. Moreover,
although any line of the proofs can be checked by hand, the proofs them-
selves are not ``really'' checkable by hand because of their length. We there-
fore wrote the proofs so that they are machine-readable, and in fact, a com-
puter can check these proofs in a few minutes. (More details are given in
Section 7.) Alternatively, one can write a computer program to check (4.9)
directly, for it is easily seen to be a finite problem.

This concludes our proof of the 4CT. Of course, we have not given
proofs of (3.2) and (4.9), but merely asserted that we checked them by
computer. For the reader to be sure of the truth of these two statements,
he needs to read the computer programs and then run them on a com-
puter, or to write and use his own programs. To facilitate this, we are
making all the necessary programs and data (and, in particular, the proofs
of the five cases of (4.9)) available on the World-Wide Web and via
``anonymous ftp'' as described earlier. Verifying (3.2) takes about 3 h on a
Sun Sparc 20 workstation, and (4.9) takes about 20 min altogether. The
first needs about one megabyte of RAM, and the second less. We used
workstations for convenience, but the programs run on personal computers
(including laptops) as well.

Gas� per Fijavz� , a student of one of the referees of this paper (Bojan
Mohar), has independently verified the truth of (3.2) and (4.9). He wrote
his own programs (in Pascal��ours were written in C) and ran them on
two computers with two different processors (a 486 and a pentium-based
PC). No discrepancies were found. Also, Christopher Carl Heckman, a
student of Robin Thomas, wrote a Pascal program to independently verify
(4.9). His program is available from anonymous ftp along with the other
programs.

5. MODIFICATIONS, EXTENSIONS, COMMENTS

We tried to ``optimize'' the proof presented here as best we could, but
what precisely this means is open to debate. For instance, it seems desirable
to

(a) make the size of the unavoidable set of reducible configurations
as small as possible;

(b) make the number of rules as small as possible;

(c) make the running time of the computer programs as short as
possible;
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(d) make the noncomputer parts of the proof (i.e., what is in this
paper) as simple as possible.

These objectives unfortunately conflict. For instance, we could replace
rules 14, 15, and 17 by one rule, simpler than all of these, at the cost of
increasing the size of the unavoidable set by about 20. Also, there are
several trade-offs between (a) and (d), as we explain below.

What we have presented is a somewhat uneasy compromise, and we
would like to explain here some of the reasons we chose it and what could
have been done differently. Concerning (b), we could see how to make the
rules a little simpler, but not much. (This is not to say that no better choice
of rules exists; no doubt it does.) The place where we sacrificed the most
was in the choice of ways to prove configurations reducible. As far as we
know, there are basically four ways to prove that configurations do not
appear in minimal counterexamples: showing they are

(i) D-reducible; this is perfectly acceptable and normal;

(ii) reducible because there is a contract in our sense, of size �k
say; let us call this being k-reducible;

(iii) C-reducible, in the sense of Heesch [11] and Appel and Haken [5];
this means that the configuration cannot appear, because if it did it could be
replaced by something smaller, thereby producing a planar triangulation that
is not 4-colourable, smaller than the supposedly ``minimal'' one;

(iv) block-count reducible, in the sense of A. Bernhart (unpublished),
Cohen [8] and Gismondi and Swart [10]; this is the same as being
C-reducible, except that the definition of ``consistent'' is changed to some-
thing significantly more restrictive.

Using them all, we found an unavoidable set of size 591. But we decided
to abandon (iv). This was a wrench, because several useful configurations
were block-count reducible, and we could not reduce them in any other
way (shown in Fig. 5) . (The first of these was shown block-count reducible
by Gismondi and Swart [10], and perhaps also by Bernhart, but the
others seem to be new.) We were originally hoping that every ``reasonable''
configuration (defined later) might be block-count reducible, but with
experiment our faith in this has declined.

The reason we dropped this method was that block-count reducibility
takes a lot of computing time, and also it seemed to be incompatible with

Fig. 5. Block-count reducible configurations.
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getting a polynomial time algorithm to 4-colour a planar graph, which is
the objective of the next section.

Second, general C-reducibility. This gives an unavoidable set of size 609,
but the method is highly complicated and dangerous. It is very important
to verify that if you replace a piece of a triangulation by a smaller piece,
you do not introduce loops. There are two sources of complication, first
that the free completion of the configuration may not appear in the tri-
angulation and, second, that replacing the configuration by something
smaller often involves identifying vertices on the ring of the free comple-
tion; and these two can conspire to create loops in the most devious ways.
(For instance, let a, b, c, d be vertices of the ring, in order, but not
necessarily consecutive. Suppose that ,(a)=,(b), where , is the corre-
sponding projection, and ,(c) is adjacent to ,(d ) in the triangulation,
although c and d are not adjacent in the free completion. Now suppose that
the ``smaller piece'' has a identified with d and b with c; then making this
substitution creates a loop.) Of course, this can be controlled, with care,
but we wanted to do this ``safety check'' part of the proof by hand, and it
seemed to us too dangerous and complicated. So we decided not to regard
as reducible everything that we could prove C-reducible, but only those for
which the safety check was easy.

At the other extreme, the safety check is vacuous for D-reduction (which
is a special case of C-reduction), and very easy for k-reduction, where
k�3. Now conf(1, 1, 4) is 4-reducible and not 3-reducible, but it has an
easy safety check and has been known to be reducible since 1948 [6], so
it seems silly to exclude it. We decided therefore to accept this and a hand-
ful of other useful small configurations. There is an unavoidable set of con-
figurations, all 1-reducible except for our handful, but it was rather large,
about 900. (We expect that our handful could be eliminated if necessary;
indeed, we expect that there is even an unavoidable set of D-reducible
configurations, but have not tried to find it.) If we had stopped at
3-reducibility, the set would have size about 700. We tried allowing every-
thing that was 4-reducible, and it turned out by accident that all members
of the optimal subset had an easy safety check, given in (3.5), so that
seemed very satisfactory, and we fixed on it. If we had gone to (say)
8-reducibility, the unavoidable set would have had size about 618, but the
analogue of (3.5) would have been much more complicated.

Incidentally, given a contract for a configuration, it is easy to verify that
it really is a contract��but how did we find it in the first place? We did
nothing clever here, although there are clever methods available (see [1]).
We just tried all possibilities.

Another natural question��why did we insist that contracts were sparse?
Because everything we needed and could reduce with a ``nonsparse con-
tract'' (i.e., a set of edges containing 3, 1, or 0 edges from each finite region)
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we could also reduce with a sparse one of at most the same size, so it was
a free way to simplify the paper.

A third question: while it is straightforward to check that the set of the
Appendix works, how did we find it? For that, we need to discuss a conjec-
ture of Heesch [11] that guided us.

Let us say a configuration K is reasonable if

(i) #K (v)�d(v)+3, for every vertex v, and

(ii) no 3-vertex block of G(K) has two vertices of degree 2 in G(K).

Heesch made the conjecture that every minimally reducible configuration
is reasonable. This is still open, although it is proved for D-reducibility
(Whitney and Tutte [15] proved (i), and we proved (ii), unpublished).
But we believed Heesch's conjecture enough that we almost never tested
any configuration for reducibility unless it was reasonable. (In fact, we
think that condition (ii) can be replaced by the stronger condition that
G(K) has no block with at most three vertices.) So now, how did we
find the 633 configurations? We simply examined all cartwheels W
with hub of degree 7�11 with NP(W)>0, and for each such W listed
all the reasonable configurations it contained, found which were
minimally reducible, and discarded the others. Thus, for each cart-
wheel we had a set of configurations. Then we needed to choose another
set meeting each cartwheel set, as small as possible. For this we used a
heuristic.

Incidentally, the appealing feature of Heesch's conjecture above is in the
reverse direction; most reasonable configurations seem to be reducible. We
examined in total 15165 reasonable configurations, and we could reduce
(by D- or C-reducibility) 14051 of them.

There is another helpful observation, due to Allaire [1]. Let K be a con-
figuration, and let S be its free completion, with ring R. Let C* be the set
of all edge-colourings of R, and let C be all restrictions to E(R) of tri-
colourings of S. Let C1 be the maximal consistent subset of C*&C, and let
C2 be the maximal consistent subset of C*&C1 . Thus, C�C2 , but equality
need not hold. If C2 = C, K is said to be symmetrically D-irreducible
(SDIR). Allaire observed that there is a very close correspondence between
being SDIR and being irreducible (by D- and C-reduction). Of our 15165
configurations, 1086 of them are SDIR and, as far as we know, only one
of them is reducible. Of the remainder, we can reduce all except 29. Allaire
(somewhat bravely) conjectured that every non-SDIR configuration was in
fact D- or C-reducible.

Finally, let us point out that the existence of a set of rules like those in
Fig. 4, contained in the ``second neighbourhood'' of both the source and
sink, confirms another conjecture of Heesch [11].
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6. A COLOURING ALGORITHM

In this section we convert the proof of the 4CT to an algorithm that
finds a vertex 4-colouring of a drawing T, in time O( |V(T )| 2). The two
computer-search results, (3.2) and (4.9), are of course still needed, but they
are not part of the algorithm. They are part of the proof that every step of
the algorithm can be carried out.

It is sufficient to find a vertex 4-colouring of a triangulation, since if we
wish to 4-colour a drawing that is not a triangulation, it is easy to make
it a triangulation by adding edges. In view of this, it suffices to find a tri-
colouring rather than a vertex 4-colouring, because it is easy to convert one
to the other.

A first attempt at an algorithm would be:

Step 1. Find a short circuit in T if there is one, or conclude that T
is internally 6-connected.

Step 2. If there is a short circuit C, adapt the proof of (2.1) to con-
struct a tricolouring of T from tri-colourings of the restrictions of T to the
two discs bounded by C.

Step 3. If there is no short circuit, locate a good configuration that
appears in T, and the appropriate contract X; find a tri-colouring modulo
X; and convert it to a tri-colouring of T by adapting the proof of (3.7).

Steps 2 and 3, which might seem to be the nontrivial parts, can easily be
done algorithmically. The problem lies in Step 1; we do not know how to
do this in linear time. So we are forced to proceed more deviously. Instead,
we go ahead directly with Step 3, assuming there is no short circuit; then
if at some stage something goes wrong, it is because there was a short
circuit, and now we can find it and go to Step 2 instead.

A word on data structure; we assume that the triangulation is input in
a form comprised of a number n�0, a vector (d1 , ..., dn) of nonnegative
integers, and for all v with 1�v�n, a vector (uv(1), ..., uv(dv)) of integers
all between 1 and n. The number of vertices will be n, and for 1�v�n, dv

will be the number of edges incident with v and uv(1), ..., uv(dv) will be the
ends of these edges different from v, enumerated in clockwise cyclic order
around v of the edges in the natural sense. This input has size O( |V(T )| ),
because |E(T )|�3n&6. (The inequality |E(T )|�3n&6 is true even for
triangulations with parallel edges.)

To input a near-triangulation, we observe that there is essentially a
unique way to add a vertex v0 in the infinite region and add edges incident
with v0 , to make a triangulation. Thus, we can regard a near-triangulation
on n vertices as a triangulation on n+1 vertices with one vertex dis-
tinguished; and this is the data structure we use.
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We need algorithmic versions of (2.1), (3.1), and (4.1). Let us do them
in reverse order.

(6.1) Algorithm.
Input: A triangulation T, and a vertex w of T.
Output: Either a cartwheel appearing in T with hub w, or a short circuit

of T.
Running Time: O( |V(T )| ).

This is easy, and we omit the details.

(6.2) Algorithm.
Input: A near-triangulation H, a circuit R, a function , wrapping R

around H, and a tri-colouring } of H.
Output: A set of tri-colourings of H including }, such that their lifts by

, are all distinct and form a consistent set.
Running Time: O( |V(H)| ), if |E(R)| is at most a constant.

Description. We start with C1=[}] and begin the first iteration. In
general, at the start of the i th iteration, we have a set Ci of tri-colourings
of H including }, so that their lifts by , are all distinct. We test if this set
of lifts is consistent, and if not, find }$ # Ci and j # [&1, 0, 1] so that there
is no signed matching M satisfying

(a) the lift of }$ j -fits M, and

(b) every edge-colouring that j -fits M is the lift of some member
of Ci .

This takes constant time, if |E(R)| is at most a constant. If the set is con-
sistent, we output Ci . If not, we adapt the proof of (3.1) in the natural
way to obtain from }$ (in linear time) a new tri-colouring }i of H whose
lift is different from the lifts of all members of Ci , set Ci+1=Ci _ [}i], and
return for the next iteration. The number of iterations is at most a constant
if |E(R)| is at most a constant, since |Ci |=i and all the lifts of Ci are
distinct. K

To obtain an algorithmic version of (2.1) we need two lemmas, the
following. If }, }$ are edge-colourings of a circuit R, they are equivalent if
there is a permutation * of [&1, 0, 1] such that for every e # E(R),
}$(e)=*(}(e)). This is an equivalence relation, and it is easy to check that
every consistent set is a union of equivalence classes. The following (due to
Birkhoff [7]) is proved by easy case analysis, and we omit the proof.

(6.3) Let R be a circuit of length 4, with edges e1 , e2 , e3 , e4 in order.
Let C0 be the set of all edge-colourings equivalent to (0, 0, 0, 0) (that is, the
edge-colouring } with }(ei)=0 (i=1, ..., 4)). Similarly, let C1 , C2 , C3 be
the sets equivalent to (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), respectively. Every
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nonempty consistent set of edge-colourings of R includes one of C0 _ C1 ,
C1 _ C2 , C2 _ C3 , C3 _ C0 .

Similarly, we have (also due to Birkhoff [7])

(6.4) Let R be a circuit of length 5, with edges e1 , e2 , e3 , e4 , e5 in
order. For 1�i{ j�5, let Aij be the equivalence class of edge-colourings of
R equivalent to }, where }(ei)=1, }(ej)=&1, and }(ek)=0 for k{i, j. For
1�i�5, let Ci=Aij _ Aik _ Ajk , where ej , ek {ei are the two edges with a
common end with ei . For 1�i�5, let the edges different from ei be
ea , eb , ec , ed in order, and let Di=Aac _ Aad _ Abc _ Abd . Finally, let
E=A12 _ A23 _ A34 _ A45 _ A15 . Every nonempty consistent set that meets
E includes one of C1 , ..., C5 , D1 , ..., D5 , E.

Proof. Again, this is just case analysis; but since the proof is easy to
give and not so easy to find, we give it. Let C be a consistent set.

(1) If A12 �C, then C includes one of A13 , A15 and one of A23 , A25 .

For let }=(&1, 1, 0, 0, 0) # C, with the natural notation for edge-
colourings. Since C is consistent, there is a signed matching M such that
} (&1)-fits M, and C contains all edge-colourings that (&1)-fit M. Since
} (&1)-fits M it follows that M is one of

[([e2 , e3], &1), ([e4 , e5], 1)]

[([e2 , e5], &1), ([e3 , e4], 1)].

If M is the first of these, then the edge-colouring (&1, 0, 1, 0, 0) (&1)-fits it and
so it belongs to C, and, hence, A13 �C. Otherwise, (&1, 0, 0, 0, 1) belongs to
C and, hence, A15 �C. Also, there are only two signed matchings M$ such that
} 1-fits M$, and the second conclusion follows similarly.

(2) If A13 �C then C includes one of A23 , A35 .

The proof is similar.
Now, let C be a consistent set that meets E. Thus, one of A12 , A23 , A34 ,

A45 , A15 is included in C, but we may assume that not all of them are, for
if so, then E�C as required. From the symmetry we may assume that
A12 �C and A23 �3 C. From (1), A25 �C. If A15 �C, then C1 �C and the
theorem holds, so we assume that A15 �3 C. By (1), A13 �C. By (2),
A35 �C, and so D4�C, as required. K

Now let us put these pieces together.

(6.5) Algorithm.
Input: A triangulation T.
Output: A tri-colouring of T.
Running Time: O( |V(T )| 2).
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Description. First we test if T has two parallel edges. (This takes time
O( |V(T)| ).) If so we go to the short circuit subroutine described later. Other-
wise, T is simple and, hence, 3-connected (unless |V(T)|�3, which is trivial).

We test if every vertex has degree �5. (This takes time O( |V(T )| ).) If
not, the neighbours of the offending vertex form a short circuit (unless
|V(T )|�5 which is trivial) and we go to the short circuit subroutine.
Otherwise, T has minimum degree 5.

For each vertex v, we compute N(v), defined as 10(d(v)&6)+a&b,
where a, b are the sums of r(P) over all passes PtP appearing in T with
sink (respectively, source) v. For each v and each rule of Fig. 4, this takes
time O(d(v)), so the total running time is O( |V(T )| ).

Now, as in the proof of (4.2),

: (N(v) : v # V(T))=120.

Note that this does not require that T be internally 6-connected; the only
place that hypothesis was used in the proof of (4.2) was to apply (4.1),
which we are not doing here. Consequently, we can choose a vertex w with
N(w)>0, in time O( |V(T )| ).

We apply (6.1) to T and w. This takes time O( |V(T )| ). If we find a short
circuit, we go to the short circuit subroutine. Otherwise, we have a
cartwheel W appearing in T with NP(W )>0.

By (4.4), some good configuration appears in W. We find such a con-
figuration K, in time O( |V(T)| ). Thus, K appears in T.

We construct the free completion S of K with ring R; then |E(R)|�14.
We construct the corresponding projection , of S into T. If K is
D-reducible, let X be any singleton subset of E(S)&E(R). Otherwise, let
X�E(S)&E(R) be the set of edges thickened in the Appendix. Let
X$=,(X ). (This all takes constant time.)

We test if there is a circuit C of G with |E(C)&X$|�1. If so, we use the
obvious algorithmic version of (3.5) to find a short circuit of T and go to
the short circuit subroutine. (This takes time O( |V(T )| ).)

We construct the triangulation T $ obtained from T by contracting every
edge in X$ and deleting an edge from any two parallel edges that bound a
region. We call (6.5) to find a tri-colouring of T $. We convert this to a
tri-colouring }1 of T modulo X$.

Let H be the planar drawing obtained from T by deleting V(G(K)) and
designating as infinite the region including V(G(K)). Let }2 be the restriction of
}1 to E(H); then }2 is a tri-colouring of H. Let � be the restriction of , to E(R).
We apply (6.2) to H, R, �, and }2 , to obtain a set C of tri-colourings such that
all their lifts by � are distinct and form a consistent set D, with }2 # C.

Now the lift of }2 by � is the restriction to E(R) of a tri-colouring of S modulo
X, by the choice of }1 . Since X is a contract for K by (3.2), D contains the
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restriction to E(R) of some tri-colouring of S. We find such a tri-colouring }3 ,
combine }2 and }3 to obtain a tri-colouring } of T, and return }.

It remains to describe the short circuit subroutine. For this, the input is T,
together with a short circuit C of T.

First, if |E(C)|�3 we test if C is an induced circuit of T; and if not
we find another short circuit of smaller length and put it in place of C. We repeat
this until either |E(C)|=2 or C is induced. (This takes time O( |V(T)| ).)

We find all connected components X1 , ..., Xk of T"V(C). (Necessarily
k�2, since T is a triangulation; and in fact, if |E(C)|�3, then k=2, as is
easily seen.) For 1�i�k, we construct the drawing Hi consisting of Xi , C,
and all edges with one end in V(C) and the other in V(Xi).

Suppose, first, that |E(C)|=2. Let E(C)=[ f, g], and for each i we use
(6.5) to obtain a tri-colouring }i of the triangulation Hi "g, such that
}i ( f )=0. We define } by: }(e)=}i (e) if e # E(Hi)&E(C), and otherwise
}(e)=0. Then } is a tri-colouring of T.

Henceforth we may assume that |E(C)|�3, and, hence, k=2 and C is
induced, and in particular every edge of T belongs to H1 or to H2 . If
|E(C)|=3 we use (6.5) to find tri-colourings of H1 and H2 that agree on
E(C), and piece them together to form a tri-colouring of T. The cases
|E(C)|=4, 5 are more complicated. Let the edges of C be e1 , ..., ed in order,
where d=|E(C)|, and let the vertices be v1 , ..., vd , where ei has ends vi , vi+1

(1�i�d ) and vd+1 means v1 .
First, suppose that |E(C)|=4. Add an edge to H1 with ends v1 , v3 ,

forming a triangulation T1 ; apply (6.5) to obtain a tri-colouring of T1 , and,
hence, a tricolouring } of H1 such that }(e1){}(e2). Apply (6.2) (with ,
the identity and R=C) to obtain a set of tri-colourings B of H1 , such that
} # B, and the restrictions of the members of B to E(C) are all different
and form a consistent set C. By (6.3) and symmetry, we may assume that
either C0 _ C1 �C or C1 _ C2 �C (using the notation of (6.3)). If C0 _
C1 �C, construct T2 from H2 by deleting e3 and e4 and identifying v2 with
v4 ; then apply (6.5) to T2 , to obtain a tri-colouring }2 of H2 with }2(e1)=
}2(e4). Consequently, the restriction of }2 to E(C) is in C0 _ C1 �C, and
so there exists }1 # B such that }1(e)=}2(e) (e # E(C)). Then piece }1 and
}2 together to obtain a tri-colouring of T. On the other hand, if C1 _
C2 �C, add an edge to H2 with ends v1 , v3 , and proceed similarly.

Now suppose that |E(C)|=5. Let T1 be obtained from H1 by adding a
new vertex adjacent to v1 , ..., v5 . By (6.5) and (6.2) we construct a set B of
tri-colourings of H1 , such that their restrictions to E(C) form a nonempty
consistent set C meeting E, using the notation of (6.4). By (6.4), one of
C1 , ..., C5 , D1 , ..., D5 , E is included in C. If say C1 �C, let T2 be obtained
from H2 by deleting e4 and identifying v3 with v5 . If D1 �C, let T2 be
obtained from H2 by adding two edges with ends v2v4 , v2 v5 . If E�C, let
T2 be obtained from H2 by adding a new vertex adjacent to v1 , v2 , v3 , v4 ,
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v5 . In each case we apply (6.5) to T2 , and thereby obtain a tri-colouring
}2 of H2 whose restriction to E(C) is in C and therefore equals the restric-
tion to E(C) of some member }1 of B. By piecing }1 and }2 together we
obtain a tri-colouring of T.

This concludes the short circuit subroutine. It is an easy exercise to
check that (6.5) has running time O( |V(T )|2). K

7. THE MACHINE-CHECKABLE PROOFS

In this section we describe in more detail the structure of our proof of
(4.9). We use a branch-and-bound approach; in other words, we start with
a totally general cartwheel, that we wish to show satisfies (4.9), and we
repeatedly break the problem into cases until in each case the cartwheel is
sufficiently restricted that we can ``see'' that it satisfies (4.9). Thus, as we
proceed, we have partial knowledge of the cartwheel, increasing as we go
deeper into subcases, and before we can explain anything else we must
explain how this partial knowledge is represented.

Let W be a cartwheel, and let #=#W . The vertices of G(W ) are of four
kinds: the hub, w say; the neighbours of w, called spokes; vertices different
from w adjacent to two distinct spokes, called hats; and the other vertices,
called fan vertices. Each fan vertex is adjacent to a unique spoke. For each
spoke v, the fan over v is the set of fan vertices adjacent to v (if #(v)�6)
or the edge joining the two hats adjacent to v (if #(v)=5).

Choose a subset X of the spokes and delete from G(W ) the fan over v
for each v # X; let the resulting near-triangulation be K. For each vertex v
of K, let a(v) # Z+ _ [�] and b(v) # Z+ such that

5�b(v)�#(v)�a(v),

and such that b(v)=#(v)=a(v) if either v=w or v is a spoke not in X, and b(v) {
a(v) for v # X. We call the triple (K, a, b) a part, fitting W. This is what we mean
by ``partial knowledge'' of a cartwheel; we shall know a part that fits it. A given
part may fit many different cartwheels. A part is successful if every cartwheel W
that it fits in which no good configuration appears satisfies NP(W )�0.

We define the hub, spokes, hats and fans of a part in the natural way.
A part is trivial if a(v)=� and b(v)=5 for every vertex v except the hub
(and consequently it has no fans and all its hats are pairwise nonadjacent).
The trivial part with hub of degree k (it is unique up to isomorphism) fits
(an isomorphic copy of) every cartwheel with hub of degree k, and
consequently, to prove (4.9) it suffices to prove the following.

(7.1) For k=7, 8, 9, 10, and 11, the trivial part with hub of degree k
is successful.
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Let us say a part (K$, a$, b$) is a refinement of a part (K, a, b) if K is a
subdrawing of K$ with the same hub, and

b(v)�b$(v)�a$(v)�a(v)

for each vertex v of K. Two particular refinements are of special importance.
Let (K, a, b) be a part, and let v be a vertex of K with a(v){b(v). Let c be an
integer with b(v)�c<a(v). Let (K1 , a1 , b1) be the part defined as follows. If
v is a spoke and b(v)=c, let K1 be a near-triangulation obtained by adding
to K a (c&4)-edge path between the two hats adjacent to v, and making every
internal vertex of this path adjacent to v; and otherwise let K1=K. For
v$ # V(K1), let a1(v$)=� and b1(v$)=5 if v$ # V(K1)&V(K), let a1(v$)=a(v$)
and b1(v$)=b(v$) for v$ # V(K)&[v], and let a1(v)=c and b1(v)=b(v).

Let (K2 , a2 , b2) be defined as follows. If v is a spoke and a(v)=c+1 let
K2 be a near-triangulation obtained by adding to K a (c&3)-edge path
between the two hats adjacent to v, and making every internal vertex of
this path adjacent to v; and otherwise let K2=K. For v$ # V(K2), let
a2(v$)=� and b2(v$)=5 if v$ # V(K2)&V(K), let a2(v$)=a(v$) and
b2(v$)=(v$) for v$ # V(K)&[v], and let a2(v)=a(v) and b2(v)=c+1.

It follows that (K1 , a1 , b1) and (K2 , a2 , b2) are both refinements of
(K, a, b); we call them a complementary pair of refinements of (K, a, b).
Moreover, for any cartwheel W such that (K, a, b) fits W, if #W (v)�c then
(K1 , a1 , b1) fits an isomorphic copy of W, and if #W (v)�c+1 then
(K2 , a2 , b2) fits an isomorphic copy of W; and so it follows that:

(7.2) Let (K, a, b) be a part, and let (K1 , a1 , b1), (K2 , a2 , b2) be a
complementary pair of refinements of (K, a, b). If they are both successful
then (K, a, b) is successful.

This constitutes the ``branch'' mechanism of our branch-and-bound proof of
(7.1). We shall have some current part, and if we cannot see directly that it is
successful, we choose a complementary pair of refinements, prove individually
that they are successful, and infer from (7.2) that our original part is successful.

Now we must explain what we mean by ``seeing directly'' that the part
is successful. Here we use only three kinds of argument. In increasing order
of complexity, they are:

Argument 1 (Symmetry). Our part is a refinement of an isomorphic
copy of a part that has already been shown to be successful.

Argument 2 (Reducibility). For every cartwheel W that the part fits, some
good configuration appears in W. For instance, if #(w)=7, and w has neigh-
bours v1 , ..., v7 in order, a(v1)=a(v5)=5, and a(v2)=a(v3)=a(v4)=6, we can
infer (all the other values of a and b are irrelevant) that one of conf(1, 4, 3),
conf(1, 4, 5), conf(1, 6, 1), conf(1, 5, 5), conf(1, 7, 5) appears. Verifying this in-
volves case-checking, but generally not much, and it can easily be done by hand.
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Argument 3 (Hubcap bounds). Here we argue about NP(W). Let W
be some hypothetical cartwheel that our part fits, with hub of degree k, and
in which no good configuration appears. For each spoke v, let R(v)
(respectively, S(v)) be the sum of values of all passes PtP appearing in
W with source v and sink w (respectively, source w and sink v), and let
T(v)=R(v)&S(v). We must show that NP(W)�0, that is, that

:
v

T(v)�10(k&6).

When this argument is to be applied, we are given a hubcap, that is, a list

(x1 , y1), ..., (xk , yk)

of pairs of spokes so that every spoke appears in the list x1 , y1 , ..., xk , yk exactly
twice. For each pair (xi , yi), we enumerate all combinations of passes from P

that might appear simultaneously in W, with source either xi or yi and sink w.
(A set of simultaneously appearing passes must agree with each other on the
degree of vertices of W that appear in more than one of them, must be com-
patible with the given part, and must not force the appearance in W of a good
configuration; so such sets are not very big, and are easy to enumerate, par-
ticularly when the part is quite highly refined, which is usually the case when
this argument is applied.) Of all these combinations we see which has T(xi)+
T( yi) the largest; and this gives an upper bound on T(xi)+T( yi). By summing
this over all pairs (xi , yi) in the hubcap (and dividing by two) we obtain an
upper bound on �v T(v). So, in summary, the third argument method is: we are
given a (carefully selected) hubcap; we use it to compute an upper bound on
�v T(v); and we deduce that

:
v

T(v)�10(k&6)

and, hence, that the part is successful.
Now we can explain the machine-checkable proof. Let 7�k�11; we

need to show that the trivial part with hub of degree k is successful. At each
step of the proof we have a ``current'' part that we are trying to show is
successful. The proof either specifies a complementary pair of refinements
of the current part (whereupon it proceeds to tackle them both separately)
or it states that the current part can be shown to be successful via one of
arguments 1, 2, and 3 (and gives some helpful hints, such as the hubcap for
argument 3). Of course there is some bookkeeping required to make sure that
every time the process branches both branches are completed, but this is
straightforward. Further, more technical details are available with the data.
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APPENDIX: THE UNAVOIDABLE SET OF
REDUCIBLE CONFIGURATIONS
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