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De�nitions

PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed λ-Calculus,. . . ).

Terms and Contexts:
A,B,M,N ::= s | x | M N |λxA.M | ΠxA.B (or A→ B)

Γ ::= [ ] | Γ, x : A

The validity of typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x ] + congruences
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PTS typing rules

∅wf
Γ ` A : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s : t

Γwf Γ(x) = A

Γ ` x : A

Γ ` A : s Γ, x : A ` B : t
(s, t, u) ∈ Rel Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` A : s Γ, x : A ` B : t (s, t, u) ∈ Rel
Γ ` ΠxA.B : u

Γ ` M : ΠxA.B Γ ` N : A

Γ ` MN : B[x/N]

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B
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Some known Type Systems

Simply-Typed λ-Calculus:
S = {?,�} Ax = {(?,�)} Rel = {(?, ?, ?)}

System F:
S = {?,�} Ax = {(?,�)} Rel = {(?, ?, ?), (�, ?, ?)}

Calculus of Constructions:
S = {Prop,Type} Ax = {(Prop,Type)}

Rel = {(s,Prop,Prop), (s,Type,Type)}
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Some special classes of PTS

Functional: If (s, t) ∈ Ax and (s, t ′) ∈ Ax then t = t ′.
If (s, t, u) ∈ Rel and (s, t, u′) ∈ Rel then u = u′.

Those PTS enjoy the Uniqueness of Type property:

If Γ ` M : A and Γ ` M : B then A
β
≡ B .

Full: for all s, t, there is a u such that (s, t, u) ∈ Rel .
↪→ In those PTS, �any� products is typable.

Semi-full PTS: If (s, t, u) ∈ Rel then for all t ′, there is u′ such that
(s, t ′, u′) ∈ Rel .
↪→ If the product ΠxA.B is typable, then for any B ′ well-typed,
ΠxA.B ′ is also well-typed (or Π-functionality).
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Facts about PTS

Inversion lemmas :

e.g. if Γ ` λxA.M : T then there are s, t, u and B such that

(s, t, u) ∈ Rel , T
β
≡ ΠxA.B

Γ ` A : s and Γ, x : A ` B : t and Γ, x : A ` M : B.

Correctness of types :

If Γ ` M : T then there is s ∈ S such that T = s or Γ ` T : s.

Injectivity of Π-types:

If ΠxA.B
β
≡ ΠxC .D then A

β
≡ C and B

β
≡ D.

Subject Reduction:

If Γ ` M : T and M
β→ M ′ then Γ ` M ′ : T .
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Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:

Terms are classi�ed in two families Tv and Ts:

∀v ∈ V then v ∈ Tv

if M ∈ Tv ,MN ∈ Tv and λxA.M ∈ Tv

∀s ∈ S , s ∈ Ts

∀A,B,ΠxA.B ∈ Ts

if M ∈ Ts,MN ∈ Ts and λxA.M ∈ Ts

if M ∈ Tv ,Γ ` M : A and Γ ` M : B, then A
β
≡ B.

if M ∈ Ts ,Γ ` M : A and Γ ` M : B, then A
β
� ΠxU1

1
...xUn

n .s and

B
β
� ΠxU1

1
...xUn

n .t.
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Why do we want a typed equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we check each conversion step during conversion ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality.
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PTSe typing rules (1)

∅wfe

Γ `e A : s x /∈ Dom(Γ)

(Γ, x : A)wfe

Γwfe (s, t) ∈ Ax
Γ `e s : t

Γwfe Γ(x) = A

Γ `e x : A

Γ `e A : s Γ, x : A `e B : t
(s, t, u) ∈ Rel Γ, x : A `e M : B

Γ `e λxA.M : ΠxA.B

Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel
Γ `e ΠxA.B : u

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[x/N]

Γ `e M : A Γ `e A = B : s

Γ `e M : B
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PTSe typing rules (2)

Γwfe (s, t) ∈ Ax
Γ `e s = s : t

Γwfe Γ(x) = A

Γ `e x = x : A

Γ `e M = M ′ : ΠxA.B Γ `e N = N ′ : A

Γ `e MN = M ′N ′ : B[x/N]

Γ `e A = A′ : s Γ, x : A `e B = B ′ : t (s, t, u) ∈ Rel
Γ `e ΠxA.B = ΠxA

′
.B ′ : u

Γ `e A = A′ : s Γ, x : A `e M = M ′ : B
Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e λxA.M = λxA
′
.M ′ : ΠxA.B
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PTSe typing rules (3)

Γ `e M = M ′ : A Γ `e A = B : s

Γ `e M = M ′ : B

Γ `e M : A

Γ `e M = M : A

Γ `e M = N : A

Γ `e N = M : A

Γ `e M = N : A Γ `e N = P : A

Γ `e M = P : A

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e (λxA.M)N = M[x/N] : B[x/N]
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The Big Question

Are both systems the same ?
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Easy part of the equivalence

We prove by mutual induction that

If Γ `e M : T then Γ ` M : T .

If Γ `e M = N : T then Γ ` M : T , Γ ` N : T and M
β
≡ N.

If Γwfe then Γwf .

Here we just �lose� some information, nothing complicated.
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Hard Part

The other way around needs a way to �type� a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .

If Γ ` M : T , Γ ` N : T and M
β
≡ N then Γ `e M = N : T .

If Γwf then Γwfe .

Here, we need to �nd a way to type all the intermediate steps.

But can we ?
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How do we do this ?

Γ ` M : T M β
≡ N Γ ` N : T

P is welltyped in PTS by Subject Reduction.

Is P welltyped in PTSe ?

How do we type M = P and N = P in PTSe ?
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The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to prove this, we need Π-injectivity, which is still an open question for
PTSe since it relies on Con�uency, which relies on Subject Reduction,
which relies on Π-injectivity, which relies on ...
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Current status of the equivalence

We only have some partials results:

for functional PTS : R. Adams [06] �Pure Type Systems with
Judgmental Equality�.

for semi-full and full PTS : V. Siles and H. Herbelin [10] �Equality is
typable in Semi-Full Pure Type Systems�.

But the question is still open for general PTS !
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Adams' approch

In order to break the loop, Adams de�ned a typed version of the usual
parallel β-reduction, called Typed Parallel One Step Reduction

(TPOSR).

His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

The main scheme is:

Prove that TPOSR is Church-Rosser.
Prove that TPOSR has Subject-Reduction.
Prove that TPOSR is equivalent to PTS and PTSe.
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TPOSR typing rules (1)

∅wf
Γ ` A B A′ : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s B s : t

Γwf Γ(x) = A

Γ ` x B x : A

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t (s, t, u) ∈ Rel
Γ ` ΠxA.B B ΠxA

′
.B ′ : u

Γ ` A B A′ : s
Γ, x : A ` B B B ′ : t Γ, x : A ` M B M ′ : B (s, t, u) ∈ Rel

Γ ` λxA.M B λxA′
.M ′ : ΠxA.B

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t

Γ ` M B M ′ : ΠxA.B Γ ` N B N ′ : A (s, t, u) ∈ Rel
Γ ` M(x)BN B M ′(x)B′N

′ : B[x/N]
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TPOSR typing rules (2)

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t, u) ∈ Rel)

Γ ` (λxA.M)(x)BN B M ′[x/N ′] : B[x/N]

Γ ` M B N : A Γ ` A B B : s

Γ ` M B N : B

Γ ` M B N : A Γ ` B B A : s

Γ ` M B N : B

Γ ` M B N : s

Γ ` M ≡ N

Γ ` M ≡ N

Γ ` N ≡ M

Γ ` M ≡ N Γ ` N ≡ P

Γ ` M ≡ P

We do not keep track of the sort (it requires Type Uniqueness).
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From TPOSR to PTS and PTSe

Let's consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS

If Γ ` M B N : T then |Γ| ` |M| : |T | |Γ| ` |N| : |T | and |M|
β//→ |N|.

From TPOSR to PTSe

If Γ ` M B N : T then |Γ| ` |M| = |N| : |T |.

As easy as before by induction, we just remove some information in the
derivations.
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond

Property holds for TPOSR.

Diamond Property

If Γ ` M B M ′ : A and Γ ` M B M ′′ : B then there is N such that
Γ ` M ′ B N : A,B and Γ ` M ′′ B N : A,B .

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

the induction hypothesis over B requires a context �Γ, x : A�

we only have an hypothesis �Γ, x : C ` B B B ′ : s�

but we have some informations that may link A to C . . .

↪→ So we need a way to equal A and C .
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Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that Γ ` A ≡ C .

The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of Π to prove it).

Shape of Types in TPOSR

If Γ ` M B? : A and Γ ` M B? : B then

either Γ ` A ≡ B

or Γ ` A ≡ ΠxU1

1
...xUn

n .s and Γ ` B ≡ ΠxU1

1
...xUn

n .t
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Back to the Untyped World

Goal: Prove Γ ` A ≡ C valid.

Useful hypothesis:

Γ ` N ′ B N ′′′ : A
Γ ` N ′′ B N ′′′ : C
Γ ` ΠxA.B ≡ ΠxC .B

By applying the previous lemma to N ′′′:

�rst case : Γ ` A ≡ C

second case : A and C only di�er by their last sort s and t
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Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Con�uence we can
conclude that:

Πx |A|.|B|
β
≡ Πx |C |.|B|.

=⇒ |A|
β
≡ |C | by untyped Π-injectivity.

=⇒ Πx
|U1|
1 ...x

|Un|
n .s

β
≡ Πx

|U1|
1 ...x

|Un|
n .t by transitivity.

=⇒ s = t by untyped Con�uence.

by transitivity, we �nally have Γ ` A ≡ C .

With this, we can now �nish to prove everything up to Subject Reduction
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Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

If Γ ` M : T , then Γ∗ ` M∗ B M∗ : T ∗

(for all Γ∗,M∗,T ∗ such than |Γ∗| = Γ, |M∗| = M and |T ∗| = T ).

Since there are several ways to annotate a term, the induction can be quite
tricky without the following lemma:

Erased Context Conversion

If Γ1 ` M B N : A, |Γ1| = |Γ2| and Γ2 wf , then Γ2 ` M B N : A.
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Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Con�uence

If Γ ` M B? : S , Γ ` N B? : T and |M| = |N|, then there is P such that:

Γ ` M B+ P : S

Γ ` N B+ P : T

By induction, all the cases are trivial but the application one

|M| = |M ′| |N| = |N ′|
Γ ` M B+ M0 : ΠxA.B Γ ` M ′ B+ M0 : ΠxA

′
.B ′

Γ ` N B+ N0 : A Γ ` N ′ B+ N0 : A′

Γ ` M(x)BN B? : B[x/N] Γ ` M ′(x)B′N
′ B? : B ′[x/N ′]
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Erased Conversion: the second pitfall
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Shape of Terms

Shape of Types in TPOSR

If Γ ` M B? : A and Γ ` M B? : B then

either Γ ` A ≡ B

or Γ ` A ≡ ΠxU1
1 ...xUn

n .s and Γ ` B ≡ ΠxU1
1 ...xUn

n .t

What does it means to be typed by a telescope ?

(Very Simpli�ed) Shape of Terms in TPOSR in Ts

If Γ ` M B? : ΠxU1
1 ...xUn

n .s then Γ ` M B+ λxU1
1 ...xUn

n .P : ΠxU1
1 ...xUn

n .s
and Γ, x1 : U1, ..., xn : Un ` P B P : s

By combining Shape of Types and Terms, we can prove that n > 1 in our
problematic case, thus we can erase the troublesome annotation by
performing a β-reduction step �rst.
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Solution to the pitfall

Γ ` M(x)BN B+ M0 (x)BN : B[x/N]
B+ (λxCλ∆.K )(x)BN : B[x/N]
B+ λ∆[x/N].K [x/N] : B[x/N]
B+ λ∆[x/N0].K [x/N0] : B[x/N]

Γ ` M ′(x)B′N
′ B+ M0 (x)B′N ′ : B ′[x/N ′]

B+ (λxC
′
λ∆.K )(x)B′N ′ : B ′[x/N ′]

B+ λ∆[x/N ′].K [x/N ′] : B ′[x/N ′]
B+ λ∆[x/N0].K [x/N0] : B ′[x/N ′]

With Subject Reduction and Validity of Annotations, we are know able to
prove that PTS ⇒ TPOSR, and so:

PTSe ⇒ PTS ⇒ TPOSR ⇒ PTSe
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Possible Extensions of the Proof

They are several ways to enhance the system:

Change the conversion rule (with η for example).

Extend the conversion rule with cumulativity : the road to subtyping.

Adding η to the conversion is as hard as always : Strenghthening and
Subject Reduction (even untyped) still depend on one another, Con�uence
is only true on well-typed terms. . .

Possible solutions: adding Strenghthening as a primitive rule as in ICC,
restrict to normalizing systems, only add η-expansion. . .
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Subtyping

Adding cumulativity for Π-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
Π-injectivity) which has resisted all attempts until now:

If Γ ` ΠxU1
1 ...xUn

n .s ≡ ΠxV1
1 ...xVn

n .s then for all t,

Γ ` ΠxU1
1 ...xUn

n .t ≡ ΠxV1
1 ...xVn

n .t.

However, even if we manage to prove this, the approach used to proof
Validity of Annotations do not scale to subtyping, so a new way to prove it
still needs to be found.
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Conclusion: Where are we ?

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

- Dealing with η-conversion is still the same nightmare

- Subtyping forces us to throw away the Shape of Types approach to
Validity of Annotations and redo it from scratch.
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Conclusion: Next step ?

What are the leads ?

The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

Thank you for your time. Any questions ?
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