Pure Type Systems

and
Equality Checking

pi.r2 team

Vincent Siles

INRIA - PPS - Ecole Polytechnique

April 15th, 2010

PTS and Equalities

April 15th, 2010

@ Presentation of PTS

© Equivalence between all presentations

© Partial Solution with Adams’ TPOSR

pi.r2 team PTS and Equalities April 15th, 2010 2 /34

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

pi.r2 team PTS and Equalities April 15th, 2010 3 /34

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

@ Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A

pi.r2 team PTS and Equalities April 15th, 2010 3 /34

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

e Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A
@ The validity of typing judgments relies on two sets:

o Ax is used to type sorts .
o Rel is used to type functions (or MM-types).

pi.r2 team PTS and Equalities April 15th, 2010

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).
e Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A

@ The validity of typing judgments relies on two sets:

o Ax is used to type sorts .

o Rel is used to type functions (or MM-types).

o Reduction :

(AxA.M) N L, M[N/x] + congruences

pi.r2 team PTS and Equalities April 15th, 2010

PTS typing rules

FrFA:s x¢Dom(l) Ty, (s,t)eAx T,r T(x)=A
wif (Fyx: A)wr M-s:t NlN-x:A

l=A:s Mx:AFB:t
(s, t,u) € Rel Nx:A-M:B

M- \AM:NxA.B

Nr-A:s Mx:AEB:t (s,t,u) € Rel
FTENxAB:u

EM:MxAB T-N:A TEM:A AZB T1+-B:s
[MN : Blx/N] [-M:B

pi.r2 team PTS and Equalities April 15th, 2010 4 /34

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ac={(x0)} Rel={(xx)}

pi.r2 team PTS and Equalities April 15th, 2010 5/ 34

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ax={(»,0)} Rel={(x*,%)}
@ System F:
S={x0} Ax={(x,0)} Rel ={(**,%),(O,* %)}

pi.r2 team PTS and Equalities April 15th, 2010 5/ 34

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ac={(x0)} Rel={(xx)}
@ System F:
S={x0} Ax={(x,0)} Rel ={(x,%x*), (0, %)}
e Calculus of Constructions:
S ={Prop, Type} Ax = {(Prop, Type)}
Rel = {(s, Prop, Prop), (s, Type, Type)}

pi.r2 team PTS and Equalities April 15th, 2010

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.

pi.r2 team PTS and Equalities April 15th, 2010 6 /34

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

pi.r2 team PTS and Equalities April 15th, 2010 6 /34

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.

pi.r2 team PTS and Equalities April 15th, 2010

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

pi.r2 team PTS and Equalities April 15th, 2010

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.)

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t, there is v’ such that
(s,t/,u') € Rel.

pi.r2 team PTS and Equalities April 15th, 2010 6 /34

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u = /.
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.)

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t, there is v’ such that
(s,t/,u') € Rel.
< If the product Mx*.B is typable, then for any B’ well-typed,
MxA.B’ is also well-typed (or M-functionality).

pi.r2 team PTS and Equalities April 15th, 2010 6 /34

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

pi.r2 team PTS and Equalities April 15th, 2010 7/ 34

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sorTF T :s.)

pi.r2 team PTS and Equalities April 15th, 2010

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sorTF T :s.)

@ Injectivity of MM-types:

if Nx*.B Z NxC.D then AZ C and B2 D.)

pi.r2 team PTS and Equalities April 15th, 2010

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sorTF T :s.)

@ Injectivity of MM-types:

if Nx*.B Z NxC.D then AZ C and B2 D.)

@ Subject Reduction:

FTHM:Tand M2 M then THM : T.)

pi.r2 team PTS and Equalities April 15th, 2010

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

pi.r2 team PTS and Equalities April 15th, 2010 8 /34

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

pi.r2 team PTS and Equalities April 15th, 2010 8 /34

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

e VseS seTs
VA,B.MxA.B c Ts
o if Mc Ts,MN € Ts and \xA.M € Ts

pi.r2 team PTS and Equalities April 15th, 2010 8 /34

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

e VseS seTs
o VAB,MMxABc Ts
o if Mc Ts,MN € Ts and \xA.M € Ts

oif METv T-M:Aand T+ M: B, then AZ B,
oifMecTs THFM:Aand T M : B, thenA—B»I'IXIU‘...x,sJ".sand

B
B — I_IXIU‘...x,l,J".t.

pi.r2 team PTS and Equalities April 15th, 2010

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

pi.r2 team PTS and Equalities April 15th, 2010 9/ 34

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

pi.r2 team PTS and Equalities April 15th, 2010 9/ 34

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

pi.r2 team PTS and Equalities April 15th, 2010 9/ 34

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7

pi.r2 team PTS and Equalities April 15th, 2010 9/ 34

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rM-M:A AéB =B:s
r-=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7

< all this lead to the definition of PTS with Judgmental Equality.

pi.r2 team PTS and Equalities April 15th, 2010 9/ 34

PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Tur T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

lFeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

Mo MM NIXA.B

M- A:s Mx:AF.B:t (s,t,u) € Rel
Mo NxA.B:u

Mo M:NxA.B FTFN:A TF.M:A TFe A=B:s
[e MN : B[x/N] e M:B

pi.r2 team PTS and Equalities April 15th, 2010 10 / 34

PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Tur T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

lFeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

Mo MM NIXA.B

M- A:s Mx:AF.B:t (s,t,u) € Rel
Mo NxA.B:u

[FeM:TIxXAB TF.N:A Th.M:A [Th.A=B:s
[Fe MN : B[x/N] ke M:B

pi.r2 team PTS and Equalities April 15th, 2010 10 / 34

PTSe typing rules (2)

MW, (s,t) e Ax T,z Nx)=A
[Fes=s:t lFex=x:A

Me M =M :Nx".B FTEeN=N:A
[e MN = M'N' : B[x/N]

TFe A=A:s Mx:AFeB=B:t (s,t,u) € Rel
(e NxAB=TNx*".B :u

FlFeA=A:s Mx:AFeM=M :B
Mx:AFeB:t (s,t,u) € Rel
M e MM = M2 M NxA.B

pi.r2 team PTS and Equalities

April 15th, 2010

PTSe typing rules (3)

FTFeM=M:A N-cA=B:s
lr-eM=M:B

Fe M A FeM=N:A TEF-M=N:A TF.N=P:A
rM-keM=M:A TE.N=M:A lFeM=P:A

MNx:AFe M: B M-« N: A
NFe Acs Mx:AFeB:t (s,t,u) € Rel

[e A M)N = M[x/N] : B[x/N]

pi.r2 team PTS and Equalities April 15th, 2010 12 / 34

The Big Question

Are both systems the same 7

PTS and Equalities April 15th, 2010 13 / 34

Easy part of the equivalence

We prove by mutual induction that
o frFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMgN.
o If wae then I, r.

pi.r2 team PTS and Equalities April 15th, 2010 14 / 34

Easy part of the equivalence

We prove by mutual induction that
o frFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMgN.
o If wae then I, r.

Here we just “lose” some information, nothing complicated.

pi.r2 team PTS and Equalities April 15th, 2010

The other way around needs a way to “type” a (-equivalence into a
judgmental equality:

o fTEFM:TthenlT o M: T.

o fr'-M:T7T,TEN:T and MéNthen FTFeM=N:T.

o If ['yr then [yr.

pi.r2 team PTS and Equalities April 15th, 2010 15 / 34

The other way around needs a way to “type” a (-equivalence into a
judgmental equality:

o fTEFM:TthenlT o M: T.

o fr'-M:T7T,TEN:T and MéNthen FTFeM=N:T.

o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.

pi.r2 team PTS and Equalities April 15th, 2010 15 / 34

The other way around needs a way to “type” a (-equivalence into a
judgmental equality:
o fTEFM:TthenlT o M: T.

oIfrl—l\/l:T,rl—N:TandMgNthenrl—eM:N:T.
o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.

But can we ?

pi.r2 team PTS and Equalities April 15th, 2010 15 / 34

How do we do this 7

r=m:T M

I
=

Fr=N:T

pi.r2 team PTS and Equalities April 15th, 2010 16 / 34

How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

pi.r2 team PTS and Equalities April 15th, 2010 16 / 34

How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

o P is welltyped in PTS by Subject Reduction.

pi.r2 team PTS and Equalities April 15th, 2010 16 / 34

How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

o P is welltyped in PTS by Subject Reduction.
o Is P welltyped in PTSe ?

pi.r2 team PTS and Equalities April 15th, 2010 16 / 34

How do we do this 7

r=m: T M N FrM=nN:T

Il

MeM:T P MeN:T

o P is welltyped in PTS by Subject Reduction.
o Is P welltyped in PTSe ?
@ How do we type M =P and N =P in PTSe ?

pi.r2 team PTS and Equalities April 15th, 2010

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency,

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,
which relies on [-injectivity,

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tande»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,
which relies on T-injectivity, which relies on ...

pi.r2 team PTS and Equalities April 15th, 2010 17 / 34

Current status of the equivalence

We only have some partials results:

e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

pi.r2 team PTS and Equalities April 15th, 2010 18 / 34

Current status of the equivalence

We only have some partials results:
e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.

pi.r2 team PTS and Equalities April 15th, 2010 18 / 34

Current status of the equivalence

We only have some partials results:
e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.

@ But the question is still open for general PTS !

pi.r2 team PTS and Equalities April 15th, 2010 18 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;
o Prove that TPOSR is Church-Rosser.

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

e Prove that TPOSR is Church-Rosser.
o Prove that TPOSR has Subject-Reduction.

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel G-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

e Prove that TPOSR is Church-Rosser.
o Prove that TPOSR has Subject-Reduction.
e Prove that TPOSR is equivalent to PTS and PTSe.

pi.r2 team PTS and Equalities April 15th, 2010 19 / 34

TPOSR typing rules (1)

FTEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr Ml-s>s:t Fl-xp>x: A

r-AsA:s Tx:AFB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA>A:s
Mx:AFB>B :t Mx:AFM> M :B (s, t,u) € Rel

M AAMs A M Nx”.B

r’-A> A s x:AFB>B :t
r’-Mo M :Nx*B THEN>N:A (s tu)eRel
[+ MusN > Mg N : Blx/N]

pi.r2 team PTS and Equalities April 15th, 2010

TPOSR typing rules (1)

FTEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr Ml-s>s:t Fl-xp>x: A

r-AsA:s Tx:AFB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA>A:s
Mx:AFB>B :t Mx:AFM> M :B (s, t,u) € Rel

M AAMs A M Nx”.B

rN-Ap A :s Mx:AFB>B':t
r’-Mo M :Nx*B THEN>N:A (s tu)eRel
rl_M(X)BNl>Méx)B’N/:B[X/N]

pi.r2 team PTS and Equalities April 15th, 2010

TPOSR typing rules (2)

rN-AsA:s Tx:AFB>B :t
Mx:A-Mp>M:B FTEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-=Mp N:A rN-B>A:s
rN-Ms>nN:B

r-M>N:s TEFM=N THFM=N TFN=P
rFM=N TFN=M r-M=p

pi.r2 team PTS and Equalities April 15th, 2010 21 / 34

TPOSR typing rules (2)

rN-AsA:s Tx:AFB>B :t
Mx:A-Mp>M:B FTEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-=Mp N:A rN-B>A:s
rN-Ms>nN:B

rN-MoN:s TEM=N THFM=N rN-N=~P

TFM=N TFN=M rFM=p
We do not keep track of the sort (it requires Type Uniqueness).

pi.r2 team PTS and Equalities April 15th, 2010 21/ 34

From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS

=M N:T then [[| = [M|:|T||T|FI|N|:|T|and |I\/I\ﬁ—>// |N|.

From TPOSR to PTSe
fT M N:T then || F [M| = |N|: |T].

pi.r2 team PTS and Equalities April 15th, 2010 22 / 34

From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS
fr=Mo> N:T then [[| = |M|:|T||T|F|N|:|T|and |M| by |N|.

From TPOSR to PTSe
fT M N:T then || F [M| = |N|: |T].

As easy as before by induction, we just remove some information in the
derivations.

pi.r2 team PTS and Equalities April 15th, 2010 22 / 34

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

pi.r2 team PTS and Equalities April 15th, 2010 23 / 34

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

pi.r2 team PTS and Equalities April 15th, 2010 23 / 34

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x: CF B> B’ :s"

@ but we have some informations that may link A to C...

pi.r2 team PTS and Equalities April 15th, 2010 23 / 34

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandlFM' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x: CF B> B’ :s"
@ but we have some informations that may link A to C...

— So we need a way to equal A and C.

pi.r2 team PTS and Equalities April 15th, 2010 23 / 34

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

pi.r2 team PTS and Equalities April 15th, 2010 24 / 34

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

@ The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of I to prove it).

pi.r2 team PTS and Equalities April 15th, 2010 24 / 34

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

@ The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of I to prove it).

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
o eitherTFA=B

oorTFA=Tx". x sand [+ B =TMNx".xY.t

pi.r2 team PTS and Equalities April 15th, 2010 24 / 34

Back to the Untyped World

@ Goal: Prove ' = A = C valid.

pi.r2 team PTS and Equalities April 15th, 2010 25 / 34

Back to the Untyped World

@ Goal: Prove ' A = C valid.
@ Useful hypothesis:

o TN >N":A

o THN'>N":C

o NFNxA.B=MNxC.B

pi.r2 team PTS and Equalities April 15th, 2010 25 / 34

Back to the Untyped World

@ Goal: Prove ' A = C valid.
@ Useful hypothesis:

o TN >N":A

o THN'>N":C

o NFNxA.B=MNxC.B

By applying the previous lemma to N’

pi.r2 team PTS and Equalities April 15th, 2010 25 / 34

Back to the Untyped World

@ Goal: Prove ' F A = C valid.
@ Useful hypothesis:
o THN >N A
o THN'>N":C
o TFMNxA.B=TMNx‘.B
By applying the previous lemma to N’
o firstcase: THFA=C

@ second case : A and C only differ by their last sort s and ¢t

pi.r2 team PTS and Equalities April 15th, 2010

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £

NxI€l|B.

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.

B o
° — I'Ix1|U1‘...x,|,U"|.s = I'Ix1|U1‘...x,|,U"|.t by transitivity.

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.

|Ur] | |Unl

B o
o —Ixg xrl s £ I'Ix1|U1‘...x,|,U"|.t by transitivity.

e —s=t by untyped Confluence.

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s g I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A g |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s g I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.

With this, we can now finish to prove everything up to Subject Reduction

pi.r2 team PTS and Equalities April 15th, 2010 26 / 34

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,then™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, [M*| =M and |T*| = T).

pi.r2 team PTS and Equalities April 15th, 2010 27 / 34

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,then™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, [M*| =M and |T*| = T).

Since there are several ways to annotate a term, the induction can be quite
tricky without the following lemma:

Erased Context Conversion
f M - M>N:A || =2 and Ty r, then To - M > N : A,

pi.r2 team PTS and Equalities April 15th, 2010 27 / 34

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

pi.r2 team PTS and Equalities April 15th, 2010 28 / 34

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HrTEMp>?:S5 TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

pi.r2 team PTS and Equalities April 15th, 2010 28 / 34

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HrTEMp>?:S5 TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

By induction, all the cases are trivial but the application one

pi.r2 team PTS and Equalities April 15th, 2010 28 / 34

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HrTEMp>?:S5 TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

By induction, all the cases are trivial but the application one

(M| = |M'] |N| = |N'|

MMt My : NxA.B FEM >t My : Nx?A.B
FTENDT Ny : A FTEN >t Ng: A

[+ MeN >?: B[x/N] M= M ye N =7 B'[x/N]

pi.r2 team PTS and Equalities April 15th, 2010

Shape of Types in TPOSR

Shape of Terms

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

pi.r2 team PTS and Equalities April 15th, 2010

Shape of Terms

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Mx” . xUn.s then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, ..o, xp: Uy EF P> P s

pi.r2 team PTS and Equalities April 15th, 2010 20 / 34

Shape of Terms

Shape of Types in TPOSR

fr-Mp?:Aand T M >?: B then
@ eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Mx” . xUn.s then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, ..o, xp: Uy EF P> P s

By combining Shape of Types and Terms, we can prove that n > 1 in our
problematic case, thus we can erase the troublesome annotation by
performing a (-reduction step first.

pi.r2 team PTS and Equalities April 15th, 2010 20 / 34

Solution to the pitfall

M MusN > My (N . B[x/N]
>+ (/\X AAK)(X)BN B[X/N]
>t AA[x/N].K[x/N] . B[x/N]
>t AA[x/No].K[x/No] : B[x/N]

N >t My (X)B’N/ : B/[X/N/]
> (MEAAK) N 2 B'[x/N']
>t AAx/N.K[x/NT : B[x/N]
>t AA[x/No].K[x/No] : B'[x/N']

= M(’X) B

pi.r2 team PTS and Equalities April 15th, 2010

Solution to the pitfall

FI—M(X)BN >+ My x)BN
>+ (/\X AAK)(X)BN
5 AA[/N].K[x/N]
>t AA[x/No]-K[x/No]
N >t My (X)B’N/
> (A AAK) s N
5t AA[/N].K[x/N]
>t AA[x/No]-K[x/No]

= M(’X) B

: B[x/N]
: B[x/N]
: B[x/N]
: B[x/N]
- B'[x/N']
- B'[x/N']
- B'[x/N']
- B'[x/N']

With Subject Reduction and Validity of Annotations, we are know able to

prove that PTS = TPOSR, and so:

PTSe = PTS = TPOSR = PTSe

pi.r2 team PTS and Equalities

April 15th, 2010 30 / 34

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

pi.r2 team PTS and Equalities April 15th, 2010 31/ 34

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and

Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..

pi.r2 team PTS and Equalities April 15th, 2010 31/ 34

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and
Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..

Possible solutions: adding Strenghthening as a primitive rule as in ICC,
restrict to normalizing systems, only add 7-expansion. ..

pi.r2 team PTS and Equalities April 15th, 2010 31/ 34

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

pi.r2 team

PTS and Equalities

April 15th, 2010 32 /34

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

Ifr = ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
(e I_leul...x,y".t = I_levl...x,Y".t.

pi.r2 team PTS and Equalities

April 15th, 2010

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

Ifr = ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
(e I_leul...x,y".t = I_levl...x,Y".t.

However, even if we manage to prove this, the approach used to proof
Validity of Annotations do not scale to subtyping, so a new way to prove it
still needs to be found.

pi.r2 team PTS and Equalities April 15th, 2010 32 /34

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

pi.r2 team PTS and Equalities April 15th, 2010 33 /34

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

pi.r2 team PTS and Equalities April 15th, 2010 33 /34

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

pi.r2 team PTS and Equalities April 15th, 2010 33 /34

Conclusion: Where are we 7

What do we have so far:

+

+

A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

At last a base system to start proving the equivalence between Cog's
implementation and some axioms-based models that requires a typed
equality.

Dealing with n-conversion is still the same nightmare

pi.r2 team PTS and Equalities April 15th, 2010 33 /34

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

- Dealing with n-conversion is still the same nightmare

- Subtyping forces us to throw away the Shape of Types approach to
Validity of Annotations and redo it from scratch.

pi.r2 team PTS and Equalities April 15th, 2010 33 /34

Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

pi.r2 team PTS and Equalities April 15th, 2010 34 / 34

Conclusion: Next step 7

What are the leads ?
@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

pi.r2 team PTS and Equalities April 15th, 2010 34 / 34

Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

Thank you for your time. Any questions 7

pi.r2 team PTS and Equalities April 15th, 2010 34 / 34

	Presentation of PTS
	Equivalence between all presentations
	Partial Solution with Adams' TPOSR

