MPRI 2010-11 Cours 2-7-1

Examen du 30-11-2010

1 Théorie des types

In Martin-Löf's Type Theory, one constructs a closed term :

$$f: \Pi x: N.\Pi y: N.\Sigma z: N.x = y + z \lor y = x + z$$

What can be the normal forms of:

- $\pi_1(f \ 5 \ 3)$
- (f 3 5)
- (f 5 5)

2 Logique du 1er ordre

One reminds that normal λ -terms can always be written

$$\lambda x_1 \dots \lambda x_n (x \ t_1 \ \dots \ t_m)$$

One considers the first-order language built with a single proposition symbol A. Take the following proof of $[] \vdash A \Rightarrow A$.

$$\frac{\overline{[A\Rightarrow A]\vdash A\Rightarrow A} \quad \text{(Ax)}}{\overline{[]\vdash (A\Rightarrow A)\Rightarrow (A\Rightarrow A)}} \quad (\Rightarrow \text{-I}) \qquad \frac{\overline{[A]\vdash A} \quad \text{(Ax)}}{\overline{[]\vdash A\Rightarrow A}} \quad (\Rightarrow \text{-I})}{\overline{[]\vdash A\Rightarrow A}} \quad (\Rightarrow \text{-E})$$

- a) Give the cut-free version of this proof.
- b) What are these two proofs seen through the Curry-Howard isomorphism?
- c) Are there other cut-free proofs of $[] \vdash A \Rightarrow A$? Justify brievly.
- d) We now add the rewrite rule $A \rhd (A \Rightarrow A)$. We are thus now in deduction modulo. Give a proof of $[] \vdash A$. What can be said of the corresponding λ -term?

3 Système T

Define in System T a function eg : $N \to N \to N$ which returns 1 when its arguments are equal and 0 when they are not.

4 Is choosing constructive?

We place ourselves in Heyting's arithmetic (that is intuitionistic arithmetic)

a) Explain how one can prove the proposition

$$\forall x. \forall y. x = y \lor \neg (x = y)$$

One may find inspiration in the previous question.

- **b)** A proposition P is decidable when one can prove $P \vee \neg P$.
- Show that if A and B are decidable, then $A \wedge B$, $A \vee B$ et $A \Rightarrow B$ are decidable.
- c) One now adds a choice operator, or "Hilbert operator" to arithmetic. That is for every proposition P (of the language of arithmetic) and every variable x one has:

- an object $\mathcal{E}(x.P)$ in the language,
- a family of axioms $P[x \setminus t] \Rightarrow P[x \setminus \mathcal{E}(x.P)]$ (for every object t). Show that if $P[x \setminus t]$ is decidable, for any t, then $\exists x.P$ is decidable, in this theory.
- d) Show that if $P[x \setminus t]$ is decidable, for any t, then $\forall x.P$ is decidable, in this theory.
- **e)** What can one thus say about all propostions of this theory? or this theory in general. Try to be precise and concise.

5 Déconstruire est-ce choisir?

We go back to Martin-Löf's type theory. We give ourselves the excluded middle axiom :

$$\frac{\Gamma \vdash A : \text{Type}}{\Gamma \vdash EM_A : A + (A \to \bot)}$$

a) In a context where : A : Type, a:A et $P:A\to$ Type, build a term $\mathcal{E}(P):A$ such that :

$$\Sigma x : A.(P \ x) \to (P \ \mathcal{E}(P)).$$

b) Does the construction of the previous question seem possible in type theory? What is the general conclusion?