Pure Type Systems

and
Equality Checking

pi.r2 team

Vincent Siles

INRIA - PPS - Ecole Polytechnique

April 15th, 2010

PTS and Equalities

April 15th, 2010



@ Presentation of PTS

© Equivalence between all presentations

© Partial Solution with Adams’ TPOSR
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@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. . ).
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@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. . ).

e Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A
@ The validity of typing judgments relies on two sets:

o Ax is used to type sorts .
o Rel is used to type functions (or MM-types).
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@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. . ).
e Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A

@ The validity of typing judgments relies on two sets:

o Ax is used to type sorts .

o Rel is used to type functions (or MM-types).

o Reduction :

(AxA.M) N L, M[N/x] + congruences
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PTS typing rules

FrFA:s x¢Dom(l) Ty, (s,t)eAx T,r T(x)=A
wif (Fyx: A)wr M-s:t NlN-x:A

l=A:s Mx:AFB:t
(s, t,u) € Rel Nx:A-M:B

M- \AM:NxA.B

Nr-A:s Mx:AEB:t (s,t,u) € Rel
FTENxAB:u

EM:MxAB T-N:A TEM:A AZB T1+-B:s
[ MN : Blx/N] [-M:B
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Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ac={(x0)} Rel={(xx)}
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Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ac={(x0)} Rel={(xx)}
@ System F:
S={x0} Ax={(x,0)} Rel ={(x,%x*), (0, %)}
e Calculus of Constructions:
S ={Prop, Type}  Ax = {(Prop, Type)}
Rel = {(s, Prop, Prop), (s, Type, Type)}
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Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.

pi.r2 team PTS and Equalities April 15th, 2010 6 /34



Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B. ]

pi.r2 team PTS and Equalities April 15th, 2010 6 /34



Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B. ]

e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.
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Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:
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e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.
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Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B. )

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t, there is v’ such that
(s,t/,u') € Rel.
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Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B. )

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t, there is v’ such that
(s,t/,u') € Rel.
< If the product Mx*.B is typable, then for any B’ well-typed,
MxA.B’ is also well-typed (or M-functionality).
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Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.
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Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sorTF T :s. )

@ Injectivity of MM-types:

if Nx*.B Z NxC.D then AZ C and B2 D. )

@ Subject Reduction:

FTHM:Tand M2 M then THM : T. )
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Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:
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e Vve VthenveTv
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Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

e VseS seTs
o VAB,MMxABc Ts
o if Mc Ts,MN € Ts and \xA.M € Ts

oif METv T-M:Aand T+ M: B, then AZ B,
oifMecTs THFM:Aand T M : B, thenA—B»I'IXIU‘...x,sJ".sand

B
B — I_IXIU‘...x,l,J".t.
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Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B
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@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7
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Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7

< all this lead to the definition of PTS with Judgmental Equality.
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PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Tur T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

lFeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

Mo MM NIXA.B

M- A:s Mx:AF.B:t (s,t,u) € Rel
Mo NxA.B:u

Mo M:NxA.B FTFN:A TF.M:A TFe A=B:s
[ e MN : B[x/N] e M:B

pi.r2 team PTS and Equalities April 15th, 2010 10 / 34



PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Tur T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

lFeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

Mo MM NIXA.B

M- A:s Mx:AF.B:t (s,t,u) € Rel
Mo NxA.B:u

[FeM:TIxXAB  TF.N:A Th.M:A [Th.A=B:s
[ Fe MN : B[x/N] ke M:B
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PTSe typing rules (2)

MW, (s,t) e Ax T,z Nx)=A
[Fes=s:t lFex=x:A

Me M =M :Nx".B FTEeN=N:A
[ e MN = M'N' : B[x/N]

TFe A=A:s Mx:AFeB=B:t (s,t,u) € Rel
(e NxAB=TNx*".B :u

FlFeA=A:s Mx:AFeM=M :B
Mx:AFeB:t (s,t,u) € Rel
M e MM = M2 M NxA.B
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PTSe typing rules (3)

FTFeM=M:A N-cA=B:s
lr-eM=M:B

Fe M A FeM=N:A TEF-M=N:A TF.N=P:A
rM-keM=M:A TE.N=M:A lFeM=P:A

MNx:AFe M: B M-« N: A
NFe Acs Mx:AFeB:t (s,t,u) € Rel

[e A M)N = M[x/N] : B[x/N]
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The Big Question

Are both systems the same 7
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Easy part of the equivalence

We prove by mutual induction that
o frFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMgN.
o If wae then I, r.
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Easy part of the equivalence

We prove by mutual induction that
o frFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMgN.
o If wae then I, r.

Here we just “lose” some information, nothing complicated.
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The other way around needs a way to “type” a (-equivalence into a
judgmental equality:

o fTEFM:TthenlT o M: T.

o fr'-M:T7T,TEN:T and MéNthen FTFeM=N:T.

o If ['yr then [yr.

pi.r2 team PTS and Equalities April 15th, 2010 15 / 34



The other way around needs a way to “type” a (-equivalence into a
judgmental equality:

o fTEFM:TthenlT o M: T.

o fr'-M:T7T,TEN:T and MéNthen FTFeM=N:T.

o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.
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The other way around needs a way to “type” a (-equivalence into a
judgmental equality:
o fTEFM:TthenlT o M: T.

oIfrl—l\/l:T,rl—N:TandMgNthenrl—eM:N:T.
o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.

But can we ?
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How do we do this 7

r=m:T M

I
=

Fr=N:T
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r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T
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How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

o P is welltyped in PTS by Subject Reduction.
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How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

o P is welltyped in PTS by Subject Reduction.
o Is P welltyped in PTSe ?
@ How do we type M =P and N =P in PTSe ?
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The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34



The need of Subject Reduction
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But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency,
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The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,
which relies on T-injectivity, which relies on ...
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Current status of the equivalence

We only have some partials results:

e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.
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We only have some partials results:
e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.
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Current status of the equivalence

We only have some partials results:
e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.

@ But the question is still open for general PTS !
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Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).
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to the addition of annotations on applications.
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Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

e Prove that TPOSR is Church-Rosser.
o Prove that TPOSR has Subject-Reduction.
e Prove that TPOSR is equivalent to PTS and PTSe.
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TPOSR typing rules (1)

FTEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr Ml-s>s:t Fl-xp>x: A

r-AsA:s Tx:AFB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA>A:s
Mx:AFB>B :t Mx:AFM> M :B (s, t,u) € Rel

M AAMs A M Nx”.B

r’-A> A s x:AFB>B :t
r’-Mo M :Nx*B THEN>N:A (s tu)eRel
[+ MusN > Mg N : Blx/N]
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TPOSR typing rules (1)

FTEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr Ml-s>s:t Fl-xp>x: A

r-AsA:s Tx:AFB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA>A:s
Mx:AFB>B :t Mx:AFM> M :B (s, t,u) € Rel

M AAMs A M Nx”.B

rN-Ap A :s Mx:AFB>B':t
r’-Mo M :Nx*B THEN>N:A (s tu)eRel
rl_M(X)BNl>Méx)B’N/:B[X/N]
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TPOSR typing rules (2)

rN-AsA:s Tx:AFB>B :t
Mx:A-Mp>M:B FTEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-=Mp N:A rN-B>A:s
rN-Ms>nN:B

r-M>N:s TEFM=N THFM=N TFN=P
rFM=N TFN=M r-M=p
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TPOSR typing rules (2)

rN-AsA:s Tx:AFB>B :t
Mx:A-Mp>M:B FTEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-=Mp N:A rN-B>A:s
rN-Ms>nN:B

rN-MoN:s TEM=N THFM=N rN-N=~P

TFM=N TFN=M rFM=p
We do not keep track of the sort (it requires Type Uniqueness).
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From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS

=M N:T then [[| = [M|:|T||T|FI|N|:|T|and |I\/I\ﬁ—>// |N|.

From TPOSR to PTSe
fT M N:T then || F [M| = |N|: |T].
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From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS
fr=Mo> N:T then [[| = |M|:|T||T|F|N|:|T|and |M| by |N|.

From TPOSR to PTSe
fT M N:T then || F [M| = |N|: |T].

As easy as before by induction, we just remove some information in the
derivations.
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x: CF B> B’ :s"

@ but we have some informations that may link A to C...
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x: CF B> B’ :s"
@ but we have some informations that may link A to C...

— So we need a way to equal A and C.
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Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.
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Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

@ The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of I to prove it).

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
o eitherTFA=B

oorTFA=Tx". x sand [+ B =TMNx".xY.t

pi.r2 team PTS and Equalities April 15th, 2010 24 / 34



Back to the Untyped World

@ Goal: Prove ' = A = C valid.
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Back to the Untyped World

@ Goal: Prove ' F A = C valid.
@ Useful hypothesis:
o THN >N A
o THN'>N":C
o TFMNxA.B=TMNx‘.B
By applying the previous lemma to N’
o firstcase: THFA=C

@ second case : A and C only differ by their last sort s and ¢t
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Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £

NxI€l|B.
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Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.

B o
° — I'Ix1|U1‘...x,|,U"|.s = I'Ix1|U1‘...x,|,U"|.t by transitivity.
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Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.

|Ur] | |Unl

B o
o —Ixg xrl s £ I'Ix1|U1‘...x,|,U"|.t by transitivity.

e —s=t by untyped Confluence.
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If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s g I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.
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Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s g I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.

With this, we can now finish to prove everything up to Subject Reduction
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Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,then™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, [M*| =M and |T*| = T).
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Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,then™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, [M*| =M and |T*| = T).

Since there are several ways to annotate a term, the induction can be quite
tricky without the following lemma:

Erased Context Conversion
f M - M>N:A || =2 and Ty r, then To - M > N : A,
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Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:
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Erased Confluence

HrTEMp>?:S5 TENB?: T and |M| = |N|, then there is P such that:
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Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HrTEMp>?:S5 TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

By induction, all the cases are trivial but the application one

(M| = |M'] |N| = |N'|

MMt My : NxA.B FEM >t My : Nx?A.B
FTENDT Ny : A FTEN >t Ng: A

[+ MeN >?: B[x/N] M= M ye N =7 B'[x/N]
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Shape of Types in TPOSR

Shape of Terms

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7
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Shape of Terms

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Mx” . xUn.s then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, ..o, xp: Uy EF P> P s
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Shape of Terms

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Mx” . xUn.s then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, ..o, xp: Uy EF P> P s

By combining Shape of Types and Terms, we can prove that n > 1 in our
problematic case, thus we can erase the troublesome annotation by
performing a (-reduction step first.
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Solution to the pitfall

M MusN > My (N . B[x/N]
>+ (/\X AAK)(X)BN B[X/N]
>t AA[x/N].K[x/N] . B[x/N]
>t AA[x/No].K[x/No] : B[x/N]

N >t My (X)B’N/ : B/[X/N/]
> (MEAAK) N 2 B'[x/N']
>t AAx/N.K[x/NT : B[x/N]
>t AA[x/No].K[x/No] : B'[x/N']

= M(’X) B
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Solution to the pitfall

FI—M(X)BN >+ My x)BN
>+ (/\X AAK)(X)BN
5 AA[/N].K[x/N]
>t AA[x/No]-K[x/No]
N >t My (X)B’N/
> (A AAK) s N
5t AA[/N].K[x/N]
>t AA[x/No]-K[x/No]

= M(’X) B

: B[x/N]
: B[x/N]
: B[x/N]
: B[x/N]
- B'[x/N']
- B'[x/N']
- B'[x/N']
- B'[x/N']

With Subject Reduction and Validity of Annotations, we are know able to

prove that PTS = TPOSR, and so:

PTSe = PTS = TPOSR = PTSe
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Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.
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e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and

Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..
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Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and
Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..

Possible solutions: adding Strenghthening as a primitive rule as in ICC,
restrict to normalizing systems, only add 7-expansion. ..
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Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:
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Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

Ifr = ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
(e I_leul...x,y".t = I_levl...x,Y".t.
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Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

Ifr = ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
(e I_leul...x,y".t = I_levl...x,Y".t.

However, even if we manage to prove this, the approach used to proof
Validity of Annotations do not scale to subtyping, so a new way to prove it
still needs to be found.
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Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.
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+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.
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A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

At last a base system to start proving the equivalence between Cog's
implementation and some axioms-based models that requires a typed
equality.

Dealing with n-conversion is still the same nightmare
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Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

- Dealing with n-conversion is still the same nightmare

- Subtyping forces us to throw away the Shape of Types approach to
Validity of Annotations and redo it from scratch.
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Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?
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@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?
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Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

Thank you for your time. Any questions 7
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