MPRI 2012-13 Cours 2-7-1

Examination November 26th 2012 2:30 hours.

1 Warm-up

A fellow student has claims to have written terms of the following types in type theory. For each case, tell whether this is possible.

: $\Pi n : nat.\Sigma m : nat.m = n + n$: $\Pi n : nat.\Sigma m : nat.n = m + m$

 p_3 : $\Sigma x : nat.S(x+x) = 11$ what is the normal form of $\pi_1(p_3)$?

$\mathbf{2}$ Impredicative encoding

Given two natural numbers x and y, we say that R(x,y) if and only if there exists a natural number i such that $x = 2^i \cdot y$.

We want to represent the relation R in Higher-Order Logic (HOL, aka Church's simple type theory).

- a) What is a natural type for R in HOL?
- **b)** Give a possible definition for R in HOL.
- c) Give a proof of R(12,3) is your encoding.
- d) What is the asymptotic size of a proof of $R(a \cdot 2^i, a)$ in your encoding?

3 Computational encoding

- a) In Martin-Löf's type theory, define a function D for double, such that D: $nat \rightarrow nat$ and $(D \ n)$ computes $2 \cdot n$.
 - **b)** Define the relation R in Martin-Löf's type theory.
 - c) Give a proof-term of R(12,3) for this encoding in type theory.
 - d) What is the asymptotic size of a proof of $R(a \cdot 2^i, a)$ in this setting?

Simply typed λ -terms 4

We are considering simple types, where $\alpha, \beta, \gamma...$ are distinct atomic types.

What are the closed λ -terms of type $\alpha \to \alpha$?

What are the closed λ -terms of type $\alpha \to (\alpha \to \alpha) \to \alpha$?

Are there terms of the following type? which ones?

$$\alpha \to (\alpha \to \gamma) \to \gamma$$

$$\begin{array}{l} \alpha \rightarrow (\alpha \rightarrow \gamma) \rightarrow \gamma \\ \alpha \rightarrow \beta \rightarrow (\alpha \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma) \rightarrow \gamma \end{array}$$

5 Terms in system F

Are there closed normal terms of the following types in system F ? If so, which ones ?

```
\begin{array}{l} \forall \alpha.\alpha \rightarrow \alpha \\ \forall \alpha.\alpha \rightarrow \alpha \rightarrow \alpha \\ \forall alpha.\alpha \\ \forall \alpha.(T \rightarrow \alpha) \rightarrow \alpha \text{ (where $T$ is some closed type; the answer may depend upon $T$)}. \end{array}
```

6 Well-foundedness

We work in Higher-Order Logic. We have some given type T and a binary relation over it $R: T \to T \to o$.

We are given the following definition:

```
\begin{array}{lll} A & : & T \rightarrow o \\ A & \equiv & \lambda z : T. \forall P : T \rightarrow o, (\forall x : T, (\forall y : T, R \ y \ x \rightarrow P \ y) \rightarrow P \ x) \rightarrow P \ z. \end{array}
```

We want to understand this definition.

- a) Show that when $\forall y: T, \neg (R \ y \ z)$ holds, then $(A \ z)$ holds.
- **b)** Show that when (R z z) holds, then (A z) is false.
- c) We have an infinite sequence $x_1, x_2, \ldots, x_n, \ldots$ such that $(R \ x_i \ x_{i+1})$ holds. Explain why $(A \ x_1)$ should not be true. Can you describe how this argument can be formalized (without excessive detail though).
- d) A friend explains that (A z) means there is no infinite sequence starting from z such that $z > x_1 > x_2 > \cdots > x_n \ldots$ where x > y stands for (R y x).

Does this seem true to you? Can you comment or elaborate?