Equality is typable in Semi-Full Pure Type Systems

Vincent Siles - Hugo Herbelin

INRIA - PPS - Ecole Polytechnique

July 11th, 2010

pi.r2 team PTS and Equalities July 11th, 2010 1/1

pi.r2 team PTS and Equalities July 11th,

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

pi.r2 team PTS and Equalities July 11th, 2010 3/1

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

@ Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A

pi.r2 team PTS and Equalities July 11th, 2010 3/1

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

e Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)
r = []|Mx:A
@ The validity of typing judgments relies on two sets:

o Ax is used to type sorts .
o Rel is used to type functions (or MM-types).

pi.r2 team PTS and Equalities July 11th, 2010 3/1

@ PTSs are a way to have general results over families of type systems
(System F, Calculus of Constructions, Simply-Typed A-Calculus,.. .).

@ Terms and Contexts:
ABMN == s|x|MNM .M|NxAB (or A— B)

r = []|Mx:A
@ The validity of typing judgments relies on two sets:
o Ax is used to type sorts .
o Rel is used to type functions (or MM-types).

o Reduction :

(AxA.M) N LA M[N/x] + congruences

pi.r2 team PTS and Equalities July 11th, 2010 3/1

PTS typing rules

FrFA:s x¢Dom(l) Ty, (s,t)eAx T,r T(x)=A
wif (Fyx: A)wr M-s:t NlN-x:A

l-A:s Mx:AFB:t
(s, t,u) € Rel Nx:A-M:B

M- MAM:NxA.B

Nr-A:s Mx:AEB:t (s,t,u) € Rel
FTENxAB:u

EM:MxAB T-N:A TEM:A AZB T-B:s
[MN : Blx/N] [-M:B

pi.r2 team PTS and Equalities July 11th, 2010 4/1

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ac={(x0)} Rel={(xx)}

pi.r2 team PTS and Equalities July 11th, 2010 5/1

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ax={(»,0)} Rel={(x*,%)}
@ System F:
S={x0} Ax={(x,0)} Rel ={(**,%),(O,* %)}

pi.r2 team PTS and Equalities July 11th, 2010 5/1

Some known Type Systems

@ Simply-Typed A-Calculus:
S={x0} Ax={(»,0)} Rel={(x*,%)}
@ System F:
S={x0} Ax={(x,0)} Rel ={(x,%x*),(0,%%)}

o Calculus of Constructions:
S ={Prop, Type} Ax = {(Prop, Type)}
Rel = {(s, Prop, Prop), (s, Type, Type)}

pi.r2 team PTS and Equalities July 11th, 2010 5/1

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/

pi.r2 team PTS and Equalities July 11th, 2010 [

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

pi.r2 team PTS and Equalities July 11th, 2010 [

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.

pi.r2 team PTS and Equalities July 11th, 2010 [

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.]

e Full: for all s, ¢, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

pi.r2 team PTS and Equalities July 11th, 2010 [

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.)

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t/, there is v’ such that
(s,t/,u') € Rel.

pi.r2 team PTS and Equalities July 11th, 2010 [

Some special classes of PTS

e Functional: If (s,t) € Ax and (s, t') € Ax then t = ¢
If (s,t,u) € Rel and (s, t,u’) € Rel then u =1/
Those PTS enjoy the Unigueness of Type property:

fFFM:Aand TF M: B then AZ B.)

o Full: for all s, t, there is a u such that (s, t,u) € Rel.
< In those PTS, “any” products is typable.

o Semi-full PTS: If (s,t, u) € Rel then for all t/, there is v’ such that
(s,t/,u') € Rel.
< If the product Mx*.B is typable, then for any B’ well-typed,
MxA.B’ is also well-typed (or M-functionality).

pi.r2 team PTS and Equalities July 11th, 2010 [

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

pi.r2 team PTS and Equalities July 11th, 2010 7/1

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sor'E T :s.)

pi.r2 team PTS and Equalities July 11th, 2010 7/1

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sor'E T :s.)

@ Injectivity of MM-types:

if Nx*.B Z NxC.D then AZ C and B2 D.)

pi.r2 team PTS and Equalities July 11th, 2010

Facts about PTS

@ Inversion lemmas :
e.g. if T AxA.M : T then there are s, t, u and B such that

o (s,t,u) € Rel, T2 NxAB
elFA:sandl,x:AFB:tandl,x: AF M : B.

e Correctness of types :

If '~ M: T then thereis s € Ssuchthat T=sor'E T :s.)

@ Injectivity of MM-types:

if Nx*.B Z NxC.D then AZ C and B2 D.)

@ Subject Reduction:

FTHM:Tand M M then THM : T.)

pi.r2 team PTS and Equalities July 11th, 2010

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

pi.r2 team PTS and Equalities July 11th, 2010 8/1

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

pi.r2 team PTS and Equalities July 11th, 2010 8/1

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

e VseS seTs
VA,B.MxAB c Ts
o if Mc Ts,MN € Tsand \xA.M € Ts

pi.r2 team PTS and Equalities July 11th, 2010 8/1

Shape of types in PTS

In 1993, Jutting did a deep study about the types of terms in PTS:
@ Terms are classified in two families Tv and Ts:

e Vve VthenveTv
o if M e Tv,MN € Tv and Ax*.M € Tv

e VseS seTs
o VAB,MIxABcTs
o if Mc Ts,MN € Tsand \xA.M € Ts

oif METv T-M:Aand T+ M: B, then AZ B,
oifMecTs TFM:Aand T M : B, thenAf»I'IXIU‘...x,sj".sand

B
B — I_IXIU‘...x,l,J".t.

pi.r2 team PTS and Equalities July 11th, 2010 8/1

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rMN-M:A AéB =B:s
r=™m:B

pi.r2 team PTS and Equalities July 11th, 2010 9/1

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rMN-M:A AéB =B:s
r=™m:B

o [-equality is all about program computation, where types are useless.

pi.r2 team PTS and Equalities July 11th, 2010 9/1

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rMN-M:A AéB =B:s
r=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

pi.r2 team PTS and Equalities July 11th, 2010 9/1

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rMN-M:A AéB =B:s
r=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7

pi.r2 team PTS and Equalities July 11th, 2010 9/1

Why do we want a typed equality ?

@ In the conversion rules the intermediate steps are not checked.

rMN-M:A AéB =B:s
r=™m:B

o [-equality is all about program computation, where types are useless.

@ Other kind of equalities may depend on types (n-expansion, external
axioms).

@ So, what if we check each conversion step during conversion 7

< all this lead to the definition of PTS with Judgmental Equality.

pi.r2 team PTS and Equalities July 11th, 2010 9/1

PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Ty T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

FeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

e AXAM: NIXA.B

M-ecA:s Mx:AF.B:t (s, t,u) € Rel
Mo MxA.B:u

Mo M:NxA.B FTFN:A TF.M:A TFe A=B:s
[e MN : Blx/N] e M:B

pi.r2 team PTS and Equalities July 11th, 2010 10/ 1

PTSe typing rules (1)

FTteAis x¢Dom(T) Tyr (s,t)eAx Ty T(x)=A
(Mx:A)we Mhes:t Mhex: A

®Wf

e

FeA:s Mx:AFeB:t
(s,t,u) € Rel Mx:AFe M:B

e AXAM: NIXA.B

M-ecA:s Mx:AF.B:t (s, t,u) € Rel
Mo MxA.B:u

TFeM:TIXAB TF.N:A Th.M:A [Th.A=B:s
[Fe MN : B[x/N] ke M:B

pi.r2 team PTS and Equalities July 11th, 2010 10/ 1

PTSe typing rules (2)

Mwr (s,t) e Ax Ty Nx)=A

[Fes=s:t

Mo M= M :NxA

lFex=x:A

.B TFe N=N: A

e MN =

M'N' : B[x/N]

TFe A=A :s Mx:AFeB=B:t (s,t,u) € Rel

e NxA.B =Nx*.B : u

TlFeA=A:s
Mx:AFeB:t

Mx:AFeM=M :B
(s,t,u) € Rel

e MXAM =

pi.r2 team PTS and Equalities

A M NxA.B

July 11th, 2010

1 /1

PTSe typing rules (3)

TFeM=M:A N-cA=B:s
le M=M:B

Fe M A FeM=N:A TEF-M=N:A TF.N=P:A
rM-keM=M:A TEHEN=M:A lFeM=P:A

MNx:AFe M: B M- N:A
NFe Acs Mx:AkFeB:t (s,t,u) € Rel

[e A M)N = M[x/N] : Bx/N]

pi.r2 team PTS and Equalities July 11th, 2010 12 /1

The Big Question

Are both systems the same 7

PTS and Equalities July 11th, 2010 13 /1

Easy part of the equivalence

We prove by mutual induction that
o fIrFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMéN.
o If wae then I, r.

pi.r2 team PTS and Equalities July 11th, 2010 14 /1

Easy part of the equivalence

We prove by mutual induction that
o fIrFe M: TthenlT-M:T.

oIfrl—eM:N:Tthenrl—M:T,FI—N:TandMéN.
o If wae then I, r.

Here we just “lose” some information, nothing complicated.

pi.r2 team PTS and Equalities July 11th, 2010 14 /1

The other way around needs a way to “type” a B-equivalence into a
judgmental equality:

o fT'EFM:TthenlT . M: T.

o fr'-M:T7T,TEN:T and MéNthen FrFe M=N:T.

o If ['yr then [yr.

pi.r2 team PTS and Equalities July 11th, 2010 15 / 1

The other way around needs a way to “type” a B-equivalence into a
judgmental equality:

o fT'EFM:TthenlT . M: T.

o fr'-M:T7T,TEN:T and MéNthen FTFeM=N:T.

o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.

pi.r2 team PTS and Equalities July 11th, 2010 15 / 1

The other way around needs a way to “type” a B-equivalence into a
judgmental equality:
o fT'EFM:TthenlT . M: T.

oIfrl—l\/l:T,rl—N:TandMéNthenrl—eM:N:T.
o If ['yr then [yr.

Here, we need to find a way to type all the intermediate steps.

But can we ?

pi.r2 team PTS and Equalities July 11th, 2010 15 / 1

How do we do this 7

Fr=mM:T M

Il
=

Fr=nN:T

pi.r2 team PTS and Equalities July 11th, 2010 16 /1

How do we do this 7

r=m:T1 M

e

N FrM=nN:T

MeM:T P MheN:T

pi.r2 team PTS and Equalities July 11th, 2010 16 /1

How do we do this 7

r=m:T1 M

e

N FrM=nN:T

MeM:T P MheN:T

o P is welltyped in PTS by Subject Reduction.

pi.r2 team PTS and Equalities July 11th, 2010 16 /1

How do we do this 7

r=m:T1 M

e

N FrM=nN:T

MeM:T P MheN:T

o P is welltyped in PTS by Subject Reduction.
o Is P welltyped in PTSe ?

pi.r2 team PTS and Equalities July 11th, 2010 16 /1

How do we do this 7

r=m:T1 M

e

N FrM=nN:T

MeM:T P MheN:T

o P is welltyped in PTS by Subject Reduction.
o Is P welltyped in PTSe ?
@ How do we type M =P and N =P in PTSe ?

pi.r2 team PTS and Equalities July 11th, 2010 16 /1

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tandl\/l—ﬂ»N,thenrl—el\/I:N:T.

pi.r2 team PTS and Equalities July 11th, 2010 17 /1

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:Tandl\/l—ﬂ»N,thenrl—el\/I:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency,

pi.r2 team PTS and Equalities July 11th, 2010 17 /1

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:TandM—ﬂ»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,

pi.r2 team PTS and Equalities July 11th, 2010 17 /1

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:TandM—ﬂ»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,
which relies on [-injectivity,

pi.r2 team PTS and Equalities July 11th, 2010 17 /1

The need of Subject Reduction

To do so, we need to prove that PTSe have the Subject Reduction property:

Subject Reduction:

Ifrl—el\/l:TandM—ﬂ»N,thenrl—el\/l:N:T.

But to prove this, we need [M-injectivity, which is still an open question for
PTSe since it relies on Confluency, which relies on Subject Reduction,
which relies on T-injectivity, which relies on ...

pi.r2 team PTS and Equalities July 11th, 2010 17 /1

Current status of the equivalence

We only have some partials results:

e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

pi.r2 team PTS and Equalities July 11th, 2010 18 /1

Current status of the equivalence

We only have some partials results:

e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.

pi.r2 team PTS and Equalities July 11th, 2010 18 /1

Current status of the equivalence

We only have some partials results:
e for functional PTS : R. Adams [06] “Pure Type Systems with
Judgmental Equality”.

o for semi-full and full PTS : V. Siles and H. Herbelin [10] “Equality is
typable in Semi-Full Pure Type Systems”.

@ But the question is still open for general PTS !

pi.r2 team PTS and Equalities July 11th, 2010 18 /1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

pi.r2 team PTS and Equalities July 11th, 2010 19/1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

pi.r2 team PTS and Equalities July 11th, 2010 19/1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

pi.r2 team PTS and Equalities July 11th, 2010 19/1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;
o Prove that TPOSR is Church-Rosser.

pi.r2 team PTS and Equalities July 11th, 2010 19/1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

e Prove that TPOSR is Church-Rosser.
o Prove that TPOSR has Subject-Reduction.

pi.r2 team PTS and Equalities July 11th, 2010 19/1

Adams’ approch

@ In order to break the loop, Adams defined a typed version of the usual
parallel S-reduction, called Typed Parallel One Step Reduction
(TPOSR).

o His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

@ The main scheme is;

e Prove that TPOSR is Church-Rosser.
o Prove that TPOSR has Subject-Reduction.
e Prove that TPOSR is equivalent to PTS and PTSe.

pi.r2 team PTS and Equalities July 11th, 2010 19/1

TPOSR typing rules (1)

TEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr l-s>s:t Fl-xp>x: A

r-FAsA:s T,x:AEB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA> A :s
Mx:AFB>B :t Mx:AFM> M :B (s,t,u) € Rel

M AA M A M NxA.B

r’FA>A s Mx:AFB>B :t
Mo M :Nx*B THEN>N:A (st u)eRel
[+ MusN > Mg N': Blx/N]

pi.r2 team PTS and Equalities July 11th, 2010 20/ 1

TPOSR typing rules (1)

TEA>A s x¢Dom(T) Tur (s,t)eAx Ty T(x)=A
wf (Mx: A)wr l-s>s:t Fl-xp>x: A

r-FAsA:s T,x:AEB>B:t (s t,u)€Rel
FTFNx?.B>Nx*.B :u

FrFA> A :s
Mx:AFB>B :t Mx:AFM> M :B (s,t,u) € Rel

M AA M A M NxA.B

rN-Ap A :s Mx:AFB>B':t
Mo M :Nx*B THEN>N:A (st u)eRel
rl_M(X)BNDMéx)B’N/:B[X/N]

pi.r2 team PTS and Equalities July 11th, 2010 20/ 1

TPOSR typing rules (2)

rM-A>A:s Tx:AFB>B :t
Mx:A-Mp>M :B TEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrMN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-Mp>N:A rN-B>A:s
rN-Ms>nN:B

’-M>N:s TEFM=N THFM=N TFN=P
rFM=N TFN=M r-M=p

pi.r2 team PTS and Equalities July 11th, 2010

TPOSR typing rules (2)

rM-A>A:s Tx:AFB>B :t
Mx:A-Mp>M :B TEN>N A (s,t,u) € Rel)
M= (Ax* M) 0eN > M'[x/N'] : B[x/N]

FrMN-Mp>N:A 'NFA>B:s
r'=M>N:B

FrMN-Mp>N:A rN-B>A:s
rN-Ms>nN:B

rN-MonN:s TEM=N THFM=N rN-N=~P

TFM=N TFN=M r-EM=p
We do not keep track of the sort (it requires Type Uniqueness).

pi.r2 team PTS and Equalities July 11th, 2010

From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS

fTr=Mo N:T then [[| = [M|:|T||T|FI|N|:|T|and |M\ﬁ—/{ |N|.

From TPOSR to PTSe
fT M N: T then || F [M| = |N|: |T].

pi.r2 team PTS and Equalities July 11th, 2010 22 /1

From TPOSR to PTS and PTSe

Let’s consider the | | function that removes all annotations on applications,
we can easily prove the following lemmas:

From TPOSR to PTS
=M N:T then [[| = |M|:|T||T|F|N|:|T|and |M| ﬂ—/{ |N|.

From TPOSR to PTSe
fT M N: T then || F [M| = |N|: |T].

As easy as before by induction, we just remove some information in the
derivations.

pi.r2 team PTS and Equalities July 11th, 2010 22 /1

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

pi.r2 team PTS and Equalities July 11th, 2010 23 /1

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandl-M' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

pi.r2 team PTS and Equalities July 11th, 2010 23 /1

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandl-M' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x : CF B> B :s"

@ but we have some informations that may link A to C...

pi.r2 team PTS and Equalities July 11th, 2010 23 /1

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

FFTEMp> M :Aand T M > M”: B then there is N such that
FFM>N:ABandl-M' > N:AB.

The main issues are the critical pairs involving the application rules: we are
unable to apply some induction hypothesis

@ the induction hypothesis over B requires a context “I',x : A"
@ we only have an hypothesis “I',x : CF B> B :s"
@ but we have some informations that may link A to C...

— So we need a way to equal A and C.

pi.r2 team PTS and Equalities July 11th, 2010 23 /1

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

pi.r2 team PTS and Equalities July 11th, 2010 24 /1

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

@ The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of I to prove it).

pi.r2 team PTS and Equalities July 11th, 2010 24 /1

Functional vs Semi-Full

@ For any functional TPOSR system, Uniqueness of Types holds, so we
can prove that T = A= C.

@ The Shape of Types property of PTS can be extended to any semi-full
TPOSR (we need the functionality of I to prove it).

Shape of Types in TPOSR

fFr-Mp?:Aand T M >?: B then
o eitherTFA=B

oorTFA=Tx". xY sand [+ B =TMNx".xY.t

pi.r2 team PTS and Equalities July 11th, 2010 24 /1

Back to the Untyped World

@ Goal: Prove ' = A= C valid.

pi.r2 team PTS and Equalities July 11th, 2010 25 /1

Back to the Untyped World

@ Goal: Prove ' A = C valid.
@ Useful hypothesis:

o TN >N":A

o THN'>N":C

o NFNxA.B=MNxC.B

pi.r2 team PTS and Equalities July 11th, 2010 25 /1

Back to the Untyped World

@ Goal: Prove ' A = C valid.
@ Useful hypothesis:

o TN >N":A

o THN'>N":C

o NFNxA.B=MNxC.B

By applying the previous lemma to N’

pi.r2 team PTS and Equalities July 11th, 2010 25 /1

Back to the Untyped World

@ Goal: Prove ' H A = C valid.
@ Useful hypothesis:
o THN >N A
o THN'>N":C
o TFMNxA.B=TMNx¢.B
By applying the previous lemma to N’
o firstcase: THFA=C

@ second case : A and C only differ by their last sort s and ¢t

pi.r2 team PTS and Equalities July 11th, 2010 25 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B|

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:
o NxIAl|B| g NxI€l|B.

o = |A £ |C] by untyped M-injectivity.

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.
o = |A £ |C] by untyped M-injectivity.

B o
° — I'Ix1|U1‘...x,|,U"|.s = I'Ix1|U1‘...x,|,U"|.t by transitivity.

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A £ |C] by untyped M-injectivity.

|Ur] | |Unl

B o
o —Ixg xrl s £ I'Ix1|U1‘...x,|,U"|.t by transitivity.

e —s=t by untyped Confluence.

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A £ |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s £ I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Back to the Untyped World, second case

If we erase all the equalities we have so far, by untyped Confluence we can
conclude that:

o NxIAl|B| £ NxI€l|B.

o = |A £ |C] by untyped M-injectivity.
° — I'Ix1|U1‘...x,|,U"|.s £ I'Ix1|U1‘...x,|,U"|.t by transitivity.
e —s=t by untyped Confluence.

by transitivity, we finally have ' - A = C.

With this, we can now finish to prove everything up to Subject Reduction

pi.r2 team PTS and Equalities July 11th, 2010 26 /1

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,thenl™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, |[M*| =M and |T*| = T).

pi.r2 team PTS and Equalities July 11th, 2010 27 /1

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

fr=M:T,thenl™*+ M*"> M*: T*
(for all T*, M*, T* such than [I*| =T, |[M*| =M and |T*| = T).

Since there are several ways to annotate a term, the induction can be quite
tricky without the following lemma:

Erased Context Conversion
f My M>N:A [=2 and Ty r, then To - M > N : A,

pi.r2 team PTS and Equalities July 11th, 2010 27 /1

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

pi.r2 team PTS and Equalities July 11th, 2010 28 /1

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HTrEMp>?:S TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

pi.r2 team PTS and Equalities July 11th, 2010 28 /1

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HTrEMp>?:S TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

By induction, all the cases are trivial but the application one

pi.r2 team PTS and Equalities July 11th, 2010 28 /1

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

HTrEMp>?:S TENB?: T and |M| = |N|, then there is P such that:
or-MptP:S
o TEND>TP:T

By induction, all the cases are trivial but the application one

(M| = |M'] |N| = |N'|

F- Mt My : MxA.B FEM >t My : Nx?A.B
FTENDT Ny : A FTEN >t Ng: A

[+ MeN >?: B[x/N] M= Mye N =7 B'[x/N]

pi.r2 team PTS and Equalities July 11th, 2010

Shape of Types in TPOSR

Shape of Terms

fFr-Mp?:Aand T M >?: B then
o eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

pi.r2 team PTS and Equalities July 11th, 2010 29 /1

Shape of Terms

Shape of Types in TPOSR

fFr-Mp?:Aand T M >?: B then
o eitherTFA=B
eor[FA= I'leul...x,?".s and [+ B = I'leul...x,sj".t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Nx . xUns then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, .o, xp: Uy E P> P s

pi.r2 team PTS and Equalities July 11th, 2010 29 /1

Shape of Terms

Shape of Types in TPOSR

fFr-Mp?:Aand T M >?: B then
o eitherTFA=B
oorTFA=MNx" xVnsand TFB=MNx".x/.t

What does it means to be typed by a telescope 7

(Very Simplified) Shape of Terms in TPOSR in Ts

IFTEM?:Nx . xUns then T M >T AUt xUn P Nxt . xUn.s
and [, xy : Uy, .o, xp: Uy E P> P s

By combining Shape of Types and Terms, we can prove that n > 1 in our
problematic case, thus we can erase the troublesome annotation by
performing a -reduction step first.

pi.r2 team PTS and Equalities July 11th, 2010

Solution to the pitfall

M MusN > My (N . B[x/N]
>+ (/\X AAK)(X)BN B[X/N]
>t AA[x/N].K[x/N] . B[x/N]
>t AA[x/No].K[x/No] : B[x/N]

N >t My (X)B’N/ : B/[X/N/]
> (AEAAK) N 2 B'[x/N']
>t AAx/N.K[x/NT : B[x/N]
>t AA[x/No].K[x/No] : B'[x/N']

I M(’X) B

pi.r2 team PTS and Equalities July 11th, 2010

Solution to the pitfall

FI—M(X)BN >+ My x)BN
>+ (/\X AAK)(X)BN
5 AA[/N].K[x/N]
> AA[x/No]-K[x/No]
N >t My (X)B’N/
> (A AAK) s N
5 AA[/N].K[x/N]
> AA[x/No]-K[x/No]

I M(’X) B

: B[x/N]
: B[x/N]
: B[x/N]
: B[x/N]
- B'[x/N']
- B'[x/N']
- B'[x/N']
- B'[x/N']

With Subject Reduction and Validity of Annotations, we are know able to

prove that PTS = TPOSR, and so:

PTSe = PTS = TPOSR = PTSe

pi.r2 team PTS and Equalities

July 11th, 2010 30 /1

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

pi.r2 team PTS and Equalities July 11th, 2010 31 /1

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and

Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..

pi.r2 team PTS and Equalities July 11th, 2010 31 /1

Possible Extensions of the Proof

They are several ways to enhance the system:
e Change the conversion rule (with 7 for example).

@ Extend the conversion rule with cumulativity : the road to subtyping.

Adding 7 to the conversion is as hard as always : Strenghthening and
Subject Reduction (even untyped) still depend on one another, Confluence
is only true on well-typed terms. ..

Possible solutions: adding Strenghthening as a primitive rule as in ICC,
restrict to normalizing systems, only add 7-expansion. ..

pi.r2 team PTS and Equalities July 11th, 2010 31 /1

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

pi.r2 team PTS and Equalities July 11th, 2010 32/1

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

If I+ ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
I+ I_leul...x,y".t = I_levl...x,Y".t.

pi.r2 team PTS and Equalities

July 11th, 2010

Subtyping

Adding cumulativity for M-types and sorts requires an odd lemma before
being able to prove the Shape of Types property (so even far before
M-injectivity) which has resisted all attempts until now:

If I+ ﬂxlul...x,fj".s = I'levl...x,Y".s then for all t,
I+ I_leul...x,y".t = I_levl...x,Y".t.

However, even if we manage to prove this, the approach used to proof
Validity of Annotations do not scale to subtyping, so a new way to prove it
still needs to be found.

pi.r2 team PTS and Equalities July 11th, 2010 32/1

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

pi.r2 team PTS and Equalities July 11th, 2010 33/1

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

pi.r2 team PTS and Equalities July 11th, 2010 33/1

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

pi.r2 team PTS and Equalities July 11th, 2010 33/1

Conclusion: Where are we 7

What do we have so far:

+

+

A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

At last a base system to start proving the equivalence between Cog's
implementation and some axioms-based models that requires a typed
equality.

Dealing with n-conversion is still the same nightmare

pi.r2 team PTS and Equalities July 11th, 2010 33/1

Conclusion: Where are we 7

What do we have so far:

+ A more precise proof of Church-Rosser for TPOSR which works for all
useful PTS.

+ A new proof of Validity of Annotations which settles the equivalence
between PTS and PTSe for all useful PTS.

+ At last a base system to start proving the equivalence between Coq's
implementation and some axioms-based models that requires a typed
equality.

- Dealing with n-conversion is still the same nightmare

- Subtyping forces us to throw away the Shape of Types approach to
Validity of Annotations and redo it from scratch.

pi.r2 team PTS and Equalities July 11th, 2010 33/1

Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

pi.r2 team PTS and Equalities July 11th, 2010 34 /1

Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

pi.r2 team PTS and Equalities July 11th, 2010 34 /1

Conclusion: Next step 7

What are the leads 7

@ The issues to prove Church-Rosser arise because we want a single
term to have multiple types, maybe we should use Intersection Types ?

@ PTS are computation-friendly when PTSe are model-friendly, maybe
something is missing and they are not the right way to think about
syntax ?

Thank you for your time. Any questions 7

pi.r2 team PTS and Equalities July 11th, 2010 34 /1

