
All you ever wanted to know
about Pure Type Systems

Vincent Siles

PPS - INRIA - Ecole Polytechnique

April 1th, 2010

EJC 2010 PTS April 1th, 2010 1 / 20

1 What is a Pure Type System ?

2 An Alternative Presentation: PTS with Judgmental Equality

3 Equivalence

EJC 2010 PTS April 1th, 2010 2 / 20

De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . .).

Terms and Contexts:
A,B,M,N ::=

s |

x | M N |λxA.M

| ΠxA.B (or A→ B)

Γ ::= [] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x] + congruences

EJC 2010 PTS April 1th, 2010 3 / 20

De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . .).

Terms and Contexts:
A,B,M,N ::=

s |

x | M N |λxA.M

| ΠxA.B (or A→ B)

Γ ::= [] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x] + congruences

EJC 2010 PTS April 1th, 2010 3 / 20

De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . .).

Terms and Contexts:
A,B,M,N ::= s | x | M N |λxA.M | ΠxA.B (or A→ B)

Γ ::= [] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x] + congruences

EJC 2010 PTS April 1th, 2010 3 / 20

De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . .).

Terms and Contexts:
A,B,M,N ::= s | x | M N |λxA.M | ΠxA.B (or A→ B)

Γ ::= [] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x] + congruences

EJC 2010 PTS April 1th, 2010 3 / 20

De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . .).

Terms and Contexts:
A,B,M,N ::= s | x | M N |λxA.M | ΠxA.B (or A→ B)

Γ ::= [] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x] + congruences

EJC 2010 PTS April 1th, 2010 3 / 20

Typing Rules

∅wf
Γ ` A : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s : t

Γwf Γ(x) = A

Γ ` x : A

Γ ` A : s Γ, x : A ` B : t
(s, t, u) ∈ Rel Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` A : s Γ, x : A ` B : t (s, t, u) ∈ Rel
Γ ` ΠxA.B : u

Γ ` M : ΠxA.B Γ ` N : A

Γ ` MN : B[x/N]

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

EJC 2010 PTS April 1th, 2010 4 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}

What �types� are allowed in the empty context ?

[] `A : � �

Ok

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �

Ok

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �

Ok

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �
 Ok

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �
 Ok

[] `A : � �
 x :A `A : � �

[] ` ΠxA.A : !!! =⇒ (A→A) is not a valid.

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �
 Ok

[] ` A :A x : A ` B :A

[] ` ΠxA.B :A −→ we need a term typed by A

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How to get the STλC

PTS instantiation for Simply-Typed λ-Calculus:

S = {A, � �
} Ax = {(A, � �
)} Rel = {(A,A,A)}
What �types� are allowed in the empty context ?

[] `A : � �
 Ok

[] ` A :A x : A ` B :A

[] ` ΠxA.B :A −→ we need a term typed by A

As usual, we introduce base types as a fresh variables:

[]wf

[]wf (A, � �
) ∈ Ax
[] `A : � �

(
� �
� :A)wf (

� �
� :A)(

� �
�) =A

� �
� :A `

� �
� :A

EJC 2010 PTS April 1th, 2010 5 / 20

Example: How do get the STλC

Now, we can produce Π-types:
� �
� :A `

� �
� :A

� �
� :A, x :

� �
� `

� �
� :A

� �
� :A ` Πx

� �
�.
� �
� :A ≈

� �
�→

� �
�

� �
� :A

`
� �
�→

� �
�

:A
� �
� :A,_ :

� �
�→

� �
� `

� �
�→

� �
�

:A
� �
� :A

` (
� �
�→

� �
�)→ (

� �
�→

� �
�)

:A

· · ·

With those rules, we can only build non-dependent types.

EJC 2010 PTS April 1th, 2010 6 / 20

Example: How do get the STλC

Now, we can produce Π-types:
� �
� :A `

� �
� :A

� �
� :A, x :

� �
� `

� �
� :A

� �
� :A ` Πx

� �
�.
� �
� :A ≈

� �
�→

� �
�

� �
� :A `

� �
�→

� �
� :A

� �
� :A,_ :

� �
�→

� �
� `

� �
�→

� �
� :A

� �
� :A ` (

� �
�→

� �
�)→ (

� �
�→

� �
�) :A

· · ·

With those rules, we can only build non-dependent types.

EJC 2010 PTS April 1th, 2010 6 / 20

Example: How do get the STλC

Now, we can produce Π-types:
� �
� :A `

� �
� :A

� �
� :A, x :

� �
� `

� �
� :A

� �
� :A ` Πx

� �
�.
� �
� :A ≈

� �
�→

� �
�

� �
� :A

`
� �
�→

� �
�

:A
� �
� :A,_ :

� �
�→

� �
� `

� �
�→

� �
�

:A
� �
� :A

` (
� �
�→

� �
�)→ (

� �
�→

� �
�)

:A

· · ·

With those rules, we can only build non-dependent types.

EJC 2010 PTS April 1th, 2010 6 / 20

Example: How do get the STλC

Now, we can produce Π-types:
� �
� :A `

� �
� :A

� �
� :A, x :

� �
� `

� �
� :A

� �
� :A ` Πx

� �
�.
� �
� :A ≈

� �
�→

� �
�

� �
� :A

`
� �
�→

� �
�

:A
� �
� :A,_ :

� �
�→

� �
� `

� �
�→

� �
�

:A
� �
� :A

` (
� �
�→

� �
�)→ (

� �
�→

� �
�)

:A

· · ·

With those rules, we can only build non-dependent types.

EJC 2010 PTS April 1th, 2010 6 / 20

Example: How do get the STλC

Now, we can produce Π-types:
� �
� :A `

� �
� :A

� �
� :A, x :

� �
� `

� �
� :A

� �
� :A ` Πx

� �
�.
� �
� :A ≈

� �
�→

� �
�

� �
� :A

`
� �
�→

� �
�

:A
� �
� :A,_ :

� �
�→

� �
� `

� �
�→

� �
�

:A
� �
� :A

` (
� �
�→

� �
�)→ (

� �
�→

� �
�)

:A

· · ·

With those rules, we can only build non-dependent types.

EJC 2010 PTS April 1th, 2010 6 / 20

Facts about β-conversion

Some basic properties of β-reduction:

Church-Rosser property:

if M
β
� N and M

β
� P then there is M ′ such that N

β
� M ′ and P

β
� M ′.

Con�uence:

if M
β
≡ N then there is P such that M

β
� P and N

β
� P .

Injectivity of Products:

If ΠxA.B
β
≡ ΠxC .D then A

β
≡ C and B

β
≡ D.

EJC 2010 PTS April 1th, 2010 7 / 20

Facts about PTS

Inversion lemmas :

e.g. if Γ ` λxA.M : T then there are s, t, u and B such that

(s, t, u) ∈ Rel , T
β
≡ ΠxA.B

Γ ` A : s and Γ, x : A ` B : t and Γ, x : A ` M : B.

Correctness of types :

If Γ ` M : T then there is s ∈ S such that T = s or Γ ` T : s.

Subject Reduction:

If Γ ` M : T and M
β→ M ′ then Γ ` M ′ : T .

EJC 2010 PTS April 1th, 2010 8 / 20

Facts about PTS

Inversion lemmas :

e.g. if Γ ` λxA.M : T then there are s, t, u and B such that

(s, t, u) ∈ Rel , T
β
≡ ΠxA.B

Γ ` A : s and Γ, x : A ` B : t and Γ, x : A ` M : B.

Correctness of types :

If Γ ` M : T then there is s ∈ S such that T = s or Γ ` T : s.

Subject Reduction:

If Γ ` M : T and M
β→ M ′ then Γ ` M ′ : T .

EJC 2010 PTS April 1th, 2010 8 / 20

Facts about PTS

Inversion lemmas :

e.g. if Γ ` λxA.M : T then there are s, t, u and B such that

(s, t, u) ∈ Rel , T
β
≡ ΠxA.B

Γ ` A : s and Γ, x : A ` B : t and Γ, x : A ` M : B.

Correctness of types :

If Γ ` M : T then there is s ∈ S such that T = s or Γ ` T : s.

Subject Reduction:

If Γ ` M : T and M
β→ M ′ then Γ ` M ′ : T .

EJC 2010 PTS April 1th, 2010 8 / 20

Facts about PTS

Shape of Types (Jutting [93]):

If Γ ` M : A and Γ ` M : B , then

either A
β
≡ B

or A
β
� ΠxA1 ...xAn .s and B

β
� ΠxA1 ...xAn .t

Not-Fact Normalization: there are some non-terminating PTS (A:A).

Not-Fact Type Checking / Inference : type checking dependent types
is undecidable.

Not-Fact Expansion Postponement : replace conversion with reduction
only:

If Γ ` M : T then Γ `′ M : T ′ and T
β
� T ′.

EJC 2010 PTS April 1th, 2010 9 / 20

Facts about PTS

Shape of Types (Jutting [93]):

If Γ ` M : A and Γ ` M : B , then

either A
β
≡ B

or A
β
� ΠxA1 ...xAn .s and B

β
� ΠxA1 ...xAn .t

Not-Fact Normalization: there are some non-terminating PTS (A:A).

Not-Fact Type Checking / Inference : type checking dependent types
is undecidable.

Not-Fact Expansion Postponement : replace conversion with reduction
only:

If Γ ` M : T then Γ `′ M : T ′ and T
β
� T ′.

EJC 2010 PTS April 1th, 2010 9 / 20

Facts about PTS

Shape of Types (Jutting [93]):

If Γ ` M : A and Γ ` M : B , then

either A
β
≡ B

or A
β
� ΠxA1 ...xAn .s and B

β
� ΠxA1 ...xAn .t

Not-Fact Normalization: there are some non-terminating PTS (A:A).

Not-Fact Type Checking / Inference : type checking dependent types
is undecidable.

Not-Fact Expansion Postponement : replace conversion with reduction
only:

If Γ ` M : T then Γ `′ M : T ′ and T
β
� T ′.

EJC 2010 PTS April 1th, 2010 9 / 20

Facts about PTS

Shape of Types (Jutting [93]):

If Γ ` M : A and Γ ` M : B , then

either A
β
≡ B

or A
β
� ΠxA1 ...xAn .s and B

β
� ΠxA1 ...xAn .t

Not-Fact Normalization: there are some non-terminating PTS (A:A).

Not-Fact Type Checking / Inference : type checking dependent types
is undecidable.

Not-Fact Expansion Postponement : replace conversion with reduction
only:

If Γ ` M : T then Γ `′ M : T ′ and T
β
� T ′.

EJC 2010 PTS April 1th, 2010 9 / 20

Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.

EJC 2010 PTS April 1th, 2010 10 / 20

Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.

EJC 2010 PTS April 1th, 2010 10 / 20

Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.

EJC 2010 PTS April 1th, 2010 10 / 20

Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.

EJC 2010 PTS April 1th, 2010 10 / 20

Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.

EJC 2010 PTS April 1th, 2010 10 / 20

PTSe typing rules (1)

∅wfe

Γ `e A : s x /∈ Dom(Γ)

(Γ, x : A)wfe

Γwfe (s, t) ∈ Ax
Γ `e s : t

Γwfe Γ(x) = A

Γ `e x : A

Γ `e A : s Γ, x : A `e B : t
(s, t, u) ∈ Rel Γ, x : A `e M : B

Γ `e λxA.M : ΠxA.B

Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel
Γ `e ΠxA.B : u

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[x/N]

Γ `e M : A Γ `e A = B : s

Γ `e M : B

EJC 2010 PTS April 1th, 2010 11 / 20

PTSe typing rules (1)

∅wfe

Γ `e A : s x /∈ Dom(Γ)

(Γ, x : A)wfe

Γwfe (s, t) ∈ Ax
Γ `e s : t

Γwfe Γ(x) = A

Γ `e x : A

Γ `e A : s Γ, x : A `e B : t
(s, t, u) ∈ Rel Γ, x : A `e M : B

Γ `e λxA.M : ΠxA.B

Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel
Γ `e ΠxA.B : u

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[x/N]

Γ `e M : A Γ `e A = B : s

Γ `e M : B

EJC 2010 PTS April 1th, 2010 11 / 20

PTSe typing rules (2)

Γwfe (s, t) ∈ Ax
Γ `e s = s : t

Γwfe Γ(x) = A

Γ `e x = x : A

Γ `e M = M ′ : ΠxA.B Γ `e N = N ′ : A

Γ `e MN = M ′N ′ : B[x/N]

Γ `e A = A′ : s Γ, x : A `e B = B ′ : t (s, t, u) ∈ Rel
Γ `e ΠxA.B = ΠxA

′
.B ′ : u

Γ `e A = A′ : s Γ, x : A `e M = M ′ : B
Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e λxA.M = λxA
′
.M ′ : ΠxA.B

EJC 2010 PTS April 1th, 2010 12 / 20

PTSe typing rules (3)

Γ `e M = M ′ : A Γ `e A = B : s

Γ `e M = M ′ : B

Γ `e M : A

Γ `e M = M : A

Γ `e M = N : A

Γ `e N = M : A

Γ `e M = N : A Γ `e N = P : A

Γ `e M = P : A

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e (λxA.M)N = M[x/N] : B[x/N]

EJC 2010 PTS April 1th, 2010 13 / 20

The Big Question

Are both systems the same ?

EJC 2010 PTS April 1th, 2010 14 / 20

Easy part of the equivalence

We proove by mutual induction that

If Γ `e M : T then Γ ` M : T .

If Γ `e M = N : T then Γ ` M : T , Γ ` N : T and M
β
≡ N.

If Γwfe then Γwf .

Here we just �loose� some information, nothing complicated.

EJC 2010 PTS April 1th, 2010 15 / 20

Easy part of the equivalence

We proove by mutual induction that

If Γ `e M : T then Γ ` M : T .

If Γ `e M = N : T then Γ ` M : T , Γ ` N : T and M
β
≡ N.

If Γwfe then Γwf .

Here we just �loose� some information, nothing complicated.

EJC 2010 PTS April 1th, 2010 15 / 20

Hard Part

The other way around needs a way to �type� a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .

If Γ ` M : T , Γ ` N : T and M
β
≡ N then Γ `e M = N : T .

If Γwf then Γwfe .

Here, we need to �nd a way to type all the intermediate steps.

But can we ?

EJC 2010 PTS April 1th, 2010 16 / 20

Hard Part

The other way around needs a way to �type� a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .

If Γ ` M : T , Γ ` N : T and M
β
≡ N then Γ `e M = N : T .

If Γwf then Γwfe .

Here, we need to �nd a way to type all the intermediate steps.

But can we ?

EJC 2010 PTS April 1th, 2010 16 / 20

Hard Part

The other way around needs a way to �type� a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .

If Γ ` M : T , Γ ` N : T and M
β
≡ N then Γ `e M = N : T .

If Γwf then Γwfe .

Here, we need to �nd a way to type all the intermediate steps.

But can we ?

EJC 2010 PTS April 1th, 2010 16 / 20

How do we do this ?

Γ ` M : T M β
≡ N Γ ` N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?

EJC 2010 PTS April 1th, 2010 17 / 20

How do we do this ?

Γ ` M : T M

�� ��+++++++++++++++++++
β
≡ N

				�������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?

EJC 2010 PTS April 1th, 2010 17 / 20

How do we do this ?

Γ ` M : T M

�� ��+++++++++++++++++++
β
≡ N

				�������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?

EJC 2010 PTS April 1th, 2010 17 / 20

How do we do this ?

Γ ` M : T M

�� ��+++++++++++++++++++
β
≡ N

				�������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?

EJC 2010 PTS April 1th, 2010 17 / 20

How do we do this ?

Γ ` M : T M

�� ��+++++++++++++++++++
β
≡ N

				�������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?

EJC 2010 PTS April 1th, 2010 17 / 20

The need of Subject Reduction

To do so, we need to proove that PTSe have the Subject Reduction

property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to proove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency, which relies on Subject Reduction,which
relies on Π-injectivity,which relies on ...

EJC 2010 PTS April 1th, 2010 18 / 20

The need of Subject Reduction

To do so, we need to proove that PTSe have the Subject Reduction

property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to proove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency,

which relies on Subject Reduction,which
relies on Π-injectivity,which relies on ...

EJC 2010 PTS April 1th, 2010 18 / 20

The need of Subject Reduction

To do so, we need to proove that PTSe have the Subject Reduction

property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to proove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency, which relies on Subject Reduction,

which
relies on Π-injectivity,which relies on ...

EJC 2010 PTS April 1th, 2010 18 / 20

The need of Subject Reduction

To do so, we need to proove that PTSe have the Subject Reduction

property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to proove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency, which relies on Subject Reduction,which
relies on Π-injectivity,

which relies on ...

EJC 2010 PTS April 1th, 2010 18 / 20

The need of Subject Reduction

To do so, we need to proove that PTSe have the Subject Reduction

property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to proove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency, which relies on Subject Reduction,which
relies on Π-injectivity,which relies on ...

EJC 2010 PTS April 1th, 2010 18 / 20

Current status of the equivalence

We only some partials results:

for functional PTS : R. Adams [06] �Pure Type Systems with
Judgmental Equality�.

for semi-full and full PTS : V. Siles and H. Herbelin [10] �Equality is
typable in Semi-Full Pure Type Systems�.

But the question is still open for general PTS !

EJC 2010 PTS April 1th, 2010 19 / 20

Current status of the equivalence

We only some partials results:

for functional PTS : R. Adams [06] �Pure Type Systems with
Judgmental Equality�.

for semi-full and full PTS : V. Siles and H. Herbelin [10] �Equality is
typable in Semi-Full Pure Type Systems�.

But the question is still open for general PTS !

EJC 2010 PTS April 1th, 2010 19 / 20

Current status of the equivalence

We only some partials results:

for functional PTS : R. Adams [06] �Pure Type Systems with
Judgmental Equality�.

for semi-full and full PTS : V. Siles and H. Herbelin [10] �Equality is
typable in Semi-Full Pure Type Systems�.

But the question is still open for general PTS !

EJC 2010 PTS April 1th, 2010 19 / 20

That's all folks !

Thank you for your time.

EJC 2010 PTS April 1th, 2010 20 / 20

	What is a Pure Type System ?
	An Alternative Presentation: PTS with Judgmental Equality
	Equivalence

