
Investigation on
the typing of equality in

type systems

PhD Defense

Vincent Siles
under the supervision of B. Barras and H. Herbelin

Typical - π.r2 Team
Ecole Polytechnique - INRIA - PPS

Nov 25th, 2010

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 1/39

What is a type ?

A type is a way to give a (more or less) detailed description of a whole
family of things:

cute animal vegetable fruit

With types, we can state general properties about these families like
“vegetables are good for health”.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 2/39

What is a type ?

A type is a way to give a (more or less) detailed description of a whole
family of things:

cute animal vegetable fruit

With types, we can state general properties about these families like
“vegetables are good for health”.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 2/39

What is a type ?

A type is a way to give a (more or less) detailed description of a whole
family of things:

cute animal vegetable fruit

With types, we can state general properties about these families like
“vegetables are good for health”.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 2/39

What is a type ?

A type is a way to give a (more or less) detailed description of a whole
family of things:

cute animal vegetable fruit

With types, we can state general properties about these families like
“vegetables are good for health”.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 2/39

Types in sciences

Types can also be used to describe mathematical objects or
data-structures, and these information can be helpful to avoid mistakes
in programs:

π is a real number, 1664 is a natural number (N), [1,2,3,5,7] is a
list of natural numbers, . . .
plus : N×N→ N is a function.
plus(π,1664) is an ill-typed program since plus is expecting two
natural numbers, while π is not one.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 3/39

Types in sciences

Types can also be used to describe mathematical objects or
data-structures, and these information can be helpful to avoid mistakes
in programs:

π is a real number, 1664 is a natural number (N), [1,2,3,5,7] is a
list of natural numbers, . . .

plus : N×N→ N is a function.
plus(π,1664) is an ill-typed program since plus is expecting two
natural numbers, while π is not one.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 3/39

Types in sciences

Types can also be used to describe mathematical objects or
data-structures, and these information can be helpful to avoid mistakes
in programs:

π is a real number, 1664 is a natural number (N), [1,2,3,5,7] is a
list of natural numbers, . . .
plus : N×N→ N is a function.

plus(π,1664) is an ill-typed program since plus is expecting two
natural numbers, while π is not one.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 3/39

Types in sciences

Types can also be used to describe mathematical objects or
data-structures, and these information can be helpful to avoid mistakes
in programs:

π is a real number, 1664 is a natural number (N), [1,2,3,5,7] is a
list of natural numbers, . . .
plus : N×N→ N is a function.
plus(π,1664) is an ill-typed program since plus is expecting two
natural numbers, while π is not one.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 3/39

Proofs and Types (1)

Types can be used to ensure the correctness of programs:

“If length computes the length of a list, then we know that, if l is
a valid list, then length(l) is valid (and has to be a natural
number).”

This preservation of validity looks like a proof step:

“If A⇒ B and A is valid, then B is valid.”
If when it’s snowing, I’m cold and it’s snowing, then we can
conclude that I’m cold.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 4/39

Proofs and Types (1)

Types can be used to ensure the correctness of programs:

“If length computes the length of a list, then we know that, if l is
a valid list, then length(l) is valid (and has to be a natural
number).”
This preservation of validity looks like a proof step:

“If A⇒ B and A is valid, then B is valid.”

If when it’s snowing, I’m cold and it’s snowing, then we can
conclude that I’m cold.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 4/39

Proofs and Types (1)

Types can be used to ensure the correctness of programs:

“If length computes the length of a list, then we know that, if l is
a valid list, then length(l) is valid (and has to be a natural
number).”
This preservation of validity looks like a proof step:

“If A⇒ B and A is valid, then B is valid.”
If when it’s snowing, I’m cold and it’s snowing, then we can
conclude that I’m cold.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 4/39

Proof and Types (2)

There is a deeper connexion between proofs and programs,
known as the Curry-Howard correspondence:

Proof Program

Proposition ↔ Type
Proof ↔ Program

This correspondence leads to the development of proof assistants
such as ACL2, Agda, Coq, HOL, Matita, PVS, . . .

All of these proof assistants are based on particular type theories
which ensure their correctness.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 5/39

Proof and Types (2)

There is a deeper connexion between proofs and programs,
known as the Curry-Howard correspondence:

Proof Program

Proposition ↔ Type
Proof ↔ Program

This correspondence leads to the development of proof assistants
such as ACL2, Agda, Coq, HOL, Matita, PVS, . . .

All of these proof assistants are based on particular type theories
which ensure their correctness.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 5/39

Proof and Types (2)

There is a deeper connexion between proofs and programs,
known as the Curry-Howard correspondence:

Proof Program

Proposition ↔ Type
Proof ↔ Program

This correspondence leads to the development of proof assistants
such as ACL2, Agda, Coq, HOL, Matita, PVS, . . .

All of these proof assistants are based on particular type theories
which ensure their correctness.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 5/39

1 Pure Type Systems

2 Equivalence and Typed Reduction

3 Further extensions and conclusion

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 6/39

Simply Typed λ-Calculus

M,N ::= x | λxA.M | M N
A,B ::= a | A→ B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

STLC was presented by Church in the 1930’s.
Since then, several extensions have been studied: “Type:Type”,
System-F, Calculus of Constructions . . .
Each extension has more expressive power than the previous one
(polynomials, second order arithmetic . . .)
All these type systems share a common core, but their
meta-theory were studied one at a time.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 7/39

Simply Typed λ-Calculus

M,N ::= x | λxA.M | M N
A,B ::= a | A→ B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

STLC was presented by Church in the 1930’s.
Since then, several extensions have been studied: “Type:Type”,
System-F, Calculus of Constructions . . .
Each extension has more expressive power than the previous one
(polynomials, second order arithmetic . . .)
All these type systems share a common core, but their
meta-theory were studied one at a time.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 7/39

Simply Typed λ-Calculus

M,N ::= x | λxA.M | M N
A,B ::= a | A→ B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

STLC was presented by Church in the 1930’s.
Since then, several extensions have been studied: “Type:Type”,
System-F, Calculus of Constructions . . .
Each extension has more expressive power than the previous one
(polynomials, second order arithmetic . . .)
All these type systems share a common core, but their
meta-theory were studied one at a time.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 7/39

What is a dependent type

To make a dependent version of list, we can add the length to the
type:

e.g. l ≡ [1,3,5,7] is a list of natural number, of length 4. Its type
is list 4.

concatenation of two non-dependent lists is of type
list→ list→ list.

the dependent version (concat) is of type
Πnnat .Πmnat. list n→ list m→ list (n + m)

ΠxA.B is called a dependent product.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 8/39

What is a dependent type

To make a dependent version of list, we can add the length to the
type:

e.g. l ≡ [1,3,5,7] is a list of natural number, of length 4. Its type
is list 4.
concatenation of two non-dependent lists is of type

list→ list→ list.

the dependent version (concat) is of type
Πnnat .Πmnat. list n→ list m→ list (n + m)

ΠxA.B is called a dependent product.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 8/39

What is a dependent type

To make a dependent version of list, we can add the length to the
type:

e.g. l ≡ [1,3,5,7] is a list of natural number, of length 4. Its type
is list 4.
concatenation of two non-dependent lists is of type

list→ list→ list.
the dependent version (concat) is of type
Πnnat .Πmnat. list n→ list m→ list (n + m)

ΠxA.B is called a dependent product.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 8/39

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.
To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 9/39

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B† | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.

To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

†We write A → B when B does not depend on the input.
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 9/39

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B† | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.
To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

†We write A → B when B does not depend on the input.
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 9/39

Some typing rules for PTSs

STLC PTS

Γ, x : A ` M : B

Γ ` λxA.M : A→ B ⇒
Γ ` ΠxA.B : s Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B ⇒

Γ ` M : ΠxA.B Γ ` N : A
Γ ` M N : B[N/x]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

CONV

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 10/39

Some typing rules for PTSs

STLC PTS

Γ, x : A ` M : B

Γ ` λxA.M : A→ B ⇒
Γ ` ΠxA.B : s Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B ⇒

Γ ` M : ΠxA.B Γ ` N : A
Γ ` M N : B[N/x]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

CONV

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 10/39

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.

What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 11/39

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 11/39

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 11/39

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 11/39

Facts about PTSs

For example:

Type Correctness
If Γ ` M : T then there is s ∈ Sorts such that T ≡ s or Γ ` T : s.

A more complex one:

Subject Reduction
If Γ ` M : T and M →β M ′ then Γ ` M ′ : T .

Needs Injectivity of Π-types: If ΠxA.B =β ΠxC .D then A =β C and
B =β D. (Easy by confluence of β-reduction)

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 12/39

Facts about PTSs

For example:

Type Correctness
If Γ ` M : T then there is s ∈ Sorts such that T ≡ s or Γ ` T : s.

A more complex one:

Subject Reduction
If Γ ` M : T and M →β M ′ then Γ ` M ′ : T .

Needs Injectivity of Π-types: If ΠxA.B =β ΠxC .D then A =β C and
B =β D. (Easy by confluence of β-reduction)

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 12/39

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

(λxA′
.P) Q =β P[Q/x]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 13/39

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

Let’s consider P to be the following proof of Γ ` M : B.

P1 P2 P3

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 13/39

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Confluence:

P1 P3P'2 P"2

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 13/39

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Type Correctness and Subject Reduction:

P1

P3

P'2

P"2
SR

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 13/39

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

But Subject Reduction introduces new harmful conversions:

P1

P3

P'2

P"2

SR

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 13/39

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 14/39

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T

One for equalities: Γ `e M =β N : T

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 14/39

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 14/39

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 14/39

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

Γ `e M : A Γ `e A =β B : s
Γ `e M : B

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 14/39

PTS with typed equality

Untyped β-equality is quite “small”:

(λxA.M) N =β M[N/x]

A =β A′ M =β M ′

λxA.M =β λxA′
.M ′

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 15/39

PTS with typed equality

Typed β-equality is notably “bigger”:

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e (λxA.M)N =β M[N/x] : B[N/x]

Γ `e A =β A′ : s Γ, x : A `e M =β M ′ : B
Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e λxA.M =β λxA′
.M ′ : ΠxA.B

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 15/39

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

To prove this as we did for PTSs, we need Π-Injectivity for typed
equality judgments, which is a really difficult question for PTSe since it
relies on (typed) property of Confluence, which relies on Subject
Reduction, which relies on Π-Injectivity, which relies on ...

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 16/39

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

To prove this as we did for PTSs, we need Π-Injectivity for typed
equality judgments, which is a really difficult question for PTSe since it
relies on (typed) property of Confluence,

which relies on Subject
Reduction, which relies on Π-Injectivity, which relies on ...

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 16/39

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

To prove this as we did for PTSs, we need Π-Injectivity for typed
equality judgments, which is a really difficult question for PTSe since it
relies on (typed) property of Confluence, which relies on Subject
Reduction,

which relies on Π-Injectivity, which relies on ...

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 16/39

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

To prove this as we did for PTSs, we need Π-Injectivity for typed
equality judgments, which is a really difficult question for PTSe since it
relies on (typed) property of Confluence, which relies on Subject
Reduction, which relies on Π-Injectivity,

which relies on ...

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 16/39

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

To prove this as we did for PTSs, we need Π-Injectivity for typed
equality judgments, which is a really difficult question for PTSe since it
relies on (typed) property of Confluence, which relies on Subject
Reduction, which relies on Π-Injectivity, which relies on ...

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 16/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.
2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .
3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.
4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w

By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.

2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .
3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.
4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w

By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.
2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .

3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.
4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w

By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.
2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .
3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.

4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w
By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.
2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .
3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.
4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w

By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Strong Π-Injectivity : a counterexample

If Γ `e ΠxA.B =β ΠxC .D : u then there are s, t such that
Γ `e A =β C : s, Γ(x : A) `e B =β D : t and (s, t ,u) ∈ Rel .

By using the identity function as a coercion, one can restrict the
different types of a term. Let’s consider a particular PTS with (u, v)
and (u, v ′) in the definition of its axioms:

1 u can be typed by v or v ′: ∅ ` u : v and ∅ ` u : v ′.
2 M1 ≡ idv u can only be typed by v : If ∅ ` M1 : T , then T =β v .
3 M2 ≡ idv ′ u can only be typed by v ′: If ∅ ` M2 : T , then T =β v ′.
4 ∅ `e ΠxM1 .u =β ΠxM2 .u : w

By injectivity, we would be able to get ∅ `e M1 =β M2 : s for some s,
which is impossible.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 17/39

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is no known proof of
that at the moment.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 18/39

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .

The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is no known proof of
that at the moment.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 18/39

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is no known proof of
that at the moment.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 18/39

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is no known proof of
that at the moment.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 18/39

Is there another way to prove it ?

Another way to prove Subject Reduction for PTSe would be to use the
Subject Reduction we have for PTSs. We need to prove some kind of
equivalence between both systems.

A more practical reason why we are looking for this equivalence is
about proof assistants. Usually, the implementation is done with an
untyped equality, whereas the consistency proof is done with a typed
equality. Such an equivalence would bring closer the implementation
from its theory.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 19/39

Is there another way to prove it ?

Another way to prove Subject Reduction for PTSe would be to use the
Subject Reduction we have for PTSs. We need to prove some kind of
equivalence between both systems.

A more practical reason why we are looking for this equivalence is
about proof assistants. Usually, the implementation is done with an
untyped equality, whereas the consistency proof is done with a typed
equality. Such an equivalence would bring closer the implementation
from its theory.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 19/39

The Big Question

Are PTSs and PTSe the
same systems ?

[Geuvers93]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 20/39

Easy part of the equivalence

We prove by mutual induction that
If Γ `e M : T then Γ ` M : T .
If Γ `e M =β N : T then Γ ` M : T , Γ ` N : T and M =β N.
If Γwfe then Γwf .

Here we just “lose” some information, nothing complicated.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 21/39

Easy part of the equivalence

We prove by mutual induction that
If Γ `e M : T then Γ ` M : T .
If Γ `e M =β N : T then Γ ` M : T , Γ ` N : T and M =β N.
If Γwfe then Γwf .

Here we just “lose” some information, nothing complicated.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 21/39

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 22/39

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 22/39

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 22/39

How do we do this ?

Γ ` M : T M =β N Γ ` N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 23/39

How do we do this ?

Γ ` M : T M

�� ��-------------------
=β N

�����������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 23/39

How do we do this ?

Γ ` M : T M

�� ��-------------------
=β N

�����������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.

Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 23/39

How do we do this ?

Γ ` M : T M

�� ��-------------------
=β N

�����������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?

How do we type M =β P and N =β P in PTSe ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 23/39

How do we do this ?

Γ ` M : T M

�� ��-------------------
=β N

�����������������������
Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 23/39

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].

A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.
By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 24/39

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].
A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.

By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 24/39

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].
A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.
By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 24/39

Extension of the TPOSR solution

Adams introduced an additional annotation inside the applications:
M,N,A,B ::= x | λxA.M | M(x)B N | ΠxA.B | s

Also, its system called Typed Parallel One Step Reduction is no longer
based on equality but on reduction:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

Γ ` A B A′ : s Γ, x : A ` B B B′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t ,u) ∈ Rel

Γ ` (λxA.M)(x)BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 25/39

Extension of the TPOSR solution

Adams introduced an additional annotation inside the applications:
M,N,A,B ::= x | λxA.M | M(x)B N | ΠxA.B | s

Also, its system called Typed Parallel One Step Reduction is no longer
based on equality but on reduction:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

Γ ` A B A′ : s Γ, x : A ` B B B′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t ,u) ∈ Rel

Γ ` (λxA.M)(x)BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 25/39

Summary of the proof

PTS PTSe

TPOSR
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 26/39

Summary of the proof

PTS PTSe

TPOSR
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 26/39

Summary of the proof

PTS PTSe

TPOSR
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 26/39

Summary of the proof

PTS PTSe

TPOSR
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 26/39

Road map to a proof of equivalence

The idea is to prove that:
TPOSR’s equality is Confluent.
TPOSR’s equality has Injectivity of Π-types.
TPOSR has Subject-Reduction.
TPOSR is equivalent to PTS and PTSe.

⇑
tricky part

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 27/39

Road map to a proof of equivalence

The idea is to prove that:
TPOSR’s equality is Confluent.
TPOSR’s equality has Injectivity of Π-types.
TPOSR has Subject-Reduction.
TPOSR is equivalent to PTS and PTSe.

⇑
tricky part

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 27/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.

And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B

: s

Γ ` M B N : B

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B

: s

Γ ` M B N : B

. . . Γ ` A ∼= A′ : s
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

Γ ` M B N : A Γ ` A ∼= B

: s

Γ ` M B N : B

. . . Γ ` A0 B+ A : s Γ ` A0 B+ A′ : s
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 28/39

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 29/39

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

M

N P

Q

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 29/39

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

The proof is easier than the proof for TPOSR because of the additional
annotations. However, these annotations will give us extra work in the
following properties.

As a direct consequence:

Π-Injectivity for PTSatr

If Γ ` ΠxA.B ∼= ΠxC .D then Γ ` A ∼= C and Γ, x : A ` B ∼= D.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 29/39

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B+ A : s Γ ` A0 B+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 30/39

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B+ A : s Γ ` A0 B+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 30/39

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B+ A : s Γ ` A0 B+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 30/39

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).

However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

Thanks to Subject Reduction of PTSatr , the conversion rule is no
longer a problem, but we still have to compute some valid Γ∗,M∗

and T ∗.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 31/39

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

Thanks to Subject Reduction of PTSatr , the conversion rule is no
longer a problem, but we still have to compute some valid Γ∗,M∗

and T ∗.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 31/39

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

Thanks to Subject Reduction of PTSatr , the conversion rule is no
longer a problem, but we still have to compute some valid Γ∗,M∗

and T ∗.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 31/39

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

Thanks to Subject Reduction of PTSatr , the conversion rule is no
longer a problem, but we still have to compute some valid Γ∗,M∗

and T ∗.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 31/39

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of this thesis.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 32/39

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.

Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of this thesis.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 32/39

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.

We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of this thesis.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 32/39

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of this thesis.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 32/39

Complete Equivalence

PTS PTSe

PTSatr
V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 33/39

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 34/39

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 34/39

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 34/39

By the way

Proved in
Coq

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 35/39

Expansion Postponement: still stuck

Expansion Postponement is another hard problem regarding
PTSs [Pollack92]. The idea is once again to modify the conversion
rule to suit our needs.

Γ ` M : A Γ ` B : s A =β B
Γ ` M : B
m

Γ ` M : A A→β B
Γ ` M : B

Γ ` M : A B →β A Γ ` B : s
Γ ` M : B

Following ideas from [Lengrand06], we tried to switch to a view of
PTSs based on Sequent Calculus, but failed at finding a final answer to
this problem.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 36/39

Expansion Postponement: still stuck

Expansion Postponement is another hard problem regarding
PTSs [Pollack92]. The idea is once again to modify the conversion
rule to suit our needs.

Γ ` M : A Γ ` B : s A =β B
Γ ` M : B
m

Γ ` M : A A→β B
Γ ` M : B

Γ ` M : A B →β A Γ ` B : s
Γ ` M : B

Following ideas from [Lengrand06], we tried to switch to a view of
PTSs based on Sequent Calculus, but failed at finding a final answer to
this problem.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 36/39

Expansion Postponement: still stuck

Expansion Postponement is another hard problem regarding
PTSs [Pollack92]. The idea is once again to modify the conversion
rule to suit our needs.

Γ ` M : A Γ ` B : s A =β B
Γ ` M : B
m

Γ ` M : A A→β B
Γ ` M : B

Γ ` M : A B →β A Γ ` B : s
Γ ` M : B

Following ideas from [Lengrand06], we tried to switch to a view of
PTSs based on Sequent Calculus, but failed at finding a final answer to
this problem.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 36/39

To infinity . . . and beyond !

In order to apply such a result to full scale type systems like the ones
behind proof assistants, we need to extend the theory.

Adding inductive types to have more usable datatypes.

Trying to add η-expansion to the conversion.
Adding universes à la Martin-Löf: towards CCω and CIC.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 37/39

To infinity . . . and beyond !

In order to apply such a result to full scale type systems like the ones
behind proof assistants, we need to extend the theory.

Adding inductive types to have more usable datatypes.
Trying to add η-expansion to the conversion.

Adding universes à la Martin-Löf: towards CCω and CIC.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 37/39

To infinity . . . and beyond !

In order to apply such a result to full scale type systems like the ones
behind proof assistants, we need to extend the theory.

Adding inductive types to have more usable datatypes.
Trying to add η-expansion to the conversion.
Adding universes à la Martin-Löf: towards CCω and CIC.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 37/39

The Calculus of Constructions with Universes: CCω

We tried several different extensions in order to deal with subtyping in
the CCω type system [Miquel01] but we didn’t yet find a proper
solution.

The two main issues we faced were quite different:

By keeping the same annotation process, the Erased Confluence
lemma is no longer true, so we can’t annotate a PTS into PTSatr .
All the attempts to fix the way we deal with the annotations have
broken the Church-Rosser lemma.

We still need to find the right way to deal with universes and subtyping.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 38/39

The Calculus of Constructions with Universes: CCω

We tried several different extensions in order to deal with subtyping in
the CCω type system [Miquel01] but we didn’t yet find a proper
solution.

The two main issues we faced were quite different:
By keeping the same annotation process, the Erased Confluence
lemma is no longer true, so we can’t annotate a PTS into PTSatr .

All the attempts to fix the way we deal with the annotations have
broken the Church-Rosser lemma.

We still need to find the right way to deal with universes and subtyping.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 38/39

The Calculus of Constructions with Universes: CCω

We tried several different extensions in order to deal with subtyping in
the CCω type system [Miquel01] but we didn’t yet find a proper
solution.

The two main issues we faced were quite different:
By keeping the same annotation process, the Erased Confluence
lemma is no longer true, so we can’t annotate a PTS into PTSatr .
All the attempts to fix the way we deal with the annotations have
broken the Church-Rosser lemma.

We still need to find the right way to deal with universes and subtyping.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 38/39

Conclusion

Implementation contributions:

Extension of the formalization started by Barras of the meta theory
of PTSs and PTSe by adding the full meta theory of PTSatr and
the complete proof of equivalence.
Formalization of a part of [Lengrand06] about PTSs in Sequent
Calculus with some extensions.

Theoretical contributions:

A new system with typed reduction that enjoys all the good
properties of usual PTSs, without relying on normalization.
The right notion of equality at the level of types for PTSe, which
enjoys the Injectivity of Π-types.
A final answer to the link between PTS and PTSe: they are
completely equivalent.

We finally have a unified theory of Pure Type Systems.

V. Siles, Paris, France Investigation on the typing of equality in type systems PhD Defense 39/39

	Pure Type Systems
	Equivalence and Typed Reduction
	Further extensions and conclusion

