
Ideas over terms generalization in Coq

Vincent Siles1,2

LIX/INRIA/Ecole Polytechnique
Palaiseau, France

Abstract

Coq is a tool that allows writing formal proofs and check their correctness in its underlying logic framework,
the Calculus of Inductive Constructions. Coq’s type system handles dependent types, so we should be able
to write dependently typed programs with it. However writing complex programs with their full specification
can be a rather difficult exercise. In this position paper, I discuss to what extent we can use the mechanism
already implemented in Coq to make the work of the programmer easier, especially with the use of Coq’s
unification algorithm.

Keywords: type inference, generalization, dependently typed programming

1 Introduction

Coq’s underlying logic framework, the Calculus of Inductive Constructions [1] is
a strong basis for using dependent types. It is a powerful way to write regular
programs along with a specification. However, this exercise can become arduous if
you want a precise specification or if you are using complex proofs. In this position
paper, I would like to show to what extend we can use the mechanism already
implemented in Coq to ease the work of the programmer, in particular with the
use of Coq’s unification algorithm to compute missing terms.

The main idea is to be able to write ML-like program in the more expressive
type system of Coq, with the same support for type inference and polymorphism
that we can find in OCaml or MLF [2], where the computer can, to some extent,
infer some type information omitted by the programmer.

2 Using Coq’s unification to compute omitted terms

Implicit syntax and unification
In CIC, every binder is explicit. All of the implicit syntax mechanism of Coq is

just syntactic sugar to be more user-friendly, which mainly add holes (also called ex-

1 Thanks to my supervisors Hugo Herbelin and Bruno Barras
2 Email: vincent.siles@lix.polytechnique.fr

c©2008 Published by Elsevier Science B. V.

mailto:vincent.siles@lix.polytechnique.fr

Siles

istential variables or evars) in the input term, expecting that the unification will fill
them. In other languages like the variant of Calculus of Implicit Constructions [4]
with decidable type-checking [5], the implicit syntax mechanism is in the core lan-
guage, but the user still has to point out which argument of his function can be left
implicit.

My claim is that some of those implicit arguments can be automatically guessed
by the computer, and so the user can omit them entirely from his code. This how-
ever, requires higher-order unification which is a complex problem with the rather
unfortunate property of being undecidable. Hence we tried, using an experimental
test version of Coq (based on the version 8.1), to see to which extent Coq’s algorithm
can “guess” this information.

Type inference
As mentioned above, all the binders are explicit. The consequence is that type

inference will not add binders to the terms entered by the user, it will only try to
compute missing information from implicit syntax hints. We have implemented the
ideas of this paper in a test version of Coq to mimic the behaviour of ML-languages.
We will now have a close look to some basic example, to understand how Coq deals
with this problem.

Coq < Definition id x :=x .
Error: Cannot infer a type for x

If we check the internal representation of the term above, we will see that Coq added
an evar for the type of x and failed to fill it. But it is clear here that any type could
have been used to fill this hole, because this hole is not defined yet, and has no
constraint on it (except being a valid type, a constraint we will omit to mention
henceforth). As a first try, we could just add enough binders in front of a term with
holes to bind those constraint-free holes and obtain the following behaviour:

Coq < Definition id x :=x .
id is defined
Coq < Print id.
id = fun (T : Type) (x : T) => x

: forall T : Type, T -> T

Now we will consider a new example : the application function.

Coq < Definition app f x := f x.
Error: Cannot infer a term for an internal placeholder

This time, the problem is more subtle and is a consequence of the property of
subtyping in Coq’s type system. The system will manage to add some evars and
will have (approximately) the following constraints 3 :

[] ` f :?a→?b [f :?a→?b] ` x :?c [] `?c ≤?a

We only require x’s type to be a subtype of f ’s domain. So
the previous approach is broken because it would build the term

3 ?c ≤?a stands for “?c is a subtype of ?a”

2

Siles

Definition app A B (f:A->B) x := f x which has still the constraint over
x’s type to be solved. This is were the subtyping system comes handy. Thanks to
the subtyping rules 4 , we can prove that if you are a subtype of a variable, then
you are equal to this variable. So, we can generalize ?a and ?b into type variables
A and B, so that the remaining constraint is changed to [] `?c = A and can easily
be solved. Our app function can now be computed with its full type information:

Coq < Definition app f x := f x.
app is defined
Coq < Print app.
app =
fun (T T0 : Type) (f : T -> T0) (x : T) => f x

: forall T T0 : Type, (T -> T0) -> T -> T0

From this example, we learned that it is necessary to collapse all the constraint-
free variables that are related by subtyping relations. This can be easily done if
we look at the evars to be the nodes of a graph where the edges are the subtyping
constraints: every connected graph stands for one variable we can bind in front of
the term.

Recursive functions
With non-dependent types, the case of recursive functions works fine. Since

we have no dependencies to deal with, we can add the binders before the fixpoint
definition to close the term without interfering with the recursive definition. This
will not be the case with dependent types, as we will see later.

Coq < Fixpoint length l :=
Coq < match l with
Coq < | nil => 0
Coq < | cons l’ => 1+ (length l’) end.
Error: Cannot infer a term for an internal placeholder

(* The test version should have produced the following term *)
Coq < Definition length A := fix length (l:list A) :=
Coq < match l with
Coq < | nil => 0
Coq < | cons l’ => 1 + (length l’) end.
length is defined

Generalizing into ML
Most ML type inference algorithm have a gen rule (e.g. the Hindley-Milner

Algorithm, or MLF’s gen rule [2]), which is related to the use of implicit products
in the langage. But Coq does not have such rule or product. Here we saw that we can
postpone this step to be the very last and mimic the gen rule just by adding binders
for every constraint-free evars (with respect to the subtype relation). Thanks to
this, we can now type directly in Coq our favorite OCaml programs, with very little
syntactic changes, even for recursive functions.

4 http://coq.inria.fr/V8.1pl3/refman/Reference-Manual006.html#toc26

3

Siles

3 Coq: a dependently typed programming language ?

The next step is to extend the previous algorithm to dependent types. We will
consider two examples of programs that we would like to be type-checkable in a
version of Coq with implicit generalization .

Coq < Print vector.
Inductive vector (A : Type) : nat -> Type :=

Vnil : vector A 0
| Vcons : A -> forall n : nat, vector A n -> vector A (S n)

Length
Fixpoint length v := match v with
| Vnil => 0
| Vcons w => 1 + (length w) end.

The first function is a dumb length function which computes the length of a vector
as if it were a list: we do not care about the length information in the type. With
the approach of the previous section, we can successfully fill the holes and type
check the term, but a major change occurs: adding binders in front of the term
is not enough, now we have to modify the structure of the term itself to take into
account the dependency of v over its length.

Coq < Definition length A n := fix length (v:vector A n) {struct v} :=
Coq < match v with
Coq < | Vnil => 0
Coq < | Vcons w =>1+(length w) end.
Toplevel input, characters 127-128
> | Vcons w =>1+(length w)
> ^
Error:
In environment
n : nat
A : Type
length : forall (v : vector A n) , ?3
v : vector A n
a : A
n0 : nat
w : vector A n0
The term "w" has type "vector A n0" while it is expected to have type
"vector A n"

This first definition is the case of a global generalization, and will be ill-formed
because of the recursive call, since the length of w is not n but n-1.

4

Siles

Coq < Definition length A := fix length n (v:vector A n) {struct v} :=
Coq < match v with
Coq < | Vnil => 0
Coq < | Vcons w =>1+(length w) end.
length is defined

The second one is a local generalization, which will preserve the link between v
and its size.
So we have to be careful were we put the binders, and we have to also change the
recursive call (you can notice that we add an in the recursive call) to take into
account the new argument. This is the most dangerous step because if we change the
structure of a term, we may break several constraints or results already computed
by Coq, so we have to redo the inference step from the beginning, which may be
quite costly.

With this enhancement of the algorithm, however, the length function can be de-
fined as we desired. Note also that the length, which is not used in the computation,
has been inferred.

Append
Fixpoint append v w {struct v} := match v with
| Vnil => w
| Vcons a v’ => Vcons a (append v’ w) end.

The second function takes two vectors and puts the second at the end of the first
one to build a longer vector. Again this time, the length of the vectors are not
used in the computation, only to type check the recursive call. This time, however,
the right length is not available in the context of the evar as it was in the length

function; it has to be computed from the length of v’, w and the plus function. This
is the kind of problem that will break our algorithm, because Coq v8.1’s unification
algorithm only knows how to solve equations of the form ?x x1 . . . xn = xi, while
here one needs to solve equations of the form ?x O = a and ?x (S n) = b: it will
not be able to reconstruct the plus function for natural numbers from scratch.

There is also a hidden problem in the typing of the match, in its return type. If
we do not help Coq here, it will infer the return type to be the type of w instead of
being of type vector p where p is the sum of the length of v and w (this problem
has more to do with typing dependent match and is out of our scope here), hence
failing to infer the right return type, leading to an ill-typed term.

In this case, the only solution we could think of has been to provide the return
type of the function and the return argument of the match by hand, so that Coq will
manage to infer the right return type and also the use of the plus function in the
recursive call.

5

Siles

Coq < Fixpoint append (A:Type) n (v:vector A)
m (w:vector A) : vector A (n+m) :=

Coq < match v in (vector p) return (vector A (p+m)) with
Coq < | Vnil => w
Coq < | Vcons a n’ v’ => Vcons a (append n’ v’ w) end.
append is recursively defined

But in so doing we have given almost all of the typing information of the term,
precisely what we wanted to avoid in the first place.

4 Conclusion and Future work

The non-dependent part of this attempt at an algorithm has been partially imple-
mented in an experimental extension of Coq (everything but the recursive function
support, due to the complexity of Coq’s fixpoint handling) and is working well,
but since the dependent part is really not the good way to solve this problem, this
implementation has been dropped.

The two main problems of type inference we spotted are quite different, but they
are both important open problems concerning programming with dependent types:

• Inferring terms built from the ones in the context: we could do simple arithmetic
but something more robust like the Program tactic [6] may be a better one.

• Dependent matching: inferring the return clause of a match, or getting all the in-
formation we can from the pattern matching is currently under discussion among
the Coq Development Team. Epigram [7] has a rather interesting solution but it
still requires some work from the user. We still hope to infer some of those hints
automatically.

References

[1] Coq Development Team, The Coq Proof Assistant Reference Manual,
URL:http://coq.inria.fr/V8.1pl3/refman/index.html.

[2] D. Rémy, D. LeBotlan, B. Yakobowski, MLF, URL:http://pauillac.inria.fr/ remy/mlf/.

[3] Ulf Norell, Towards a practical programming language based on dependent type theory, Phd thesis,
Chalmers University of Technology, 2007.

[4] A. Miquel, Le Calcul des Constructions implicite: syntaxe et smantique, Phd thesis, Université Paris
7, 2001.

[5] B. Barras,B. Bernardo, The Implicit Calculus of Constructions as a Programming Language with
Dependent Types, FoSSaCS (2008), 365–379.

[6] Matthieu Sozeau, Russell and the tactic Program,
URL:http://mattam.org/research/russell.en.html.

[7] H. Goguen, C. McBride, J. McKinna, Eliminating Dependent Pattern Matching, Essays Dedicated to
Joseph A. Goguen (2006), 521–540.

6

http://coq.inria.fr/V8.1pl3/refman/index.html
http://pauillac.inria.fr/~remy/mlf/
http://mattam.org/research/russell.en.html

	Introduction
	Using Coq's unification to compute omitted terms
	Coq: a dependently typed programming language ?
	Conclusion and Future work
	References

