
ZU064-05-FPR PTSATR 1 July 2010 15:9

Under consideration for publication in J. Functional Programming 1

Pure Type System conversion is always typable

Vincent Siles
Ecole Polytechnique / INRIA / Laboratoire PPS, Equipe πr2

and Hugo Herbelin
INRIA / Laboratoire PPS, Equipe πr2

(e-mail: vincent.siles@polytechnique.edu, hugo.herbelin@inria.fr)

Abstract

Pure Type Systems are usually described in two different ways, one that uses an external notion of
computation like beta-reduction, and one that relies on a typed judgment of equality, directly in the
typing system.

For a long time, the question was open to know whether both presentations described the same
theory. A first step toward this equivalence has been made by Adams for a particular class of Pure
Type Systems (PTS) called functional. Then, his result has been relaxed to all semi-full PTS in
previous work. In this paper, we finally give a positive answer to the general issue, and prove that
equivalence holds for any Pure Type System.

1 Introduction

Dependent type systems are used as a basis for both formalizing mathematics and building
more expressive programming languages. Some popular implementations of those con-
cepts are the proof systems Coq1 - which is built on top of the Calculus of Inductive
Constructors (Werner, 1994) - Isabelle-HOL2 - which can be seen as an extension of
Girard’s system Fω - and the dependently typed programming language Agda 2 (Norell,
2007). A key ingredient of these systems is the presence of an internal notion of equality
based on β -conversion or βη-conversion. However, two traditional presentations of this
equality can be found in the literature. One way to express it is to rely on an untyped,
external, conversion through a rule of the form:

Γ `M : A Γ ` B type

Γ `M : B
A=β B

This rule is the one conventionally used to define e.g. the Calculus of Inductive Con-
structions. The equality is used as a toolbox that knows nothing about the typing validity
of the terms it deals with: each conversion step is not checked to be well-typed, but along
with Confluence and Subject Reduction, we can ensure that everything goes fine. A second
approach embeds a notion of equality directly in the type system. So there are two kinds of

1 http://coq.inria.fr/refman/
2 http://www.cl.cam.ac.uk/research/hvg/Isabelle/

ZU064-05-FPR PTSATR 1 July 2010 15:9

2 V. Siles and H. Herbelin

typing judgments: one to type terms, and one to type equalities. With this kind of approach,
we can ensure that every conversion step is well-typed:

Γ `e M : A Γ `e A =β B type

Γ `e M : B

Those systems are known as “type systems with judgmental equality”. The equality knows
some typing information, and needs to fulfill some typing constraints to hold, it is not an
external tool anymore. This is the case of Martin-Löf’s Type Theory (Martin-Löf, 1984;
Nordstrom et al., 1990) or UTT (Goguen, 1994) from which Agda 2 is derived.

One way or the other, these presentations seem to express the same judgments, in two
different ways, but surprisingly, showing the equivalence between those two definitions is
difficult. Geuvers and Werner (1994) early noticed that being able to lift an untyped equal-
ity to a typed one, i.e. to turn a system with β -conversion into a system with judgmental
equality requires to show Subject Reduction in the latter system:

If Γ `e M : A and M�β N then Γ `e M =β N : A.

Subject Reduction requires the injectivity of dependent products ΠxA.B :

If Γ `e ΠxA.B =β ΠxC.D type then Γ `e A =β C type and Γ(x : A) `e B =β D type.

This property itself relies on a notion of typed confluence which again involves Subject
Reduction: we are facing a circular dependency.

Both presentations have their own purpose, but in two different directions. Usually the
systems based on judgmental equality are better suited for theoretical considerations, like
building models (Goguen, 1994; Abel et al., 2007; Werner & Lee, 2010) or studying
semantics and Normalization by Evaluation (Abel, 2010). On the other hand, the typing
judgments are irrelevant for computation and with untyped conversion, one can concentrate
on the purely computational content of conversion. Those systems are also better suited
for type-checking and type-inference as developed in van Benthem Jutting (1993) with
the definition of a syntax directed version of Pure Type Systems. However, there is still a
missing link between both presentations to ensure that they are effectively describing the
same theory.

Besides looking for a better understanding of the relations between typed and untyped
equality, another motivation is to apply such an equivalence to the foundations of proof
assistants. For instance, for Coq, the construction of a set-theoretical model (on which
relies the consistency of some standard mathematical axioms) requires the use of a typed
equality. However, the implementation relies on an untyped version of the same system.
By achieving the equivalence between both presentations, we would be able to assert that
a set-theoretical model, such as the one given by Werner and Lee, correctly applies to the
actual implementation.

The first proofs of equivalence only concerned particular cases without aiming for a gen-
eral statement, and were based on construction of models, one system at a time (Geuvers,
1993; Goguen, 1994; Abel et al., 2007). However, this kind of approach does not scale

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 3

easily since it relies on the underlying model construction, which is closely linked to the
structure of each particular system.

All the previous examples rely on several different concepts, like type dependency, but
also subtyping or inductive types. Pure Type Systems are a framework which is at the core
of the world of dependent types, with the (dependent) implication as only type constructor:
most complex systems are built on top of a particular PTS by adding new kinds of type
constructors (inductive types, intersection types, . . .). As we will see in the following
sections, the typed vs untyped equality issue also shows up in PTS. A few years ago,
Adams (2006) found a syntactical criterion and proved that every functional Pure Type
System is equivalent to its counterpart with judgmental equality. The authors also made a
new step toward an extension of the result to all PTS by reusing Adams’ criterion to prove
that the equivalence also holds for any semi-full Pure Type System (Siles & Herbelin,
2010). The main idea of those proofs is to define an intermediate system called Typed
Parallel One Step Reduction (or TPOSR) that embeds the idea of a typed equality, along
with the idea of parallel reduction which is at the heart of the proof of Confluence.

In this paper, we shall prove that the equivalence holds for any PTS: every instance of
Pure Type System, even a non-normalizing one, is equivalent to its judgmental equality
counterpart. To do so, we extended Adams’ TPOSR definition into a new system which
enjoys the same properties about typing and reduction, while keeping the whole generality
of PTS: Pure Type System based on Annotated Typed Reduction (PTSatr).

The whole process that we are going to describe involves some quite complicated struc-
tures and large mutual inductive proofs, so everything stated in this paper has been formal-
ized (using de Bruijn indices (1972)) in the proof assistant Coq. The whole development
can be found at
http://www.lix.polytechnique.fr/~vsiles/coq/PTSATR.html.

By closing this open problem, we are one step closer to more complex typing systems,
for example systems with subtyping like the Extended Calculus Of Constructions (Luo,
1989) and the Calculus of Inductive Constructions, or systems with more expressive con-
version that consider η-expansion (as in Geuvers & Werner, 1994).

2 The meta-theory of PTS

In this section, we give the definitions of Pure Type System (PTS) and Pure Type System
with Judgmental Equality (PTSe), its “typed” counterpart. We also recall the main proper-
ties of these systems, and the main issues that one will face while trying to prove that both
presentations are equivalent.

2.1 Terms and Untyped Reductions

The terms used in the following type systems are the usual λ -calculus terms a la Church
- variable, abstraction and application - extended with two more constructions which are
the entry points of types inside terms : Π-types and sorts.

ZU064-05-FPR PTSATR 1 July 2010 15:9

4 V. Siles and H. Herbelin

Structure of terms and contexts
s : Sorts
x : Vars
A,B,M,N ::= s | x |MN | λxA.M | ΠxA.B

Γ ::= /0 | Γ(x : A)

The Π construct will be used to type functions, and is usually noted A→ B when B does
not depend on its argument. If there is a dependency, we keep track of the binding variable
x with this notation.

The set Sorts is the first parameter that defines an instance of PTS. Sorts are used to assert
that a term can correctly be used in a typing position. We will see how it works in more
detail after the introduction of the typing rules. The set of variables Vars is assumed to be
infinite, and is common to all PTS. In the following, we consider s, si and t to be in Sorts,
and x, y and z to be in Vars. A context is a list of terms labeled by distinct variables, e.g.
Γ≡ (x1 : A1) . . .(xn : An), where all the xi are distinct. Since we want to handle dependent
types, the order inside the context matters: a xi can only appear in A j where j > i. Γ(x) = A
is a shortcut for (x : A) ∈ Γ and /0 denotes the empty context. The domain Dom(Γ) of
a context Γ is defined as the set of xi such that Γ(xi) exists. The concatenation of two
contexts whose domains are disjoint is written Γ1Γ2.

The term λxA.M (resp. ΠxA.B) binds the variable x in M (resp. B) but not in A and the
set of free variables (fv) is defined as usual according to those binding rules.

We use an external notion of substitution: [/] is the function of substitution, and
M[N/x] stands for the term M where all the free variables x have been replaced by N,
without any variable capture. We can extend the substitution to contexts (in this case, we
consider that x 6∈ Dom(Γ)). Γ[N/x] is recursively defined as :

1. /0[N/x], /0

2. (Γ(y : A))[N/x], Γ[N/x](y : A[N/x])

The notion of β -reduction (→β) is defined as the congruence closure of the relation
(λxA.M)N →β M[N/x] over the grammar of terms. The reflexive-transitive closure of
→β is written as �β , and its reflexive-symmetric-transitive closure as =β . The notion
of syntactic equality (up to α-conversion) is denoted as ≡.

At this point, it is important to notice the order in which we can prove things: Confluence
of the β -reduction can be established before even defining the typing system, it is only a
property of the reduction. Using this, we can prove some useful properties of Π-types and
sorts:

Lemma 2.1 (Confluence and its consequences)

• If M�β N and M�β P then there is Q such that N�β Q and P�β Q.

• Π-injectivity: If ΠxA.B =β ΠxC.D then A =β C and B =β D

• If s =β t then s≡ t.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 5

2.2 Presentation of Pure Type Systems

2.2.1 Pure Type System

A PTS is a generic framework first presented by Berardi (1988) and Terlouw to study
a family of type systems all at once. Popular type systems like Simply Typed Lambda
Calculus, System F or Calculus of Constructions (CoC) are part of this family. There is
plenty of literature on the subject (Barendregt et al., 1992) so we only recall the main ideas
of those systems.

The abstract nature of PTS arise in the typing rules for sorts and Π-types. The set Ax⊂
(Sorts× Sorts) is used to type sorts: (s, t) ∈ Ax means that the sort s can be typed by the
sort t. The set Rel ⊂ (Sorts× Sorts× Sorts) is used to check the well-formedness of Π-
types.
The typing rules for PTS are given in Fig. 1. Intuitively, Γ `M : T can be read as “the term
M has type T in the context Γ”, and Γ ` A : s as “A is a valid type in Γ”.

As we can see, the CONV rule relies on the external notion of β -conversion, so we do
not check that every step of the conversion is well-typed. However, it is easy to prove
Confluence and Subject Reduction, two properties which ensure that everything goes well.

In this paper, we will later refer to some subclasses of PTS:

Functional, Full and semi-Full PTS

• A PTS is functional if:

1. for all s, t, t ′, (s, t) ∈A x and (s, t ′) ∈A x forces t ≡ t ′.
2. for all s, t,u,u′, (s, t,u) ∈Rel and (s, t,u′) ∈Rel forces u≡ u′.

• A PTS is semi-full if (s, t,u) ∈ Rel enforces that for all t ′, there is u′ such that
(s, t ′,u′) ∈ Rel.

• A PTS is full if for any s, t, there is u such that (s, t,u) ∈ Rel.
Obviously, a full PTS is also semi-full.

Lemma 2.2 (Type Uniqueness for functional PTS)
In any functional PTS, if Γ `M : T and Γ `M : T ′ then T =β T ′.

The following properties hold for all PTS. Even if they are quite technical, they are the
basic meta-theory that we need to prove the interesting theorems.

Lemma 2.3 (Weakening)
1. If Γ1Γ2 `M : B, Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 `M : B.
2. If Γ1Γ2 w f , Γ1 ` A : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 w f .

Lemma 2.4 (Substitution)
1. If Γ1(x : A)Γ2 `M : B and Γ1 ` P : A then Γ1Γ2[P/x] `M[P/x] : B[P/x].
2. If Γ1(x : A)Γ2 w f and Γ1 ` P : A then Γ1Γ2[P/x]w f .

While proving facts about PTS, we will often need to compute some typing information
about the subterms of one judgment. To do this, we will frequently use the Generation (or
Inversion) property:

Theorem 2.5 (Generation)

ZU064-05-FPR PTSATR 1 July 2010 15:9

6 V. Siles and H. Herbelin

/0wf
NIL

Γ ` A : s x /∈ Dom(Γ)

Γ(x : A)wf
CONS

Γwf (s, t) ∈A x

Γ ` s : t
SORT

Γwf Γ(x) = A

Γ ` x : A
VAR

Γ ` A : s Γ(x : A) ` B : t
(s, t,u) ∈Rel Γ(x : A) `M : B

Γ ` λxA.M : ΠxA.B
LAM

Γ ` A : s Γ(x : A) ` B : t (s, t,u) ∈Rel

Γ `ΠxA.B : u
PI

Γ `M : ΠxA.B Γ ` N : A

Γ `MN : B[N/x]
APP

Γ `M : A A =β B Γ ` B : s

Γ `M : B
CONV

Fig. 1. Typing Rules for PTS

1. If Γ ` s : T then there is t such that (s, t) ∈A x and T =β t.
2. If Γ ` x : A then there is B such that Γ(x) = B and A =β B.
3. If Γ ` ΠxA.B : T then there are s1,s2,s3 such that Γ ` A : s1, Γ(x : A) ` B : s2,

(s1,s2,s3) ∈Rel and T =β s3.
4. If Γ ` λxA.M : T then there are s1,s2,s3 and B such that Γ ` A : s1, Γ(x : A) ` B : s2,

Γ(x : A) `M : B, (s1,s2,s3) ∈Rel and T =β ΠxA.B.
5. If Γ ` M N : T then there are A and B such that Γ ` M : ΠxA.B, Γ ` N : A and

T =β B[N/x].

Lemma 2.6 (Type Correctness)
If Γ `M : T , then there is s such that T ≡ s or Γ ` T : s.

Since we want the full generality of PTS, we need to distinguish between the two conclu-
sions: nothing ensures that all sorts are well-typed. Such sorts do not appear in left position
of any pair (s, t) ∈ Ax, and they are called top sorts.

The notion of β -conversion can easily extended to context since they are ordered lists of
terms:

Context Conversion

• /0 =β /0.
• If Γ =β Γ′, A =β B and x 6∈ Dom(Γ), then Γ(x : A) =β Γ′(x : B).

Lemma 2.7 (Context Conversion in Judgments)

If Γ `M : A, Γ =β Γ′ and Γ′w f then Γ′ `M : A.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 7

With all those tools, we can now prove the main property of PTS, which states that
computation preserves typing:

Theorem 2.8 (Subject Reduction)
If Γ `M : A and M→β N, then Γ ` N : A.

Proof
The proof can be found in (Barendregt et al., 1992). We just want to put forward that it
relies on Confluence, more precisely on the Π-injectivity of β -reduction.

Now that we have Subject Reduction, we can prove that any use of the CONV rule is
sound, even if the conversion path uses ill-typed terms. If this is the case, we can find
another path only made of well-typed terms.

Corollary 2.9 (Using CONV is always sound)
Any use of CONV can be broken into single reduction and expansion steps between well-
typed terms only.

Proof
Let us suppose we have Γ `M : T , Γ ` T ′ : s and T =β T ′. By Confluence, there is T0 such
that T �β T0 β� T ′. By Type Correctness, there is t such that Γ ` T : t, or T ≡ t:

1. In the first case, by Subject Reduction, we know that any term that appears in the
reduction from T to T0 is typed by t, and any term that appears in the reduction from
T ′ to T0 is typed by s. So we have a path from T to T ′ exactly made of well-typed
terms.

2. In the second case, T ′ =β t and by Confluence, T ′�β t. Subject Reduction enforces
Γ ` t : s. So this time also, the path from T (≡ t) and T ′ is exactly made of well-typed
terms.

It is here interesting to see that in the first case, the path between T and T ′ is well-typed
by sorts, but nothing guarantees that we can have the same sort in both branches. If we
wanted to do so, we would need to be in a functional PTS.

2.2.2 Pure Type System with Judgmental Equality

There is another variant of the presentation of Pure Type System, by defining an internal
notion of equality: Pure Type System with Judgmental Equality, where every conversion
step is checked to be well-typed. With those judgments, we no longer need to rely on
Confluence and Subject Reduction to ensure that the conversion sequences all involve well-
typed terms. The typing rules for PTSe are given in Fig. 2.

We can prove that some properties of PTS also hold for PTSe, namely Weakening, Sub-
stitution and Context Conversion. We can add to the list the following reflexivity properties
(also known as Equation Validity) which need to be proved along with Type Correctness:

Lemma 2.10 (Type Correctness and, Left-Hand / Right-Hand reflexivity of PTSe)
• If Γ `e M : T or Γ `e M = N : T , then there is s ∈ Sorts such that T ≡ s or Γ `e T : s.
• If Γ `e M =β N : A, then Γ `e M : A.

ZU064-05-FPR PTSATR 1 July 2010 15:9

8 V. Siles and H. Herbelin

/0wf
NIL

Γ `e A : s x /∈ Dom(Γ)

Γ(x : A)wf
CONS

Γwf (s, t) ∈A x

Γ `e s : t
SORT

(s1,s2,s3) ∈Rel
Γ `e A : s1 Γ(x : A) `e B : s2

Γ `e ΠxA.B : s3
PI

Γwf (s, t) ∈A x

Γ `e s =β s : t
SORT-EQ

(s1,s2,s3) ∈Rel
Γ `e A =β A′ : s1 Γ(x : A) `e B =β B′ : s2

Γ `e ΠxA.B =β ΠxA′ ,B′ : s3
PI-EQ

Γwf Γ(x) = A

Γ `e x : A
VAR

Γ `e A : s1 Γ(x : A) `e B : s2
(s1,s2,s3) ∈Rel Γ(x : A) `e M : B

Γ `e λxA.M : ΠxA.B
LAM

Γwf Γ(x) = A

Γ `e x =β x : A
VAR-EQ

Γ `e A =β A′ : s1 Γ(x : A) `e B : s2
(s1,s2,s3) ∈Rel Γ(x : A) `e M =β M′ : B

Γ `e λxA.M =β λxA′ .M′ : ΠxA.B
LAM-EQ

Γ `e M : A Γ `e A =β B : s

Γ `e M : B
CONV

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[N/x]
APP

Γ `e M =β N : A Γ `e A =β B : s

Γ `e M =β N : B
CONV-EQ

Γ `e M =β M′ : ΠxA.B Γ `e N =β N′ : A

Γ `e MN =β M′N′ : B[N/x]
APP-EQ

Γ `e M : A

Γ `e M =β M : A
REFL

(s1,s2,s3) ∈Rel
Γ `e A : s1 Γ(x : A) `e B : s2
Γ `e N : A Γ(x : A) `e M : B

Γ `e (λxA.M)N =β M[N/x] : B[N/x]
BETA

Γ `e N =β M : A

Γ `e M =β N : A
SYM

Γ `e M =β N : A Γ `e N =β P : A

Γ `e M =β P : A
TRANS

Fig. 2. Typing Rules for PTSe

• If Γ `e M =β N : A, then Γ `e N : A.

Proof
We need to prove all these propositions at once for three main reasons:

1. to prove Type Correctness, we need the Right-Hand reflexivity for the CONV rule.
2. to prove both reflexivity statement, we need Type Correctness for the APP-EQ rule.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 9

3. because of the SYM rule, we need to prove both reflexivity statement at once.

Then, Left-Hand reflexivity is simply done by induction: all the premises of the typing
rules of PTSe have been chosen to correctly type the left hand-side of the equality in the
current context. However, the Right-Hand reflexivity needs a little more work: the proof
rely on the Substitution Lemma (to type the right part of BETA), Left Reflexivity and Context
Conversion.

It is interesting to notice that we could have removed the dependency on Type Correct-
ness just by adding more typing information (like the fact that A and B are also well-typed,
with the correct sorts) to the premises of APP-EQ.

With these few results, we can prove half of the equivalence we are looking for:

Theorem 2.11 (From PTSe to PTS)
1. If Γ `e M : A then Γ `M : A.
2. If Γ `e M =β N : A then Γ `M : A, Γ ` N : A and M =β N.

Proof
The proof is a simple induction and relies on properties of PTS: we just “forget” some
typing information when dealing with the typed equalities.

2.3 Subject Reduction and Equivalence

We previously saw that Subject Reduction and Π-injectivity were two important properties
of PTS: Subject Reduction allows us to freely compute without having to check that typing
is preserved at every reduction step, and Π-injectivity is a crucial step to prove the latter.
With the basic meta-theory for PTSe at hand, we can now try to check if both properties
also holds when the equality is checked to be well-typed. If it is the case, we would be able
to prove that both presentation are in fact two different way to describe the same theory.

Theorem 2.12 (Subject Reduction)
If Γ `e M : T and M→β N then Γ `e M =β N : T .

To prove this property for PTSe, we can try the same approach that was used for PTS, but
this requires to have the Π-injectivity for PTSe. Since we are using a typed equality, we can
express this injectivity in several ways, for example by completely getting rid of the types
(as we did for PTS), or instead by trying to keep as much typing information as we can.

With the first solution, we lack too much type information to build the typed equality
needed by Subject Reduction. For the second one, we need to find the correct statement for
the injectivity. After proving the equivalence between functional PTS and PTSe, Adams
did manage to prove a strong version of injectivity, but was unsuccessful at doing it in the
general case. In fact, this statement is wrong in the general case :

Lemma 2.13 (Strong Π-injectivity does not hold for all PTSe)
The following statement does not hold for all PTSe:

If Γ `e ΠxA.B =β ΠxC.D : u, then Γ `e A =β C : s, Γ(x : A) `e B =β D : t for some
s, t ∈ Sorts such that (s, t,u) ∈ Rel.

ZU064-05-FPR PTSATR 1 July 2010 15:9

10 V. Siles and H. Herbelin

Proof
We are going to build a counterexample by selecting the right sets for Sorts, Ax and Rel.
Let us assume that strong injectivity (1) holds for all PTSe, including the following one:

• Sorts≡ {u,v,v′,w,w′}
• Ax≡ {(u,v),(u,v′),(v,w),(v′,w′)}
• Rel ≡ {(w,w,w),(w′,w′,w′),(v,v,u),(v′,v′,u)}

Let us define two terms D1≡ (λxv.u) u and D2≡ (λxv′ .u) u.

1. /0 `e D1 : v and /0 `e D1 : T forces T =β v.
2. /0 `e D2 : v′ and /0 `e D2 : T forces T =β v′.
3. with both results and the fact that /0 `e u : v and /0 `e u : v′, we can prove

/0 `e D1 =β u : v and /0 `e D2 =β u : v′.
4. The correct choice of rules in Rel leads to /0 `e ΠxD1.u =β Πxu.u : u and

/0 `e Πxu.u : u =β ΠxD2.u : u, so by transitivity: /0 `e ΠxD1.u =β ΠxD2.u : u.
5. Since we supposed (1), either /0 `e D1 =β D2 : v or /0 `e D1 =β D2 : v′.
6. In both case, one of the reflexivity lemmas and the first two items force v=β v′ which

is impossible by Confluence (cf Lemma 2.1).

To directly prove Subject Reduction, we need to find the correct injectivity statement
that will give enough typing information to build the equality, but not too much so that it
is still provable in all cases. In the next sections, we will see a statement that enjoys both
properties, but we are not able to prove it directly from the lemmas we have right now, so
we will come back to it later.

Renouncing to prove the Π-injectivity we need directly from within PTSe, one may want
to translate PTSe judgments in PTS ones to use their properties, but again one is stuck: even
if the translation from PTSe to PTS is almost trivial, the translation back from PTS to PTSe

relies itself on Subject Reduction in PTSe.

At this stage, we do not have enough available material to prove Subject Reduction for
PTSe. We will come back to this proof after achieving the equivalence between PTS and
PTSe. In the next section, we explain our new approach to prove the general equivalence,
mostly influenced by Adam’s TPOSR system. However, even if our new system is very
similar to TPOSR, the ways to build its meta-theory have major differences.

3 Basic meta-theory of PTSatr

3.1 Definition of PTSatr

Let us go back to the question of lifting a typing judgment from PTS to PTSe. To do so,
we need to be able to lift a conversion A =β B into a typed equality judgment Γ `e A =β B
and as said above, we would like to have Subject Reduction for PTSe which itself requires
the injectivity of Π-types.

A first proof of equivalence between PTS and PTSe has been made by Adams (2006)
for the subclass of functional PTS, a result that has been later extended to the subclasses of

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 11

semi-full and full PTS by the authors (Siles & Herbelin, 2010). As expected, the key step
of these proofs is to build an intermediate system with two major properties:

1. It has to be equivalent to both PTS and PTSe.
2. It has to verify the Church-Rosser property.

With such a system, we can prove that it enjoys Π-injectivity and Subject Reduction, and
finally translate both properties into PTSe.

This injectivity is a direct conclusion of the Church-Rosser property. But since we are
dealing with a typed equality, we need to build a typed version of this property. The usual
way to prove it for β -reduction is to define a parallel reduction that enjoys the Diamond
Property, and whose transitive-closure is the same closure as β -reduction. So Adams
defined a typed version of this parallel reduction called Type Parallel One Step Reduction
to prove his result. However, the proof of the Church-Rosser property for TPOSR is not so
trivial to do: as we will see in more details later, additional typing information are required
to conclude the proof. Adams decided to annotate applications by their co-domain, and
to restrict to functional PTS so his system would also enjoy the Uniqueness of Types. We
used the same annotation system to show that the Church-Rosser property also holds for
semi-full and full systems. However, to be able to prove the Church-Rosser property in the
general framework, this was not enough.

To overcome this limitation to restricted versions of PTS, we extended Adams’ system
by adding a second annotation to the applications. In his paper, he rejected this solution
because it introduces a new constraint one has to check when one wants to reduce a β -
redex, and he did not investigate how to handle this additional complication. Such methods
have already been tried to prove normalization results for PTS in (Melliès & Werner, 1997)
and for correctness and completeness results in (Streicher, 1991), but we had to adapt it
without any normalization requirement.

All of this has led us to define a variant of TPOSR that we call Pure Type System based on
Annotated Typed Reduction. This system is built on a trade-off : this additional annotation
allows us to get more information from our typing judgments, but it adds new constraints
in the typed reduction that we will have to face. We will now see in details how it is defined
and what are the difficulties introduced by this new annotation.

Structure of Annotated Terms
A,B,M,N ::= s | x |M

ΠxA.BN | λxA.M | ΠxA.B

All the other notions (context, substitution and untyped reduction) described for the
terms of PTS are defined in the same way for PTSatr, with their natural adaptation to the
annotated applications. To avoid confusion between the reductions, we will write→p for
untyped parallel reduction in PTSatr and � for its transitive closure (since PTSatr is a
parallel system, using a one-step parallel reduction will be easier, but its closure is still the
same as the usual one-step β -reduction). We define an erasure procedure | | by induction
on the structure of terms that maps annotated PTSatr terms to non-annotated PTS ones, by

ZU064-05-FPR PTSATR 1 July 2010 15:9

12 V. Siles and H. Herbelin

/0w f
EMPTY

Γ ` AB? : s x /∈ Dom(Γ)

Γ(x : A)w f
EXTEND

Γw f (s, t) ∈A x

Γ ` sB s : t
SORT

Γw f Γ(x) = A

Γ ` xB x : A
VAR

(s1,s2,s3) ∈Rel
Γ ` AB A′ : s1 Γ(x : A) ` BB B′ : s2

Γ `ΠxA.BBΠxA′ .B′ : s3
PROD

Γ ` AB A′ : s1 (s1,s2,s3) ∈Rel
Γ(x : A) ` BB? : s2 Γ(x : A) `M BM′ : B

Γ ` λxA.M B λxA′ .M′ : ΠxA.B
LAM

(s1,s2,s3) ∈Rel
Γ ` AB A′ : s1 Γ(x : A) ` BB B′ : s2
Γ `M BM′ : ΠxA.B Γ ` N B N′ : A

Γ `MΠxA.BN BM′
ΠxA′ .B′N

′ : B[N/x]
APP

Γ ` AB? : s1 Γ ` A′ B? : s1
Γ ` A0 B

+ A : s1 Γ ` A0 B
+ A′ : s1 (s1,s2,s3) ∈Rel

Γ(x : A) ` BB B′ : s2 Γ(x : A) `M BM′ : B Γ ` N B N′ : A

Γ ` (λxA.M)
ΠxA′ .BN BM′[N′/x] : B[N/x]

BETA

Γ `M B N : A Γ ` AB B : s

Γ `M B N : B
RED

Γ `M B N : A Γ ` BB A : s

Γ `M B N : B
EXP

Γ `M B N : A

Γ `M B+ N : A
REDS-INTRO

Γ `M B+ N : A Γ ` N B+ P : A

Γ `M B+ P : A
REDS-TRANS

Fig. 3. Typing Rules for the PTSatr system

inductively removing the additional typing information within the applications.

The typing rules of PTSatr are presented in Fig. 3. As a shortcut, we will use the notations
Γ `M B N : A,B for “Γ `M B N : A and Γ `M B N : B”, and Γ `M B? : A for “there is
some N such that Γ `M B N : A”.

The transitive-closure of B is written as B+, and the transitive-symmetric closure of
B as ∼=β , restricted to terms typed by sorts. We will not need a full notion of equality
since this new judgment already embeds a notion of reduction. The ∼=β judgment has to be
understood as an equality at “the level of types”, where we do not demand to keep the same
sort at every transitivity step. We will need this to be able to state the Generation Lemmas
correctly, since we do not have the Uniqueness of Types in the general case.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 13

Γ ` AB B : s

Γ ` A∼=β B
EQ-INTRO

Γ ` B∼=β A

Γ ` A∼=β B
SYM

Γ ` A∼=β B Γ ` B∼=β C

Γ ` A∼=β C
TRANS

Fig. 4. Type Equality in PTSatr

So far, we are juggling with a few variants of β -equality, so we will now recall all our
notations as a remainder to avoid confusion:

Notation Terms Systems Meaning

M ≡ N all all syntactic (α-conversion)
M =β N non-annotated PTS β -conversion

Γ `e M =β N : T non-annotated PTSe β -conversion with typing constraints
Γ `M ∼=β N annotated PTSatr β -conversion with typing constraints

The BETA rule may seem complicated at first, but its meaning is to ensure that there is a
conversion path from the annotation of the λ case A, to the annotation of the application A′,
where each step is typed by the sort s1 (which is the first sort of the triple). The equality∼=β

ensures that each step is typed by a sort, but does not guarantee that each step use the same
one, so we can not use it directly. And using another equality where we ensure that each
step lives in the same type (much like PTSe equality) did not help at all in the following
proofs. That is the reason why we stated the system with this “common expanded form”
rather than with another new judgment that will not be used elsewhere.

3.2 General properties of PTSatr

From now on, we consider the general case of PTS, without any restrictions: we can start
to prove some properties of PTSatr (by mutual induction over B and B+ at once):

Lemma 3.1 (Weakening)
1. If Γ1Γ2 `MBN : B, Γ1 ` AB? : s and x /∈Dom(Γ1Γ2) then Γ1(x : A)Γ2 `MBN : B.
2. If Γ1Γ2 `M B+ N : B, Γ1 ` AB? : s and x /∈ Dom(Γ1Γ2) then

Γ1(x : A)Γ2 `M B+ N : B.
3. If Γ1Γ2 w f , Γ1 ` AB? : s and x /∈ Dom(Γ1Γ2) then Γ1(x : A)Γ2 w f .

Lemma 3.2 (Parallel Substitution)
1. If Γ1(x : A)Γ2 `M B N : B and Γ1 ` PB P′ : A then

Γ1Γ2[P/x] `M[P/x]B N[P′/x] : B[P/x].
2. If Γ1(x : A)Γ2 `M B+ N : B and Γ1 ` PB P′ : A then

Γ1Γ2[P/x] `M[P/x]B+ N[P′/x] : B[P/x].
3. If Γ1(x : A)Γ2 w f and Γ1 ` PB? : A then Γ1Γ2[P/x]w f .

We extend the notion of equality on terms to equality on contexts, which are nothing but
ordered lists of terms:

Context Conversion

• /0∼=β /0.

ZU064-05-FPR PTSATR 1 July 2010 15:9

14 V. Siles and H. Herbelin

• If Γ∼=β Γ′, Γ ` A∼=β B and x 6∈ Dom(Γ), then Γ(x : A)∼=β Γ′(x : B).

Lemma 3.3 (Conversion in Context)
• If Γ `M B N : A and Γ∼=β Γ′ then Γ′ `M B N : A.
• If Γ `M B+ N : A and Γ∼=β Γ′ then Γ′ `M B+ N : A.
• If Γ ` A∼=β B and Γ∼=β Γ′ then Γ′ ` A∼=β B.

Lemma 3.4 (Left-Hand and Right-Hand Typability)
1. If Γ `M B N : A or Γ `M B+ N : A, then Γ `M BM : A.
2. If Γ `M B N : A or Γ `M B+ N : A, then Γ ` N B N : A.
3. If Γ ` A∼=β B, then Γ ` AB A : s and Γ ` BB B : t for some sorts s and t.

The following lemma is an adapted version of the Generation Lemma introduced for
PTS. By adding both annotations, we do not have to “guess” the domain and co-domain of
an application anymore.

Lemma 3.5 (Generation)
1. If Γ ` s B N : T then N ≡ s and there is t such that (s, t) ∈ Ax and either T ≡ t or

Γ ` T ∼=β t.
2. If Γ ` xB N : T then N ≡ x and there is A such that Γ(x) = A and Γ ` T ∼=β A.
3. If Γ `ΠxA.BB N : T then there are A′,B′,s1,s2,s3 such that N ≡ΠxA′ .B′,

(s1,s2,s3) ∈ Rel, Γ ` AB A′ : s1, Γ(x : A) ` BB B′ : s2 and either T ≡ s3 or
Γ ` T ∼=β s3.

4. If Γ ` λxA.M B N : T then there are A′,M′,B,B′,s1,s2,s3 such that N ≡ λxA′ .M′,
(s1,s2,s3) ∈ Rel, Γ ` A B A′ : s1, Γ(x : A) ` B B B′ : s2, Γ(x : A) `M BM′ : B and
Γ ` T ∼=β ΠxA.B.

5. If Γ ` PΠxU .BQBN : T then there are A,A′,B′,Q′,s1,s2,s3 such that (s1,s2,s3)∈ Rel,
Γ ` AB A′ : s1, Γ(x : A) ` BB B′ : t2, Γ ` QB Q′ : A, Γ ` T ∼=β B[Q/x] and

• either (APP case) U ≡ A, Γ ` PB P′ : ΠxA.B and N ≡ P′
ΠxA′ .B′

Q′ for some P′

• or (BETA case) U ≡ A′′, P≡ λxA.R, Γ(x : A) ` RB R′ : B, N ≡ R′[Q′/x],
Γ ` A0 B+ A′′ : s1 and Γ ` A0 B+ A : s1 for some A0,A′′,R,R′.

One of the key-point to prove the Church-Rosser property for β -reduction (more exactly,
to prove that the usual reduction and the parallel one have the same transitive closure) is
that β enjoys some nice multi-step congruence properties like:

• If A�β B and C�β D, then ΠxA.C�β ΠxB.D
• If A�β B and M�β N, then λxA.M�β λxB.N
• . . .

However, to have the same properties in PTSatr, that is with type restrictions to fulfill, those
lemmas can be hard to prove, especially for the application case. By only considering the
functional case, which enjoys Type Uniqueness, Adams got rid of this trouble and managed
to prove those extensions to TPOSR quite easily. Without this uniqueness property, we need
another way to be able to find the right typing information.

To prove those multi-step congruence results for PTSatr, we need to check that some
terms are typed by the correct sorts (for example in the application case, we need to check
that terms are typed by the triple of sorts in Rel). One practical case is when we know that

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 15

Γ ` A B? : s and Γ ` A B+ A′ : t, but we need the latter statement typed by s. With Type
Uniqueness, we would be able to prove that s ≡ t, but this is not true in the general case.
What we would like to do it to keep the reduction skeleton of the second statement and use
it with the types of the first judgment.

According to us, the following theorem is the best tool to achieve this task:

Theorem 3.6 (Exchange of Types)
If Γ `M B N : A and Γ `M B P : B, then Γ `M B N : B and Γ `M B P : A.

Proof
By induction, there are no difficult cases since we have the co-domain annotations on the
applications.

The heart of this theorem is to keep the reduction structure of a derivation and allowing to
change the type annotations inside, if we have a witness that these annotations are correct.
We can directly extend this result to multi-step reduction:

Corollary 3.7 (Exchange of Types in multi-step reduction)
If Γ `M B+ N : A and Γ `M B? : B, then Γ `M B+ N : B.

It allows us to prove that the following transitivity rule for B+ is admissible:

Γ `M B+ N : A Γ ` N B+ P : B

Γ `M B+ P : A
REDS-TRANS-ALT

This is the key lemma to prove our multi-step congruence lemma for PTSatr:

Lemma 3.8 (Multi-step Congruences and Generations)
• Congruences:

— If Γ ` AB+ A′ : s1, Γ(x : A) ` BB+ B′ : s2 and (s1,s2,s3) ∈ Rel, then
Γ `ΠxA.BB+ ΠxA′ .B′ : s3.

— If Γ ` AB+ A′ : s1, Γ(x : A) `M B+ M′ : B, Γ(x : A) ` BB? : s2 and
(s1,s2,s3) ∈ Rel, then Γ ` λxA.M B+ λxA′ ,M′ : ΠxA.B.

— If Γ ` AB+ A′ : s, Γ(x : A) ` BB+ B′ : t, Γ `M B+ M′ : ΠxA.B, and
Γ ` N B+ N′ : A, then Γ `M

ΠxA.BN B+ M′
ΠxA′ .B′

N′ : B[N/x].

• (Multi-step) Generation:

— If Γ ` ΠxA.B B+ N : T then there are A′,B′,s1,s2,s3 such that (s1,s2,s3) ∈ Rel,
N ≡ΠxA′ .B′, Γ ` AB+ A′ : s1, Γ(x : A) ` BB+ B′ : s2 and Γ ` T ∼=β s3 or T ≡ s3.

— If Γ ` λxA.M B+ N : T then there are A′,M′,B,s1,s2,s3 such that
(s1,s2,s3) ∈ Rel, N ≡ λxA′ .M′, Γ ` AB+ A′ : s1, Γ(x : A) `M B+ M′ : B,
Γ(x : A) ` BB? : s2 and Γ ` T ∼=β ΠxA.B.

— If Γ ` sB+ N : T , then there is t such that N ≡ s, (s, t) ∈ Ax, and Γ ` T ∼=β t or
T ≡ t.

This exchange of types will also be used in the proof of the Church-Rosser property to
avoid building the right sets of sorts in Rel at some minor stage of the proof. However,
we will use it extensively while proving that well-typed terms in PTS can be correctly
annotated into well-typed annotated terms in PTSatr.

ZU064-05-FPR PTSATR 1 July 2010 15:9

16 V. Siles and H. Herbelin

Lemma 3.9 (Type Correctness)
If Γ `M B N : A, then there is s ∈ Sorts such as either: A≡ s or Γ ` AB? : s.

Theorem 3.10 (From PTSatr to PTS and PTSe)
1. If Γ `M B N : A then |Γ| ` |M| : |A|,
|Γ| ` |N| : |A| and |M|=β |N|.

2. If Γ `M B N : A then |Γ| `e |M| : |A|,
|Γ| `e |N| : |A| and |Γ| `e |M|=β |N| : |A|.

Proof
This proof is much like the translation from PTSe to PTS: we have more typing in forma-
tions in PTSatr than in PTS or PTSe, so we just need to remove the additional annotations.
Since B has been designed to mimic the parallel reduction for β , it is quite easy to show
that erased terms are still connected by typed or untyped β -conversion.

Corollary 3.11 (Sort and Π-types incompatibility)
It is impossible to prove that Γ `ΠxA.B∼=β s for any Γ,A,B,s.

Proof
The proof relies on a translation of the equality judgment Γ ` ΠxA.B =β s in the PTS
by erasure of the annotations with the first part of Theorem 3.10. The confluence of β -
reduction forbids that Πx|A|.|B|=β s in any way.

At this point we need to recall what we said about the order we used to prove things
in PTS. We did not present any kind of confluence for PTSatr. The reason is that, in a
typed framework like PTSe or PTSatr, the Confluence and the Church-Rosser properties
are a blocking step. Since they mix together typing and reduction, it is difficult to find a
proof without involving the Subject Reduction of the system, and the proof of this theorem
involves already knowing the Π-injectivity property (as required for PTS in the previous
section) which comes from Confluence.

3.3 The Church-Rosser Property in PTSatr

The next step in the meta-theory is to prove the Church-Rosser property by proving that
PTSatr enjoys the Diamond Property:

Theorem 3.12 (Diamond Property)
If Γ `M B N : A and Γ `M B P : B, then there is Q such that

Γ ` N B Q : A,B Γ ` N B Q : A,B
Γ ` PB Q : A,B Γ ` PB Q : A,B

We are trying to close the classic Church-Rosser diamond diagram in a typed way. In all
previous attempts (Adams, 2006; Siles & Herbelin, 2010), the main issue was to be able to
close the cases involving an application constructor: APP/APP, APP/BETA and BETA/APP.
We lacked information about the co-domain (say D) of the application:

1. some types involved in the conclusion of those judgments are substituted (e.g. D[N/x]),
so we do not have the complete typing information for D.

2. some induction hypotheses over the co-domain of types do not always reflect the
context of the hypothesis we actually have.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 17

The first problem is “easily” solved by adding the D as an annotation. But it is this ad-
ditional annotation that makes the second problem arise: it forbids us to use one of our
induction hypothesis. During the proof, the induction hypothesis requires the context to be
the same in both branches of the theorem and for the APP case, we needed to prove that it
was actually the case.

In his proof, Adams relies on the Uniqueness of Typing which comes from the function-
ality, and in the semi-full case, we relied on the Shape of Types (Siles & Herbelin, 2010) to
make the contexts match. To get rid of both constraints over the PTS, we will use here the
new annotation in applications, that will force the context to match: now in the APP/APP

case, co-domain contexts are syntactically the same, and in the other cases (where we will
β -reduce), we have enough typing information to type the resulting substitution.

We will not give more details about the second issue here since we no longer face it
(explanations and a concrete example can be found in Siles & Herbelin (2010). However,
since it is the first time that the new annotation comes in handy, we can now explain our
choices for it.

The annotation is here to have a full remainder of the function space: if λxA.M of type
ΠxA.B is applied to N of type A, we want to have both A and B available while looking at
the β -redex. Our first attempt was to put syntactically the same A in the annotation, and
thus allowing the reduction of the redex only if the annotation matches exactly the domain
of the function. But this approach failed, and made us realized that we need to annotate by
any A′ convertible to A. However, this notion of conversion has to be more strict than our
∼=β judgment: we need to enforce that each conversion step stays in the same sort, much
like the equality judgments for PTSe.

We could have used two different notions of conversion, one that cares about the type,
and one that only cares about the types being sorts, but the first one was only needed
for this new annotation, and as soon as we proved Confluence, we will always break it into
two multi-step reductions. Instead, we tried to find another “self-contained” notion of strict
conversion, with the judgments we built so far around B, B+ and ∼=β . Having a common
expanded term satisfied all our requirements:

• all the steps between the domain and the annotation are well-typed, by the very same
sort.

• we do not have to introduce a new kind of judgment.
• it behaves nicely in the proof of the Church-Rosser property.

The main reason why this choice behaves so nicely is that PTSatr is a reduction system:
it is directed. The domain and the annotation are always reduced in the same direction.
Informally, if A0 B+ A and A0 B+ A′, since both A and A′ can only be reduced, we just
have to append the new reductions steps to the sequences starting from A0. In short, we
never need to “guess” what will be the common expanded term.

Doing so, the proof of the Diamond Property becomes quite straightforward by induc-
tion, since we pushed all the issues inside the new annotation. However, those issues did
not disappear: we will face them when we will prove that the annotations are correct.

ZU064-05-FPR PTSATR 1 July 2010 15:9

18 V. Siles and H. Herbelin

3.4 Consequences of the Church-Rosser property

With the Church-Rosser property, we can finally settle with all the missing pieces of theory
that we do not know how to prove directly in a typed framework:

Lemma 3.13 (Confluence)
If Γ ` A∼=β B, there are C,s, t such that Γ ` AB+ C : s and Γ ` BB+ C : t.

Lemma 3.14 (Weak Π-injectivity for PTSatr)
If Γ `ΠxA.B∼=β ΠxC.D then Γ ` A∼=β C and Γ(x : A) ` B∼=β D.

Since strong injectivity does not hold for PTSatr (the same counterexample we used for
PTSe also works here), we stated a weaker form of injectivity. However, this Π-injectivity
for ∼=β along with the Exchange of Types properties are enough for the rest of the develop-
ment.

Theorem 3.15 (Subject Reduction)
If Γ `M B? : A and M→p N then Γ `M B+ N : A.

Proof
This is the first place where we will encounter the difficulties that we postponed in the
proof of Church-Rosser property It is interesting to notice that we did not manage to prove
the conclusion of Subject Reduction as a one step PTSatr reduction: all the conversion we
have to do to make the annotations in the application match forced us to have a multi-step
version of the conclusion. However, this will not be a problem for the following proofs.

The proof is done by induction on M→p N: as usual, most cases are trivial. In the case
of application congruence, some type conversions are required, but everything is directly
available. However, if M is a β -redex which is reduced, we need to show that we have the
right to do this reduction according to the typing rule BETA. We will make an extensive use
of Confluence and Exchange of Types to show that everything is fine.

The situation is the following: we want to prove that

Γ ` (λxA.M
ΠxA′ .B′)N B

+ M′[N′/x] : B′[N/x]

knowing that the β -redex is well-typed. By inversion, we have two choices: either the
redex is typed as an application, or it is typed with the BETA rule. In the second case, we
directly have all the information to conclude. However, in the first case, we need to use
the Generation Lemma to retrieve typing information from the application and from the
λ -term. We get the following judgments:

• Γ ` AB? : s1, Γ(x : A) `M B? : B and Γ(x : A) ` BB? : s2 where (s1,s2,s3) ∈ Rel.
• Γ ` A′ B? : t1, Γ(x : A′) ` B′ B? : t2 where (t1, t2, t3) ∈ Rel.
• Γ ` N B? : A′ and Γ `ΠxA.B∼=β ΠxA′ .B′.

Using Π-injectivity, we can show that Γ ` A∼=β A′, but as we said before, this is not enough
to trigger the reduction of the redex, since A and A′ are not typed by the same sort, and we
do not know any common expanded form for them. However, by Confluence, we can find
common reduced terms for A and A′ , and also for B and B′:

• Γ ` AB+ A0 : s and Γ ` A′ B+ A0 : t.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 19

• Γ ` BB+ B0 : s′ and Γ(x : A) ` B′ B+ BO : t ′.

Using the Exchange of Types, we can replace s by s1, t by t1, s′ by s2 and t ′ by t2. Doing so,
we can prove that Γ ` λxA.M

ΠxA′ .B′N B
+ λxA.M

ΠxA0 .B0
N : B′[N/x]. With this new redex,

we have everything at hand to fire the reduction and prove that
Γ ` λxA.M

ΠxA0 .B0
N BM[N/x] : B0[N/x].

With (REDS-TRANS-ALT), and the Substitution Lemma, we can now glue both reduc-
tions and conclude the final case of Subject Reduction.

4 Equivalence of PTSatr and PTS

4.1 Confluence of the annotation process

The last step to prove the equivalence is to prove the correctness of annotations, i.e. to
prove that every judgment Γ `M : T can be annotated into a valid PTSatr derivation
Γ+ `M+ BM+ : T+ where |Γ+| ≡ Γ, |M+| ≡M and |T+| ≡ T .

To do so, we need to show some basic properties of the annotation process. Since there
are several ways to annotate a term, we will face some difficult situations while performing
induction. Let us take a simple example with the construction of Π-types with the PI rule:

Γ ` A : s1 Γ(x : A) ` B : s2 (s1,s2,s3) ∈Rel

Γ `ΠxA.B : s3
PI

By induction, we get that Γ1 ` A1 B A1 : s1 and Γ2(x : A2) ` B2 B B2 : s2 with the equalities
|Γ1| ≡ |Γ2|= Γ, |B2| ≡ B and |A1| ≡ |A2|= A. To build a Π-type from those two judgments,
we need to relate Γ1 to Γ2 and A1 to A2 in PTSatr. More precisely, we need to show that
if two annotated types come from the same non-annotated term, and if they are well-typed
in PTSatr, they are equivalent in PTSatr. With such a property, we would be able to state a
similar lemma for contexts and prove that our annotation procedure is correct.

However, we have to recall that what we call here types are just terms typed by a sort,
and their typing judgment may use β -redexes, which will involve “non-types”. So we will
state a more general lemma about the conversion of different annotated versions of a same
PTS term.

Lemma 4.1 (Erased Confluence)
If |M| ≡ |N| , Γ `M B? : A and Γ ` N B? : B , then there is R such that

Γ `M B+ R : A and Γ ` N B+ R : B.

Proof
The proof is done by induction on M, the only difficult part is again the application case:

M ≡ P
ΠxA0 .DQ, N ≡ P′

ΠxA′0 .D′
Q′ |P| ≡ |P′|, |Q| ≡ |Q′|

By generation, we get that P,P′,Q and Q′ are well-typed, so by induction, there are
P0,Q0 such that:

Γ ` PB+ P0 : ΠxC.D Γ ` QB+ Q0 : C
Γ ` P′ B+ P0 : ΠxC′ .D′ Γ ` Q′ B+ Q0 : C′

ZU064-05-FPR PTSATR 1 July 2010 15:9

20 V. Siles and H. Herbelin

and some additional information relating A0 and A′0 to C and C′ depending on the way M
was typed (BETA or APP).

In the functional case (where only one annotation is needed), this is quite trivial : thanks
to the Uniqueness of Types applied to P0 and Π-injectivity we get that Γ(x : C) ` D∼=β D′.
By Confluence, we get a common reduct D0 for D and D′, so the common reduct of M and
N is P0 D0Q0.

We need to be a little more subtle here: for the semi-full case (see Siles & Herbelin,
2010), we showed that terms can be classified in two families whose types have very
particular shapes. Fortunately, the full generality of this classification is not needed here:

Lemma 4.2 (Weak shape of type)
If Γ `M B? : A and Γ `M B? : B, then:

• either Γ ` A∼=β B
• or we are in the following cases:

1. there are U and V such that Γ `M B λxU .V : A and Γ `M B λxU .V : B.
2. there is s such that Γ `M B s : A and Γ `M B s : B.
3. there is U and V such that Γ `M BΠxU .V : A and Γ `M BΠxU .V : B.

The proof of this lemma is quite trivial by induction, and relies on the fact that we have the
annotation of co-domains at hand.

From now on, we will mainly focus on P0: we can apply the previous lemma to it and,
for the first part of the conclusion, conclude almost like the functional case. By generation,
we also got a way to prove that Γ ` A0 ∼=β A′0, depending on the constructor used. By
Confluence, we can get a common reduct A′′, and use P0 ΠxA′′ .D0

Q0 to close the lemma.
If we are in the second part of the conclusion, the only relevant case is the first one:

since P0 is typed by a Π-types, it can not reduce itself to a sort or another Π-type. The
reason is because with the Generation lemma, we know that the type of a sort or a Π-type
is always convertible to a sort. If they could be typed by a Π-type, we would end up having
a judgment of the form Γ `ΠxA.B∼=β s which is impossible due to Corollary 3.11.

In the last remaining case, there are U and V such that:

• Γ ` P0 B λxU .V : ΠxC.D
• Γ ` P0 B λxU .V : ΠxC′ .D′

We just created a β -redex since P0 is going to be applied, so this time, the common reduced
term will be the result of the β -reduction initiated by P0 instead of just a simple application.

Actually, we still need to show that we are allowed to reduce this redex, just as we
needed to show it for Subject Reduction: this is the second place where we are facing quite
technical points because of the new annotations. There are four different cases to handle
here, depending on how M and M′ are originally typed (by BETA or APP), but each can be
closed by extensive use of Confluence and Exchange of Types. The main idea behind each
case is the same, and follows this scheme:

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 21

Γ ` PΠxU .DQ B+P0 ΠxU .DQ : D[Q/x]
B+(λxU .V)ΠxU .DQ : D[Q/x]
B+V [Q/x] : D[Q/x]
B+V [Q0/x] : D[Q/x]

Γ ` P′
ΠxU .D′Q

′B+P0 ΠxU .D′Q
′ : D′[Q′/x]

B+(λxU .V)ΠxU .D′Q
′: D′[Q′/x]

B+V [Q′/x] : D′[Q′/x]
B+V [Q0/x] : D′[Q′/x]

In the end, we manage to find a common reduct in each type without having to find a
common reduct for the annotations, which concludes the proof of this lemma.

4.2 Consequences of the Erased Confluence

With the general statement for all terms, we can now show what we needed about types
and contexts:

Lemma 4.3 (Erased Conversion)
1. If |A| ≡ |B|, Γ ` AB? : s and Γ ` BB? : t then Γ ` A∼=β B.
2. If |Γ1| ≡ |Γ2| and Γ1 `M B N : A, then

Γ2 `M B N : A.

Proof
The first statement directly follows from Lemma 4.1. The second is a consequence of the
first one, by simple induction on the length of Γ1.

Now let us go back to the annotation of Π-types. With Lemma 4.3, we can derive the fact
that Γ1 ` A1 ∼=β A2 and Γ1 ≡ Γ2. By context conversion, we can exchange the contexts and
we end up proving that Γ1(x : A1) ` B2 B B2 : s2, and so we can finally build the annotated
judgment Γ1 `ΠxA1 .B2 BΠxA1 .B2 : s3, with |Γ1| ≡ Γ, |A1| ≡ A and |B2| ≡ B.

By doing the same process for each constructor, we can now conclude the last missing
piece of the whole equivalence process:

Theorem 4.4 (From PTS to PTSatr)
If Γ`M : T , then there are Γ+,M+,T+ such that Γ+ `M+BM+ : T+, |Γ+| ≡Γ, |M+| ≡M
and |T+| ≡ T .

Proof
Since we have managed to prove Subject Reduction and Lemma 4.3, the proof is almost
the same as for Adams’ TPOSR. A few type exchanges are needed in the BETA case but it
does not involve complicated nor technical things.

Finally, all of this leads us to state that:

Theorem 4.5 (Equivalence of PTS and PTSe)
1. Γ `M : T iff Γ `e M : T .
2. Γ `e M =β N : T iff Γ `M : T , Γ ` N : T and M =β N.

Proof

ZU064-05-FPR PTSATR 1 July 2010 15:9

22 V. Siles and H. Herbelin

This is just a combination of all the previous theorems:

• If Γ `e M : T , then by Theorem 2.11, we have Γ `M : T .
• If Γ `M : T , by Theorem 4.4 we know that

Γ+ ` M+ B M+ : T+ with |Γ+| ≡ Γ, |M+| ≡ M and |T+| ≡ T . By Theorem 3.10,
|Γ+| `e |M+| : |T+| which is equal to Γ `e M : T .

• If Γ `e M =β N : T , so we conclude by Theorem 2.11.
• If Γ ` M : T , Γ ` N : T and M =β N, by Confluence, there is P such that M�β P

and N�β P. By Theorem 4.4, there are Γ+,M+,T+ such that |Γ+| ≡ Γ, |M+| ≡M,
|T+| ≡ T and Γ+ ` M+ B M+ : T+. Let us consider P+ such that |P+| ≡ P and
M+� P+ (such a term always exists, the proof is a simple induction on the structure
of M).

Γ+ `M+ BM+ : T+

⇒ Γ+ `M+ B+ P+ : T+ (Subject Reduction)
⇒ Γ `e M =β P : T (Theorem 3.10 and TRANS)

We do the same to conclude that Γ `e N =β P : T , so by SYM and TRANS, we finally
have Γ `e M =β N : T .

4.3 Consequences of the equivalence

Now that we have a way to go from PTS to PTSe (and the other way around), we can go
back to the proof of Subject Reduction for PTSe.

Theorem 4.6 (Subject Reduction for PTSe)
If Γ `e M : T and M→β N then Γ `e M =β N : T .

Proof
By using the first part of Theorem 4.5 and Theorem 4.4, there are Γ+, M+ and T+ such
that Γ+ `M+ BM+ : T+ and |Γ+| ≡ Γ, |M+| ≡M and |T+| ≡ T . Let us consider N+ such
that |N+| ≡ N and M+→p N+. With such a term, and using Theorem 3.15, we can prove
that Γ+ `M+ B+ N+ : T+. By erasing the annotations using the last part of Theorem 3.10,
we end up having |Γ+| `e |M+|=β |N+| : |T+| which is the exact result we wanted.

The last missing piece of our development is to find the correct statement for injectivity
of products in PTSe. Subject Reduction for PTSatr relied on the weak Π-injectivity for ∼=β

and we choose such an equality to be able to state the Generation lemmas for PTSatr. Since
PTSatr is “enhanced” version of PTSe with additional annotations, that may be the correct
presentation we were looking for:

Weak PTSe equality
Γ `e A =β B : s

Γ `e A =β B

Γ `e B =β A

Γ `e A =β B

Γ `e A =β B Γ `e B =β C

Γ `e A =β C

This weaker form of equality enjoys some nice properties:

• If Γ `e A =β B, then there are s and t such that Γ `e A : s and Γ `e B : t.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 23

• If Γ `e A =β B, then A =β B.
• This equality is compatible with conversion in PTSe context: if Γ1 `e A =β B and

Γ1(x : A)Γ2 `e M : T , then Γ1(x : B)Γ2 `e M : T .

All those properties are directly consequences of the usual equality for PTSe.
With this equality, we can directly state some generation lemmas for PTSe without

relying on the equivalence:

Lemma 4.7 (Generation Lemmas for PTSe)
Those properties are much like PTSatr’s one, so we will only state the one that we will
really need here:

1. If Γ `e ΠxA.B : T then there are s1,s2,s3 such that (s1,s2,s3) ∈ Rel, Γ `e A : s1,
Γ(x : A) `e B : s2, and T ≡ s3 or Γ `e T =β s3.

2. If Γ `e λxA.M : T then there are s1,s2,s3 and B such that (s1,s2,s3)∈ Rel, Γ `e A : s1,
Γ(x : A) `e M : B, Γ(x : A) `e B : s2 and Γ `e T =β ΠxA.B.

3. If Γ `e M N : T then there are A and B such that Γ `e M : ΠxA.B, Γ `e N : A and
Γ `e T =β B[N/x].

Now that we have the Generation Lemmas and Subject Reduction, we can prove what
we consider to be the correct statement for injectivity of products in PTSe.

Corollary 4.8 (Weak Π-injectivity for PTSe)
If Γ `e ΠxA.B =β ΠxC.D then Γ `e A =β C and Γ(x : A) `e B =β D.

Proof
By using the properties of weak equality that we just stated, there are s3 and s′3 such that
Γ `ΠxA.B : s3, Γ `ΠxC.D : s′3, and ΠxA.B =β ΠxC.D. By Π-injectivity and Confluence for
the usual untyped β , and Generation for PTSe, we get:

• A�β U β�C and B�β V β� D
• Γ ` A : s1, Γ `C : s′1, Γ(x : A) ` B : s2 and Γ(x : C) ` D : s′2 for s1,s′1,s2,s′2 such that

(s1,s2,s3) ∈ Rel and (s′1,s
′
2,s
′
3) ∈ Rel.

By using Subject Reduction for PTSe, we get that Γ `e A =β U : s1, Γ `e C =β U : s′1,
Γ(x : A) `e B =β V : s2 and Γ(x : C) `e D =β V : s′2. It is now easy to glue everything
together to obtain Γ `e A =β C and Γ(x : A) `e B =β D.

This proof of injectivity holds for any PTSe, even the non-functional ones or the ones that
do not enjoy normalization. Another test that validate we did the right choice, is that if
we consider this property for granted, we can make a direct proof of Subject Reduction for
PTSe by adapting the well-known proof for PTS. However we do not have any proof of this
weak injectivity that do not use Subject Reduction, which makes us think that the correct
framework to deal with judgmental equality is PTSatr, and not PTSe.

5 Conclusion

Pure Type Systems are a general framework at the core of dependently typed theories.
Until now, there were two main presentations, with or without typed equality judgments.

ZU064-05-FPR PTSATR 1 July 2010 15:9

24 V. Siles and H. Herbelin

With this new result, we finally managed to prove that both presentations are describing
the same theory, without having to rely on specific model-based proofs of normalization.

This result also gives us a way to correctly state and prove two main properties of PTS
based on judgmental equality: Subject Reduction and Weak Π-injectivity. Regarding the
strong version of injectivity, we provide a counterexample for the general case of PTSe,
but we know it is true in the functional case since Adams proved it (2006).

Now that we know how to deal with any kind of PTS, we will be able to focus on
extending the typing system, with subtyping for example, and looking toward proving the
same equivalence for the Extended Calculus of Constructions, or even for the Calculus of
Inductive Constructors. On the other hand, we can also try to change the conversion rule,
by adding η-expansion for example. This would provide an interesting framework to deal
with normalization by evaluation, or to improve unification of proof assistants by adding
techniques based on η-expansion, like pattern-unification.

Acknowledgements

We are particularly grateful to Bruno Barras for guiding us through our experiments on
the problem solved in this paper. We also thank Andreas Abel, Paul-André Melliès and
Stéphane Lengrand for many stimulating discussions on the topic.

References

Abel, Andreas. (2010). Towards Normalization by Evaluation for the Calculus of Constructions.
Pages 224–239 of: FLOPS.

Abel, Andreas, Coquand, Thierry, & Dybjer, Peter. (2007). Normalization by Evaluation for Martin-
Löf Type Theory with typed equality judgements. Pages 3–12 of: 22nd IEEE Symposium on
Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, proceedings. IEEE
Computer Society Press.

Adams, Robin. (2006). Pure Type Tystems with Judgemental Equality. J. Funct. Program., 16(2),
219–246.

Barendregt, H., Abramsky, S., Gabbay, D. M., Maibaum, T. S. E., & Barendregt, H. P. (1992).
Lambda Calculi with Types. Pages 117–309 of: Handbook of Logic in Computer Science. Oxford
University Press.

Berardi, Stefano. (1988). Type dependence and constructive mathematics. Ph.D. thesis,
Mathematical Institute Torino.

Coq Development Team. The Coq proof assistant reference manual. http://coq.inria.fr/refman/.
de Bruijn, N.G. (1972). Lambda-calculus notation with nameless dummies: a tool for automatic

formula manipulation with application to the Church-Rosser theorem. Indag. math., 34(5), 381–
392.

Geuvers, Herman. (1993). Logics and type systems. Ph.D. thesis, Katholieke Universiteit Nijmegen.
Geuvers, Herman, & Werner, Benjamin. (1994). On the Church-Rosser property for expressive type

systems and its consequences for their metatheoretic study. Pages 320–329 of: LICS.
Goguen, Healfdene. (1994). A typed operational semantics for type theory. Ph.D. thesis, University

of Edinburgh.
Luo, Z. (1989). ECC: an extended calculus of constructions. Pages 385–395 of: Proceedings of the

fourth annual symposium on logic in computer science. Piscataway, NJ, USA: IEEE Press.

ZU064-05-FPR PTSATR 1 July 2010 15:9

Pure Type System conversion is always typable 25

Martin-Löf, Per. (1984). Intuitionistic type theory. Bibliopolis.
Melliès, P.-A., & Werner, B. (1997). A generic normalization proof for Pure Type Systems. Paulin-

Mohring, C., & Gimenez, E. (eds), TYPES’96. LNCS, Springer-Verlag.
Nordstrom, Bengt, Petersson, Kent, & Smith, Jan M. (1990). Programming in Martin-Löf’s Type

Theory: An introduction. Oxford University Press, USA.
Norell, Ulf. 2007 (September). Towards a practical programming language based on dependent type

theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden.

Siles, Vincent. Formalization of equivalence between PTS and PTSe. http://www.lix.

polytechnique.fr/~vsiles/coq/PTSATR.html.
Siles, Vincent, & Herbelin, Hugo. (2010). Equality is typable in semi-full Pure Type Systems.

Proceedings, 25th annual IEEE symposium on Login in Computer Science (LICS ’10), Edinburgh,
UK, 11-14 July 2010. IEEE Compuer Society Press.

Streicher, Thomas. (1991). Semantics of type theory: correctness, completeness, and independence
results. Cambridge, MA, USA: Birkhauser Boston Inc.

van Benthem Jutting, L. S., McKinna, James, & Pollack, Robert. (1993). Checking Algorithms for
Pure Type Systems. Pages 19–61 of: TYPES.

Werner, Benjamin. (1994). Une théorie des Constructions Inductives. Ph.D. thesis, Université
Paris 7.

Werner, Benjamin, & Lee, Gyesik. (2010). A proof-irrelevant model of CIC with predicate induction
and judgemental equality. Submitted to LMCS.

